
MATH 430 Final Exam 19 December 2018 8:00–10:15 a.m.

Name:

Show complete work—that is, all the steps needed to completely justify your answer. Simplify
your answers as much as possible. You may refer to theorems in the book and class notes.

1. Consider the linear optimization problem

min [3, 2, 1, 2, 3]x

subject to

[
1 1 1 1 1
1 2 3 4 5

]
x =

[
2
7

]
x ≥ 0 .

(a) Compute an optimal solution and the optimal cost.

(b) State the dual problem, and confirm that [−2, 1] is an optimal dual solution.

(c) Now replace the vector b = [2
7
] in the primal problem by a generic vector b = [ b1

b2
].

Give a criterion for the primal problem that guarantees that the corresponding
dual problem is bounded.

(d) Extra credit: Compute conditions for b1 and b2 that guarantee that the dual prob-
lem is bounded.

Solution.

(a) Two optimal solutions are [0, 0, 1, 1, 0] and [0, 0, 3
2
, 0, 1

2
], with optimal cost 3.

(b) The dual problem is

max p

[
2
7

]
subject to p

[
1 1 1 1 1
1 2 3 4 5

]
≤ [3, 2, 1, 2, 3] .

We can see that [−2, 1] satisfies these constraints, and its corresponding cost is 3,
so by the strong duality theorem, it must be optimal.

(c) The dual problem is bounded if and only if the primal problem

min [3, 2, 1, 2, 3]x

subject to

[
1 1 1 1 1
1 2 3 4 5

]
x =

[
b1
b2

]
x ≥ 0

is feasible.

(d) Feasibility of the primal problem means that [ b1
b2

] is a nonnegative linear combi-

nation of [1
1
], [1

2
], [1

3
], [1

4
], and [1

5
]. (A picture reveals that) this is equivalent to

[ b1
b2

] being a nonnegative linear combination of [1
1
] and [1

5
], and that, in turn, is

equivalent to b1 ≤ b2 ≤ 5b1.



2. Consider a linear optimization problem in standard form

min c · x
subject to Ax = b

x ≥ 0 .

(a) Give a criterion that a basic solution v with corresponding basis matrix B is
optimal.

(b) Now perturb the jth component of b by δ. Compute a condition that guarantees
that the perturbed basic solution v is still optimal.

Solution.

(a) We need feasibility: ṽ = B−1b ≥ 0, and optimality: the reduced cost vector
c− c̃ B−1A ≥ 0.

(b) The reduced cost vector does not depend on b and so remains nonnegative. But
we have to check feasibility, that is,

B−1 (b + δ ej) ≥ 0 .

This can be restated, since B−1(b+ δ ej) = ṽ+ δB−1ej, and B−1ej is simply the
jth column of B−1. Thus the perturbed v remains optimal if and only if ṽ plus
the jth column of B−1 is nonnegative.



3. Consider the integer optimization problem

min x1 − 2x2

subject to

[
−4 6 1 0
1 1 0 1

]
x =

[
9
4

]
x ∈ Z4

≥0 .

(a) Compute an optimal solution and the optimal cost.

(b) Now suppose we need to minimize x1 − 2x2 subject to at least one (but not
necessarily both) of the constraints

−4x1 + 6x2 ≤ 9 and x1 + x2 ≤ 4

to hold. Assuming that we know the absolute bounds

−4x1 + 6x2 ≤ 100 and x1 + x2 ≤ 100 ,

write a new integer optimization program that models this new problem. (You do
not need to solve it.)

Solution.

(a) One can approach this graphically (interpreting x3 and x4 as slack variables),
using the cutting-plane method, or the branch-and-bound algorithm. We show
the latter.

The linear relaxation problem can be solved, e.g., using the tableau method;
the optimal solution is [3

2
, 5
2
, 0, 0] with cost −7

2
. We branch, say, with x2 ≤ 2 and

x2 ≥ 3. The latter problem is infeasible; the former has optimal solution [3
4
, 2, 0, 5

4
]

with cost −13
4

. We branch this last problem with x1 ≤ 0 and x1 ≥ 1; the optimal
solutions are [0, 3

2
, 0, 5

2
] with cost −3, and [1, 2, 1, 1] with cost −3, respectively.

This means we can discard the branch x1 ≤ 0, and the optimal integer solution
is [1, 2, 1, 1] with cost −3.

(b) We introduce the binary variables y1 and y2, and modify the constraints to

−4x1 + 6 x2− 9 ≤ (1− y1)(100− 9) and x1 +x2− 4 ≤ (1− y2)(100− 4) .

If, e.g., y1 = 0 then this gives the (known) constraint −4x1 + 6x2 ≤ 100, whereas
y1 = 1 gives −4x1 + 6x2 ≤ 9. Thus we need to make sure that at least one of y1
and y2 is forced to be 1. This can be modeled as

min x1 − 2x2

subject to − 4x1 + 6x2 + 91 y1 ≤ 100

x1 + x2 + 96 y2 ≤ 100

y1 + y2 ≥ 1

0 ≤ y1, y2 ≤ 1

x1, x2 ≥ 0

x1, x2, y1, y2 ∈ Z .


