sage: real(1+i) 1 sage: real(exp(i)) cos(1) sage: imaginary(1+i) 1 sage: abs(1+i) sqrt(2) sage: arg(1+i) 1/4*pi sage: pts = [e^(I*(theta)) for theta in srange(0, 2*pi, pi/8)] sage: list_plot([(real(p),imag(p)) for p in pts]) sage: log(-i) -1/2*I*pi sage: log(-1) I*pi sage: log(-1+0.001*I) 4.99999750058881e-7 + 3.14059265392313*I sage: log(-1-0.001*I) 4.99999750058881e-7 - 3.14059265392313*I sage: complex_plot(1/(1+z^2), (-5,5), (-5, 5)) sage: f(z) = sin(z)/z sage: f.limit(z=0) z |--> 1 sage: f(z)=z^2 sage: diff(f) z |--> 2*z sage: f(z) = conjugate(z) sage: diff(f) z |--> diff(conjugate(z), z) sage: conj(x,y) = (x,-y) sage: diff(conj) [ (x, y) |--> 1 (x, y) |--> 0] [ (x, y) |--> 0 (x, y) |--> -1]