Definitions

Z — set of integers, defined through Axioms 1.1–5. These include the definitions of 0, 1, and -m.

m is divisible by *n* (or alternatively, *n* divides *m*) if there exists $j \in \mathbb{Z}$ such that m = jn. We use the notation $n \mid m$.

m is **even** if it is divisible by 2.

m-n is defined to be m+(-n).

N — set of natural numbers (or positive integers), defined through Axiom 2.1.

Let $m, n \in \mathbb{Z}$. The statements m < n (*m* is less than *n*) and n > m (*n* is greater than *m*) both mean that

 $n-m \in \mathbf{N}$.

The notations $m \le n$ (*m* is less than or equal to *n*) and $n \ge m$ (*n* is greater than or equal to *m*) mean that

$$m < n$$
 or $m = n$.

A is a **subset** of B (in symbols, $A \subseteq B$) means

if $x \in A$ then $x \in B$.

Two sets A and B are equal (in symbols, A = B) if

$$A \subseteq B$$
 and $B \subseteq A$.

The intersection of two sets A and B is

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

The **union** of *A* and *B* is

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

For two sets *A* and *B*, we define the **set difference**

$$A-B = \{x : x \in A \text{ and } x \notin B\}.$$

Given a set $A \subseteq X$, we define the **complement** of *A* in *X* to be X - A. If the bigger set *X* is clear from the context, one often writes A^c for the complement of *A* (in *X*).

The (Cartesian) product of the sets A and B is

$$A \times B := \{(a,b) : a \in A \text{ and } b \in B\}.$$

We call (a,b) an **ordered pair**.

 $\exists -- \text{there exist(s)...} \\ \forall -- \text{ for all...} \\ \exists ! -- \text{ existence and uniqueness}$

Sum. Let $(x_j)_{j=1}^{\infty}$ be a sequence of integers. For each $k \in \mathbb{N}$, we want to define an integer called $\sum_{j=1}^{k} x_j$:

- (i) Define $\sum_{j=1}^{1} x_j$ to be x_1 .
- (ii) Assuming $\sum_{j=1}^{n} x_j$ already defined, we define $\sum_{j=1}^{n+1} x_j$ to be $\left(\sum_{j=1}^{n} x_j\right) + x_{n+1}$.

Product. We define an integer called $\prod_{j=1}^{k} x_j$:

- (i) Define $\prod_{j=1}^{1} x_j := x_1$.
- (ii) Assuming $\prod_{j=1}^{n} x_j$ defined, we define $\prod_{j=1}^{n+1} x_j := \left(\prod_{j=1}^{n} x_j\right) \cdot x_{n+1}$.

Factorial. We define k! ("*k* factorial") for all integers $k \ge 0$ by:

- (i) Define 0! := 1.
- (ii) Assuming *n*! defined (where $n \in \mathbb{Z}_{\geq 0}$), define $(n+1)! := (n!) \cdot (n+1)$.

Power. Let *b* be a fixed integer. We define b^k for all integers $k \ge 0$ by:

- (i) $b^0 := 1$.
- (ii) Assuming b^n defined, let $b^{n+1} := b^n \cdot b$.

A **relation** on a set *A* is a subset of $A \times A$. Given a relation $R \subseteq A \times A$, we often write $x \sim y$ instead of $(x, y) \in R$ and we say that *x* is **related to** *y* (by the relation *R*). The relation $R \subseteq A \times A$ is an **equivalence relation** if it has the following three properties:

2

(i) $a \sim a$ for all $a \in A$.	(reflexivity)
(ii) $a \sim b$ implies $b \sim a$.	(symmetry)
(iii) $a \sim b$ and $b \sim c$ imply $a \sim c$.	(transitivity)

Given an equivalence relation \sim on *A*, the **equivalence class** of $a \in A$ is

$$[a] := \{b \in A : b \sim a\}.$$