
MATH 725 Midterm Exam

Part I (in-class exam, 20 October 2021, 9:30–10:45 a.m.)

Show complete work—that is, all the steps needed to completely justify your answer. Simplify your
answers as much as possible. As usual, F stands for either R or C.

(1) Suppose V and W are vector spaces.
(a) Define what it means for a set S⊆V to be a basis of V .
(b) Define the dimension of V .
(c) Recall the definition of the binomial coefficient(

x
n

)
:=

x(x−1)(x−2) · · ·(x−n+1)
n!

where n≥ 0 is an integer and we may view x as a variable. (We set
(x

0

)
= 1.) Show that(x

0

)
,
(x

1

)
, . . . ,

(x
n

)
form a basis of Pn(F), the set of all polynomials of degree ≤ n with

coefficients in F.

Solution for (c). Suppose

λ0 +λ1

(
x
1

)
+ · · ·+λn

(
x
n

)
= 0 .

Plugging in x = 0 yields λ0 = 0. But then plugging in x = 1 yields λ1 = 0. We continue this
process, proving that each λ j = 0. �

(2) Suppose V and W are vector spaces.
(a) Define what it means for a map f : V →W to be linear.
(b) Define the null space and the range of f .
(c) Give an example of a linear map that has a two-dimensional null space and a three-

dimensional range.

Solution for (c). Let f ∈ L
(
R5) given by the matrix

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . �

(3) Suppose V is a vector space and f ∈ L(V ).
(a) Define the notion of eigenvalue and eigenvector of f .
(b) Give an example of a linear map on a real vector space that has no eigenvalues.
(c) State a condition on V or f that guarantees that f has an eigenvalue.

Solution. (b) Let f ∈ L
(
R2) given by the matrix[

0 −1
1 0

]
.

(c) V is a complex vector space. (Alternative: V has a basis with respect to which f is upper
triangular.) �

(4) Suppose V is a vector space over F.
(a) Define the notion of an inner product for V .



(b) Now consider V = C[x] with 〈 f ,g〉 :=
∫ 1
−1 f (x)g(x)dx . Show that this defines an inner-

product space.
(c) Compute the norm of xn, where n is a nonnegative integer.

Solution. (b) First, 〈 f , f 〉=
∫ 1
−1 f (x) f (x)dx =

∫ 1
−1 | f (x)|

2 dx, and so this real integral over
a nonnegative function is ≥ 0 and equals 0 if and only if the integrand is the zero
function (which is equivalent to f being the zero function).
Second, 〈a f1 + f2,g〉=

∫ 1
−1 (a f1(x)+ f2(x))g(x)dx = a

∫ 1
−1 f1g(x)dx+

∫ 1
−1 f2g(x)dx.

Third, 〈 f ,g〉=
∫ 1
−1 f (x)g(x)dx =

∫ 1
−1 f (x)g(x)dx =

∫ 1
−1 f (x)g(x)dx = 〈g, f 〉.

(c)

||xn||=
√
〈xn,xn〉=

√∫ 1

−1
|xn|2 dx =

√∫ 1

−1
|x|2ndx =

√
2
∫ 1

0
x2ndx =

√
2

2n+1
. �

Part II (take-home exam)

Show complete work—that is, all the steps needed to completely justify your answer. Simplify your
answers as much as possible. You may refer to theorems in the text book. As usual, F stands for
either R or C.

You are welcome to use books and internet sources, but you are not allowed to discuss this exam with
anyone (this includes live discussions, calls, chats, etc.). I reserve the right for an oral follow-up
exam if I suspect that you did not follow these rules.

The take-home exam is due on at 9:30 a.m. on 10 October 2021 (via email), and your submission
should be a pdf file (typed or carefully scanned).

(1) Let M be the vector space of all real n×n matrices, for some fixed n∈Z>0. For A =
(
a jk
)
∈

M, define the trace of A as

tr(A) :=
n

∑
j=1

a j j .

(a) Show that U := {A ∈M : tr(A) = 0} is a subspace of M.
(b) Compute the dimension of U .

