MATH 420/720 Generating Function Exercises

(1) Given a sequence $(a_n)_{n\geq 0}$ with generating function $A(x) := \sum_{n\geq 0} a_n x^n$, let

$$B(x) = \sum_{n \ge 0} b_n x^n = \frac{A(x)}{1 - x}.$$

Find a formula for b_n .

(2) Use the previous exercise to prove that the Fibonacci numbers satisfy

$$f_0 + f_1 + \dots + f_n = f_{n+2} - 1$$
.

- (3) Let c(n) denote the number of compositions of n.
 - (a) Show that $c(n) = 2^{n-1}$.
 - (b) Recall that in class we derived the generating function for $c_A(n)$, the number of compositions of n with parts in a given set A. Confirm that for $A = \mathbb{Z}_{>0}$ this generating function gives rise to your formula in part (a).
- (4) Now let $A = \{1, 2, 4, 5, 7, 8, ...\}$, the set of all positive integers that are not multiples of 3.
 - (a) Compute the generating function for $c_A(n)$, the number of compositions of n with parts in A.
 - (b) Derive a recurrence relation for $c_A(n)$ and argue that these numbers should be called *Tribonacci numbers*.
- (5) Find the sum of the first *n* squares by differentiating the generating function $\sum_{k=0}^{n} x^k$.