Show complete work—that is, all the steps needed to completely justify your answer. Simplify your answers as much as possible.

1. Consider the following system of equations.

$2x_1$	—	$3x_2$	—	$7x_3$	+	$5x_4$	+	$2x_5$	=	-2
x_1	_	$2x_2$	_	$4x_3$	+	$3x_4$	+	x_5	=	-2
$2x_1$			_	$4x_3$	+	$2x_4$	+	x_5	=	3

- (a) Compute the general solution to this system. Make sure to identify basic and free variables.
- (b) Write down one specific solution to this system.
- (c) Let

$$A = \begin{bmatrix} 2 & -3 & -7 & 5 & 2 \\ 1 & -2 & -4 & 3 & 1 \\ 2 & 0 & -4 & 2 & 1 \end{bmatrix}.$$

What is the rank of A and what is the dimension of the kernel of A? Explain.

(a) Gauss:
$$\begin{bmatrix} 2 & -3 & -4 & 5 & 2 & | & -2 \\ 0 & -1 & -1 & 1 & 0 & | & -2 \\ 0 & 0 & 0 & 0 & | & | & -1 \end{bmatrix} \xrightarrow{-1} x_5 = -1$$

$$x_2 = 2 - x_3 + x_4$$

$$x_1 = -1 + \frac{3}{2}(2 - x_3 + x_4)$$

$$+ 3x_3 - 5x_4$$

$$+ 3x_3 - 5x_4$$

$$= 2 + 5\frac{1}{2}x_3 - 3\frac{1}{2}x_4$$

(b)
$$\begin{bmatrix} 2 \\ 2 \\ 0 \\ -1 \end{bmatrix}$$
 (c) $\operatorname{rank}(A) = \# \operatorname{pivots} = 3$
dim kes (A) = 5 - $\operatorname{rank}(A) = 2$

2. Let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 5 \\ 2 & 3 & 2 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}$$

(a) Is B invertible? Is C invertible? Explain.

- (b) Compute the inverse(s) of B and of C, if they exist.
- (c) Find a basis for the kernel of B.

$$(a+b) \quad 3 \quad \text{has rank } 2 \quad (\text{ the widdle row is the sum of the other two rows) and so is not invertible.}$$

$$C: \begin{bmatrix} 2+2\\ 4+23\\ 0+0\\ 0+14 \end{bmatrix} \sim \begin{bmatrix} 2+2\\ 0&0\\ 0&0 \end{bmatrix} \sim \begin{bmatrix} 2+2\\ 0&0\\ 0&-1\\ 0&-14 \end{bmatrix} \sim \begin{bmatrix} 2&0\\ 0&-1\\ 0&-14 \end{bmatrix} = \begin{bmatrix} -5&3&1\\ 0&-1&-1\\ 2&-1&0 \end{bmatrix}$$

$$(c) \quad \text{ranke}(B) = 2 \quad \rightarrow \text{ dim ker}(B) = 1 \text{ , so we wed to find one solution to } Bx = 0 \text{ ;}$$

$$\begin{bmatrix} 1&2&3\\ 3&5&5\\ 2&3&2\\ 0 \end{bmatrix} \sim \begin{bmatrix} 1&2&3\\ 0&-1&-4\\ 0&-1&-4\\ 0 \end{bmatrix} = 5x_3$$

$$ku(B) = span \begin{bmatrix} 5\\ -4\\ 1\\ 1 \end{bmatrix}$$

- 3. Let $P^{(2)}$ be the vector space of all polynomials over \mathbb{R} of degree ≤ 2 .
 - (a) What is the dimension of $P^{(2)}$? (No justification necessary.)
 - (b) Determine whether x-1, $-x^2+1$, and $-3x^2+3x$ are linearly independent. Justify your answer.
 - (c) Determine whether x 1, $-x^2 + 1$, and $-3x^2 + 3x$ span $P^{(2)}$. Justify your answer.

(a) 3
(b)
$$\lambda_1(x-1) + \lambda_2(-x^2+1) + \lambda_3(-3x^2+3x) = 0$$

 $(-\lambda_2 - 3\lambda_3)x^2 + (\lambda_1 + 3\lambda_3)x + (-\lambda_1 + \lambda_1) = 0$
 $= 0$
 $= 0$
 $= 0$
 1
 $\lambda_2 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_3 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_1 = -3\lambda_3$
 $-\lambda_2 = -3\lambda_3$
 $-\lambda_3 = -3\lambda_3$
 $-\lambda_$

- 4. (a) Give a basis for the vector space of all symmetric 3×3 matrices and deduce its dimension.
 - (b) Let A be an $m \times n$ matrix. Show that AA^T is symmetric. (*Hint:* use the rules of transposition.)
 - (c) True or false: if A and B are both symmetric $n \times n$ matrices, then AB is also symmetric. Either give a proof or give a counterexample.