MATH 420/720 Homework Quiz 1 (5 February 2025)

- (a) Define a permutation of [n].
- (b) The Lucas numbers are defined by $L_0 = 2, L_1 = 1$, and

$$L_n = L_{n-1} + L_{n-2}$$
 for $n \ge 2$.

Let C_n be the set of tilings of n boxes arranged in a circle with dominos and monominos. Show that $\#C_n = L_n$ for $n \ge 1$.

MATH 420/720 Homework Quiz 2 (12 February 2025)

- (a) Define the Stirling numbers S(n, k) of the second kind.
- (b) Show that

(i)
$$S(n,n) = 1$$

(ii)
$$S(n, n-1) = \binom{n}{2}$$

(iii) $S(n, n-2) = \binom{n}{3} + 3\binom{n}{4}$.

MATH 420/720 Homework Quiz 3 (19 February 2025)

- (a) Define a partition λ of n.
- (b) Denote by $p_e(n,k)$ the number of partitions of n having exactly k parts. Prove that

$$p_e(n,k) = p(n-k,k).$$

MATH 420 Homework Quiz 4 (5 March 2025)

- (a) State the Principle of Inclusion–Exclusion.
- (b) Let A(n) be the number of partitions of [n] such that i and i+1 never occur in the same block. Show that

$$A(n) = \sum_{i=0}^{n-1} (-1)^i \binom{n-1}{i} B(n-i)$$

where B(n) is the *n*th Bell number.

MATH 720 Homework Quiz 4 (5 March 2025)

- (a) State the Principle of Inclusion-Exclusion.
- (b) A graph G is *planar* if it can be drawn in the plane \mathbb{R}^2 without edge crossings. In this case the *regions* of G are the topologically connected components of the set-theoretic differences $\mathbb{R}^2 G$. Let R be the set of regions of G. If $r \in R$, then let deg r be the number of edges on the boundary of r. Show that

$$\sum_{r \in R} \deg r \le 2|E|.$$

MATH 420/720 Homework Quiz 5 (12 March 2025)

- (a) Define what it means for a sequence (a_k) to be unimodal.
- (b) Suppose $0 \le k < n$. Prove that

$$\binom{n}{k}^2 \geq \binom{n-1}{k} \binom{n+1}{k}.$$

MATH 420/720 Homework Quiz 6 (19 March 2025) Name:

- (a) Let $A(x) := \sum_{k \ge 0} a_k x^k$ and $B(x) := \sum_{k \ge 0} b_k x^k$. Define the coefficient c_k for the generating function $A(x) \cdot B(x) = \sum_{k \ge 0} c_k x^k$.
- (b) Prove that

$$\sum_{k=0}^{n} c(n,k) x^{k} = x(x+1)(x+2)\cdots(x+n-1)$$

where c(n, k) are the Stirling numbers of the first kind.