Worksheet 2: Primes

- 1. Let $a, b \in \mathbb{Z}_{>0}$. Show that, if $g = \operatorname{gcd}(a, b)$ then $\operatorname{gcd}(\frac{a}{g}, \frac{b}{g}) = 1$.
- 2. Give a careful definition of a *prime number*.
- 3. Let $a, b, c \in \mathbb{Z}_{>0}$.
 - (a) Prove that, if $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.
 - (b) Conclude that if *p* is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.
 - (c) Give a counterexample that shows the previous sentence is wrong if p is not prime.
- 4. Prove the *Fundamental Theorem of Arithmetic*: for every integer $n \ge 2$ there exist unique primes p_1, p_2, \ldots, p_k and positive integers a_1, a_2, \ldots, a_k such that

$$n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}.$$

- (a) For existence, try induction on *n*.
- (b) For uniqueness, you may use 3(b).
- 5. Andrews 2.4.5 & 6.
- 6. Experiment with the sage commands factor and is_prime. Try them with a 100-digit number and a 150-digit number and compare the four running times (e.g., by using %time before the command). What's going on here?
- 7. *Preview: Clock Arithmetic.* The numbers on the 6-hour clock are the remainders we get when we divide by, in this case, 6. Adding 3 to 4 gets us to 1, which is also the remainder of dividing 3+4 by 6.
 - (a) Explain why the number at the top of the clock is 0 rather than 6.
 - (b) Complete the clock addition table and this clock multiplication table

+	0	1	2	3	4	5]			•	0	1	2	3	4	5
0]	0		0						
							5.	•	. 1							
1										1						
							4 •		•2							
2								• 3		2						
							ļ									
3										3						
4										4						
							ļ									
5										5						
]									

- (c) What patterns do you see in these two tables?
- 8. Write down a precise statement for each definition we have given this week. For each definition, give an example and a non-example.