(1) Recall once more that $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the Stirling number of the second kind. Show that

$$
\sum_{n \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

(2) The Bernoulli numbers B_{k} are defined through the generating function

$$
\frac{z}{e^{z}-1}=\sum_{k \geq 0} B_{k} \frac{z^{k}}{k!}
$$

(a) Compute B_{0}, B_{1}, and B_{2}.
(b) Prove that $B_{d}=0$ for all odd $d \geq 3$. (Hint: show that $\frac{z}{e^{z}-1}+\frac{1}{2} z$ is an even function.)
(3) The Bernoulli polynomials $B_{k}(x)$ are defined through the generating function

$$
\frac{z e^{x z}}{e^{z}-1}=\sum_{k \geq 0} B_{k}(x) \frac{z^{k}}{k!}
$$

(Thus the Bernoulli numbers are $B_{k}=B_{k}(0)$.)
(a) Show that for integers $k \geq 1$ and $n \geq 2$,

$$
\sum_{j=0}^{n-1} j^{k-1}=\frac{1}{k}\left(B_{k}(n)-B_{k}\right)
$$

(Hint: play with the exponential generating function of $B_{k}(n)-B_{k}$.)
(b) Show that for each positive integer n,

$$
n x^{n-1}=\sum_{k=1}^{n}\binom{n}{k} B_{n-k}(x)
$$

(c) Complementarily, show that

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}
$$

(4) Let \mathcal{R} be an lattice rectangle whose edges are parallel to the coordinate axes, and let \mathcal{T} be a rectangular lattice triangle two of whose edges are parallel to the coordinate axes. Show that Pick's theorem holds for \mathcal{R} and \mathcal{T}.

