
MATH 725 Final Exam (& Solutions) 12/15/21

Show complete work—that is, all the steps needed to completely justify your answer. Simplify your
answers as much as possible. You may refer to theorems in the text book.

You are welcome to use books and internet sources, but you are not allowed to discuss this exam
with anyone (this includes live discussions, calls, chats, etc.). I reserve the right for an follow-up
oral exam if I suspect that you did not follow these rules.

The take-home exam is due on at 12:00 p.m. on 17 December 2021 (via email), and your submission
should be a pdf file (typed or carefully scanned).

(1) Consider the vector space P4(C) of polynomials of degree ≤ 4 and the linear function
D : P4(C)→P4(C) given by D(p(x)) := p′(x).
(a) Determine all generalized eigenspaces and the Jordan Normal Form of D.
(b) Compute the minimal and characteristic polynomial of D.

Proof. (a) Since D5 = 0, we have null(D5) =P4(C), and so 0 is the only eigenvalue (with
generalized eigenspace P4(C)). Furthermore, the only eigenvectors are the constant
polynomials, and so the Jordan Normal Form of D is

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 .

(b) Since 0 is the only eigenvalue of D, its characteristic polynomial is x5. The minimal
polynomial divides the characteristic polynomial, and since p(x) = x4 does not vanish
after differentiating four times, the minimal polynomial is also x5. �

(2) Let V be a complex vector space.
(a) Determine all linear functions g : V →V for which each v ∈V \{0} is an eigenvector.

(Hint: consider distinct eigenvalues of g.)
(b) Give an example of a complex vector space and a nonzero linear function f : V →V

for which each λ ∈ C is an eigenvalue.

Proof. (a) We claim that g has only one eigenvalue λ , and thus g(v) = λ v. To prove the
claim, suppose λ and µ are distinct eigenvalues, with eigenvectors v and w, respectively.
Then, as we proved in class, v and w are linearly independent. However, v+w is, by
assumption, also an eigenvector, with some eigenvalue κ , and so

0 = f (v)+ f (w)− f (v+w) = λ v+µ w−κ(v+w) = (λ −κ)v+(µ−κ)w .

Thus λ = κ = µ , a contradiction.



(b) Let V be the vector space of all complex sequences and

f (x1,x2,x3, . . .) := (x2,x3,x4, . . .) .

Then for any λ ∈ C,

f
(
1,λ ,λ 2, . . .

)
=
(
λ ,λ 2,λ 3, . . .

)
= λ

(
1,λ ,λ 2, . . .

)
and so (since

(
1,λ ,λ 2, . . .

)
6= 0, even when λ = 0) λ is an eigenvalue. �

(3) Suppose A = (a jk) ∈ Cn×n and let

||A|| :=

√
n

∑
j,k=1

∣∣a jk
∣∣2.

Prove that
||A||2 = s2

1 + s2
2 + · · ·+ s2

n ,

where s1,s2, . . . ,sn are the singular values of A. (Hint: start by showing that ||A||2 equals
the trace of A∗A.)

Remark: this matrix norm is called the Frobenius norm.

Proof. We start with proving the hint:

tr(A∗A) =
n

∑
k=1

(A∗A)kk =
n

∑
k=1

n

∑
j=1

a jk a jk = ||A||2.

Singular Value Decomposition says that there exist orthonormal bases e1, . . . ,en and f1, . . . , fn
such that

Av = s1 〈v,e1〉 f1 + · · ·+ sn 〈v,en〉 fn .

We can express this in matrix form as follows. Let E be the matrix formed by e1, . . . ,en as
column vectors, let F be the matrix formed by f1, . . . , fn as column vectors, and let S be a
diagonal matrix with s1, . . . ,sn on the diagonal. Note that E−1 = E∗ and F−1 = F∗ because
each basis is orthonormal. Now Aek = sk fk gives

AE = F S ,

i.e., A = F SE∗. Thus (using the hint)

||A||2 = tr(A∗A) = tr(E S∗F∗F SE∗) = tr
(
S2) = s2

1 + s2
2 + · · ·+ s2

n.

Here we have used that tr(MN) = tr(NM) and that the singular values are real numbers. �

(4) (a) Suppose x1,x2, . . . ,xn ∈ C, and let A : Cn→ Cn be given in matrix form (with respect
to the standard basis of Cn)

A :=


1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
...

xn−1
1 xn−1

2 · · · xn−1
n

 .



Viewing x1,x2, . . . ,xn as variables, prove that det(A) is a polynomial in x1,x2, . . . ,xn of
(total) degree at most n(n−1)

2 .
(b) Show that det(A) = 0 if x j = xk for some j 6= k, and conclude that xk− x j divides

det(A).
(c) Prove that

det(A) = ∏
1≤ j<k≤n

(
xk− x j

)
.

(Hint: use (a) and (b) to show that det(A) = c ∏1≤ j<k≤n
(
xk− x j

)
for some constant c,

and then compute the coefficient of x0
1x1

2 · · ·xn−1
n on both sides.)

Proof. (a) The determinant formula for a matrix we proved in class gives

det(A) = ∑
π∈Sn

sign(π)
n

∏
j=1

x j−1
π( j)

which is a polynomial of degree at most ∑
n
j=1( j−1) = n(n−1)

2 .
(b) If x j = xk for some j 6= k then two rows of A are equal, in which case we know that

det(A) = 0. Viewing det(A) as a polynomial in xk, this means that x j is a root, and so
xk− x j divides det(A).

(c) From part (b) we know that ∏1≤ j<k≤n
(
xk− x j

)
, which is a polynomial of degree

n(n−1)
2 , divides det(A). Part (a) then implies that the degree of det(A) must equal n(n−1)

2 ,
and so

det(A) = c ∏
1≤ j<k≤n

(
xk− x j

)
for some constant c. The coefficient of x0

1x1
2 · · ·xn−1

n in det(A) is sign(I) = 1, as is the
coefficient of x0

1x1
2 · · ·xn−1

n in ∏1≤ j<k≤n
(
xk− x j

)
, and so c = 1. �

Remark: We have just computed the famous Vandermonte determinant.


