(1) Recall that the Eulerian numbers eul (k, j) are defined via eul $(0,0)=1$ and

$$
\sum_{n \geq 1} n^{k} x^{n}=\frac{x \sum_{j=0}^{k-1} \operatorname{eul}(k, j) x^{j}}{(1-x)^{k+1}}
$$

Prove that
(a) $\operatorname{eul}(k, j)=\sum_{m=0}^{j}(-1)^{m}\binom{k+1}{m}(j+1-m)^{k}$;
(b) $n^{k}=\sum_{m=0}^{k-1} \operatorname{eul}(k, m)\binom{n+m}{k}$.
(Hint: for the first identity, expand $(1-x)^{k+1} \sum_{n \geq 1} n^{k} x^{n-1}$, for the second, expand $(1-x)^{-k-1} \sum_{n \geq 1} n^{k} x^{n-1}$. There are also nongeneratingfunction ways to prove these...)
(2) Recall that $\left[\begin{array}{l}n \\ k\end{array}\right]$ is the Stirling number of the first kind. Show that

$$
\binom{m}{n}=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] m^{k}
$$

(3) Recall that $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the Stirling number of the second kind. Show that

$$
n^{k}=\sum_{j=0}^{k}\left\{\begin{array}{l}
k \\
j
\end{array}\right\} j!\binom{n}{j}
$$

(4) (a) Suppose n and k are integers such that $0 \leq k \leq n$. Assume you didn't know anything about the binomial coefficient $\binom{n}{k}$, except the relations

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad \text { and } \quad\binom{n}{0}=1
$$

Compute the generating function

$$
B_{n}(x):=\sum_{k \geq 0}\binom{n}{k} x^{k}
$$

and use it to find a formula for $\binom{n}{k}$.
(b) Convince yourself that your computation is identical if we allow n to be any complex number and k to be any nonnegative integer.
(c) Compute the generating function

$$
B(x):=\sum_{n \geq 0} \sum_{k \geq 0}\binom{n}{k} x^{k} y^{n}
$$

and use it to find a formula for the generating function $\beta_{k}(y):=\sum_{n \geq k}\binom{n}{k} y^{n}$.

