(1) Given a sequence $\left(a_{n}\right)_{n \geq 0}$ with generating function $A(x):=\sum_{n \geq 0} a_{n} x^{n}$, let

$$
B(x)=\sum_{n \geq 0} b_{n} x^{n}=\frac{A(x)}{1-x}
$$

Find a formula for b_{n}.
(2) Use the previous exercise to prove that the Fibonacci numbers satisfy

$$
f_{0}+f_{1}+\cdots+f_{n}=f_{n+2}-1
$$

(3) Let $c(n)$ denote the number of compositions of n.
(a) Show that $c(n)=2^{n-1}$.
(b) Recall that in class we derived the generating function for $c_{A}(n)$, the number of compositions of n with parts in a given set A. Confirm that for $A=\mathbb{Z}_{>0}$ this generating function gives rise to your formula in part (a).
(4) Now let $A=\{1,2,4,5,7,8, \ldots\}$, the set of all positive integers that are not multiples of 3 .
(a) Compute the generating function for $c_{A}(n)$, the number of compositions of n with parts in A.
(b) Derive a recurrence relation for $c_{A}(n)$ and argue that these numbers should be called Tribonacci numbers.
(5) Find the sum of the first n squares by differentiating the generating function $\sum_{k=0}^{n} x^{k}$.

