MATH 420/720 Exam 3 4/30/25 1:00–1:50 p.m.

Name: _____

Show complete work—that is, all the steps needed to completely justify your answer. Simplify your answers as much as possible. Part (a) of each question is worth 5 points, part (b) is worth 10 points.

If you are in Math 420, I will drop the lowest total score among the three problems.

- (1) (a) Given the exponential generating function $A(x) := \sum_{n>0} a_n \frac{x^n}{n!}$, compute A'(x).
 - (b) Let $(a_n)_{n\geq 0}$ be recursively defined through

$$a_0 = 0$$
 and for $n \ge 1$, $a_n = 2 a_{n-1} + 3$.

Compute the exponential generating function of a_n and deduce a closed form for a_n . (If you run into a differential equation, try the function $A(x) = b e^{2x} + c e^x$ and then determine b and c.)

Solution:

(a) We differentiate:

$$A'(x) = \sum_{n \ge 1} a_n \frac{n x^{n-1}}{n!} = \sum_{n \ge 0} a_{n+1} \frac{x^n}{n!}.$$

(b) The given condition $a_{n+1} = 2a_n + 3$ translates in exponential-generating-functionland to

$$A'(x) = 2A(x) + 3e^x$$

and so the ansatz $A(x) = b e^{2x} + c e^x$ gives

$$2b e^{2x} + c e^{x} = 2 \left(b e^{2x} + c e^{x} \right) + 3e^{x}$$

yielding c = -3 and (because $A(0) = a_0 = 0$) b = 3. Thus

$$A(x) = 3e^{2x} - 3e^x = 3\sum_{n\geq 0} \frac{(2x)^n}{n!} - 3\sum_{n\geq 0} \frac{x^n}{n!} = \sum_{n\geq 0} 3(2^n - 1)\frac{x^n}{n!}$$

and so $a_n = 3(2^n - 1)$.

(2) (a) Recall that an *involution* is a permutation in S_n that factors into 2-cycles. Let i_n be the number of involutions in S_n . Show that $i_0 = i_1 = 1$ and for $n \ge 2$

$$i_n = i_{n-1} + (n-1)i_{n-2}$$
.

(b) Compute the exponential generating function of i_n .

Solution:

- (a) An involution in S_n either fixes n or has a 2-cycle (jn) for some $1 \le j \le n-1$. Thus $i_n = i_{n-1} + (n-1)i_{n-2}$.
- (b) Let $I(x) := \sum_{n \ge 0} i_n \frac{x^n}{n!}$. The recursion in (a) yields

$$\sum_{n\geq 1} i_{n+1} \frac{x^n}{n!} = \sum_{n\geq 1} i_n \frac{x^n}{n!} + \sum_{n\geq 1} n i_{n-1} \frac{x^n}{n!} = \sum_{n\geq 1} i_n \frac{x^n}{n!} + \sum_{n\geq 0} i_n \frac{x^{n+1}}{n!},$$

that is, (with $i_0 = i_1 = 1$)

$$I'(x) - 1 = I(x) - 1 + x I(x)$$

which gives

$$\frac{I'(x)}{I(x)} = 1 + x \qquad \Longrightarrow \qquad \log I(x) = x + \frac{1}{2}x^2.$$

(There is no extra constant, because $\log I(0) = 0$.) Thus $I(x) = e^{x + \frac{1}{2}x^2}$.

- (3) (a) Define what it means for the posets (P, \leq_P) and (Q, \leq_Q) to be isomorphic.
 - (b) Consider the divisor lattice D_n of all divisors of a given integer n. Show that the interval [d, e] in D_n is isomorphic to $D_{\frac{e}{d}}$.

Solution:

- (a) There is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving.
- (b) Suppose d|e|n. Then any number in [d, e] is divisible by d and in turn divides e. Thus the map $f: [d, e] \to D_{\frac{e}{d}}$ defined via

$$f(k) := \frac{k}{d}$$

is well defined. Even better, it is a bijection (with inverse $f^{-1}(k) = dk$), and both f and f^{-1} are visibly order preserving.