Name: _____

Show complete work—that is, all the steps needed to completely justify your answer. Simplify your answers as much as possible. You may refer to theorems in the class notes.

- 1. Take a deep breath. You can do this!
 - (a) Tell me your favorite prime number p.
 - (b) Perform the Euclidean algorithm to compute the gcd of p and 31.
 - (c) Explain where you computed the multiplicative inverse of $p \mod 31$ along the way.
- 2. (a) Find all solutions to $2x \equiv 2 \pmod{16}$.
 - (b) Find all solutions to $5x \equiv 2 \pmod{210}$.

Solution:

- (b) There are gcd(2, 16) = 2 solutions modulo 16. The congruence can be reduced to $x \equiv 1 \pmod{8}$, so the original congruence has the solutions $x \equiv 1, 9 \pmod{16}$.
- (c) gcd(5,210) = 5 does not divide 2, so there is no solution.
- 3. Suppose gcd(a, 561) = 1.
 - (a) Prove that $a^{560} \equiv 1 \pmod{m}$ for m = 3, 11, and 17.
 - (b) Deduce that $a^{560} \equiv 1 \pmod{561}$.

Solution:

(a) Because $561 = 3 \cdot 11 \cdot 17$, gcd(a, 561) = 1 means that a is relatively prime to any of these m's. So we can use Fermat's Little Theorem:

$$a^{560} = (a^2)^{280} \equiv 1 \pmod{3}$$
$$a^{560} = (a^{10})^{56} \equiv 1 \pmod{11}$$
$$a^{560} = (a^{16})^{35} \equiv 1 \pmod{17}$$

(b) This means that 3, 11, and 17 divide $a^{560} - 1$, and hence (because 3, 11, and 17 are pairwise relatively prime) so does $561 = 3 \cdot 11 \cdot 17$. (One could also invoke the Chinese Remainder Theorem here.)

(You might have read somewhere that a composite number m is called a *Carmichael* number if the congruence $a^{m-1} \equiv 1 \pmod{m}$ is true for all a that are relatively prime to m. We just proved that 561 is a Carmichael number.)

4. Let p be a prime number and k a positive integer. Explain why $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.

Solution: The divisors of p^k are $1, p, p^2, \ldots, p^k$, and so (using a finite geometric series)

$$\sigma(p^k) = 1 + p + p^2 + \dots + p^k = \frac{p^{k+1} - 1}{p - 1}.$$