The Teacher's Circle: Divisibility Tests

June 2008

Let's write any integer a in terms of its decimal expansion: $a=a_{0}+10 a_{1}+100 a_{2}+\cdots+a_{d} 10^{d}$ (so we're assuming a has $d+1$ digits). Our goal is to prove the following divisibility tests.

- a is divisible by 2 if and only if a_{0} is.
- a is divisible by 4 if and only if $a_{0}+10 a_{1}$ is.
- a is divisible by 8 if and only if $a_{0}+10 a_{1}+100 a_{2}$ is.
- Generalize the first three rules to divisibility by any power of 2 .
- a is divisible by 5 if and only if a_{0} is.
- a is divisible by 10 if and only if a_{0} is.
- a is divisible by 3 if and only if $a_{0}+a_{1}+a_{2}+\cdots$ is.
- a is divisible by 9 if and only if $a_{0}+a_{1}+a_{2}+\cdots$ is.
- a is divisible by 11 if and only if $a_{0}-a_{1}+a_{2}-\cdots$ is.
- a is divisible by 7 if and only if $\left(a_{0}+10 a_{1}+100 a_{2}\right)-\left(a_{3}+10 a_{4}+100 a_{5}\right)+\left(a_{6}+10 a_{7}+100 a_{8}\right)-$ \cdots is.
- a is divisible by 11 if and only if $\left(a_{0}+10 a_{1}+100 a_{2}\right)-\left(a_{3}+10 a_{4}+100 a_{5}\right)+\left(a_{6}+10 a_{7}+100 a_{8}\right)-$... is.
- a is divisible by 13 if and only if $\left(a_{0}+10 a_{1}+100 a_{2}\right)-\left(a_{3}+10 a_{4}+100 a_{5}\right)+\left(a_{6}+10 a_{7}+100 a_{8}\right)-$ \cdots is.
- $a=10 x+y$ is divisible by 7 if and only if $x-2 y$ is.
- a is divisible by 7 if and only if $\left(a_{0}-3 a_{1}+2 a_{2}\right)-\left(a_{3}-3 a_{4}+2 a_{5}\right)+\left(a_{6}-3 a_{7}+2 a_{8}\right)-$ \cdots is.
- a is divisible by 7 if and only if $(-2)^{d} a_{0}+(-2)^{d-1} a_{1}+(-2)^{d-2} a_{2}+\cdots+a_{d}$ is. ${ }^{1}$
- a is divisible by 17 if and only if $(-5)^{d} a_{0}+(-5)^{d-1} a_{1}+(-5)^{d-2} a_{2}+\cdots+a_{d}$ is.
- a is divisible by 19 if and only if $2^{d} a_{0}+2^{d-1} a_{1}+2^{d-2} a_{2}+\cdots+a_{d}$ is.

[^0]The easiest way to explain these rules is through modular arithmetic. Some of the rules above have counterparts in the language of modular arithmetic, which are stronger statements:

- $a \equiv a_{0}(\bmod 2)$
- $a \equiv a_{0}+10 a_{1}(\bmod 4)$
- $a \equiv a_{0}+10 a_{1}+100 a_{2}(\bmod 8)$
- $a \equiv a_{0}(\bmod 5)$
- $a \equiv a_{0}(\bmod 10)$
- $a \equiv a_{0}+a_{1}+a_{2}+\cdots(\bmod 3)$
- $a \equiv a_{0}+a_{1}+a_{2}+\cdots(\bmod 9)$
- $a \equiv a_{0}-a_{1}+a_{2}-\cdots(\bmod 11)$
- $a \equiv\left(a_{0}+10 a_{1}+100 a_{2}\right)-\left(a_{3}+10 a_{4}+100 a_{5}\right)+\left(a_{6}+10 a_{7}+100 a_{8}\right)-\cdots(\bmod 7)$
- $a \equiv\left(a_{0}+10 a_{1}+100 a_{2}\right)-\left(a_{3}+10 a_{4}+100 a_{5}\right)+\left(a_{6}+10 a_{7}+100 a_{8}\right)-\cdots(\bmod 11)$
- $a \equiv\left(a_{0}+10 a_{1}+100 a_{2}\right)-\left(a_{3}+10 a_{4}+100 a_{5}\right)+\left(a_{6}+10 a_{7}+100 a_{8}\right)-\cdots(\bmod 13)$.
- $a \equiv\left(a_{0}-3 a_{1}+2 a_{2}\right)-\left(a_{3}-3 a_{4}+2 a_{5}\right)+\left(a_{6}-3 a_{7}+2 a_{8}\right)-\cdots(\bmod 7)$.

[^0]: ${ }^{1}$ This and the following two tests we learned from Apoorva Khare, a sixth form student in Orissa, India, see Electronic Journal of Undergraduate Mathematics 3 (1997), 1-5.

