Mathfest Circle - Parking Functions

July 2008

Imagine a one-way cal-de-sac with n parking spots. We'll give the first parking spot the number 1 , the next one number 2 , etc., down to the last one, number n. Initially they're all free, but there are n cars approaching the street, and they'd all like to park there. To make life interesting, every car has a parking preference, and we record the preferences in a sequence; e.g., if $n=3$, the sequence $(2,1,1)$ means that the first car would like to park at spot number 2 , the second car prefers parking spot number 1 , and the last car would also like to part at number 1 . The street is very narrow, so there is no way to back up. Now each car enters the street and approaches its preferred parking spot; if it is free, it parks there, and if not, it moves down the street to the first available spot. We call a sequence a parking function (of length n) if all cars end up finding a parking spot. E.g., the sequence $(2,1,1)$ is a parking sequence (of length 3), whereas the sequence $(2,3,2)$ is not.
(1) List all parking functions of length 1,2 , and 3 .
(2) Come up with some families of parking functions of arbitrary length. (E.g., the sequences $(1,1, \ldots, 1)$ form one such family.)
(3) Given a sequence $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, let $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be a permutation of $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ such that $q_{1} \leq q_{2} \leq \cdots \leq q_{n}$, i.e., the q_{j} 's are just the p_{k} 's but listed in order. Find a (necessary and sufficient) condition on the q_{j} 's that ($p_{1}, p_{2}, \ldots, p_{n}$) is a parking function.
(4) Conclude that any permutation of a parking function is another parking function.

Now for some variety, suppose instead that we have a one-way roundabout with $n+1$ parking spots. Again n cars would like to park, and again they each have a parking preference, but now they have the luxury of not running into a brick wall at the end of the street - they can just continue on the roundabout. But this means that any sequence ($p_{1}, p_{2}, \ldots, p_{n}$) of numbers chosen from 1 to $n+1$ will form a circular parking function (right?) Also, note that every sequence leaves an empty parking spot.
(5) How many circular parking functions of length n are there?
(6) Prove that the number of circular parking functions that leave parking spot 1 empty equals the number of circular parking functions that leave parking spot 2 empty, it also equals the number of circular parking functions that leave parking spot 3 empty, etc.
(7) Show that a circular parking function that leaves parking spot $n+1$ empty is a parking function.
(8) Conclude a formula for the number of parking functions of length n.