Proof. (a) The zero matrix has trace zero, and for A =
(
a jk
)
, B =

(
b jk
)
, and r ∈ R, then

tr(r A+B) =
n

∑
j=1

(
r a j j +b j j

)
= r

n

∑
j=1

a j j +
n

∑
j=1

b j j = r tr(A)+ tr(B) , (?)

and so if tr(A) = tr(B) = 0, we have tr(r A+B) = 0.
(b) Considering the trace as a map tr : M→ R, we showed in (?) that tr is linear. But U

is, by definition, the null space of tr. Since tr is surjective (we can reach any r ∈ R by
considering a matrix with a11 = r and all other entries 0), we have

n2 = dimM = dimnull(tr)+ range(tr) = dimU +1 ,

and thus dimU = n2−1. �

(2) As usual, let R[x] be the vector space of all polynomials with coefficients in R.1

1In this exercise, you may freely cite theorems from Calculus.



(a) Show that d
dx is a linear map R[x]→ R[x]. Is the map injective or surjective or both?

(b) Fix a ∈ R and let Ia : R[x]→ R[x] be defined by Ia( f ) :=
∫ x

a f (t)dt. Show that Ia is
linear. Is Ia injective or surjective or both?

(c) Is it possible to choose a value of a so that Ia is the inverse of d
dx? Explain.

Proof. (a) Given p(x),q(x) ∈ R[x] and λ ∈ R,
d
dx (λ p(x)+q(x)) = λ p′(x)+q′(x)

by the rules of calculus, so d
dx is linear. This map is surjective because by the Funda-

mental Theorem of Calculus
d
dx

∫ x

0
p(t)dt = p(x) ,

i.e., the polynomial
∫ x

0 p(t)dt is a pre-image of p(x). Differentiation is not injective
because d

dx(x+1) = d
dx(x+2) = 1.

(b) Given p(x),q(x) ∈ R[x] and λ ∈ R,

Ia(λ p(x)+q(x)) =
∫ x

a
λ p(t)+q(t)dt = λ

∫ x

a
p(t)dt +

∫ x

a
q(t)dt

by the rules of calculus, so Ia is linear. This map is injective because if∫ x

a
p(t)dt =

∫ x

a
q(t)dt

then we can differentiate both sides to conclude p(x) = q(x). The map Ia is not
surjective, because Ia(p(x)) is a polynomial of degree ≥ 1 (unless it is zero).

(c) The Fundamental Theorem of Calculus says that Ia is a right inverse of d
dx . It cannot be

a two-sided inverse because then it would be surjective. �

(3) Let V be vector space over F, and let f ∈ L(V ). Suppose there exists k ∈ Z>0 such that
f k = 0.2 Prove that 0 is the only eigenvalue of f .

Proof. Suppose f k = 0 and k is the smallest positive integer with this property.3 If k = 1, f
is the zero map, which certainly has 0 as an eigenvalue. If k > 1, then there exists v ∈V
such that f k−1(v) 6= 0, and so (because f

(
f k−1(v)

)
= 0 = 0v) 0 is an eigenvalue of f .

Now suppose λ is another eigenvalue with eigenvector v 6= 0. Then 0 = f k(v) = λ k v and
so λ = 0.4 �

(4) Consider the vector space P2(C) of polynomials of degree ≤ 2, equipped with the inner
product 〈 f ,g〉 :=

∫ 1
−1 f (x)g(x)dx . Compute the orthogonal complement of P1(C).

Proof. We already computed ||xn||=
√

2
2n+1 . We now apply “Gram–Schmidt” to the basis(

1,x,x2) of P2(C). Since ||1|| =
√

2, the first basis vector (polynomial) is e1 =
1√
2
. To

compute e2, we calculate

x−〈x,e1〉e1 = x− 1
2

∫ 1

−1
xdx = x

2Here 0 is the linear operator that returns 0 for every input vector.
3A linear operator f ∈ L(V ) with this property is nilpotent.
4Here it is important that we are working over R or C, since otherwise we cannot conclude from λ k = 0 that λ = 0.



and so e2 =
x
||x|| =

√
3
2 x. To compute e3,

x2−
〈
x2,e1

〉
e1−

〈
x2,e2

〉
e2 = x2− 1

2

∫ 1

−1
x2 dx− 3

2
x
∫ 1

−1
x3 dx = x2− 1

3

and so e3 =
x2− 1

3
||x2− 1

3 ||
=
√

45
8

(
x2− 1

3

)
.5 Since e1 and e2 span P1(C),

P1(C)⊥ =
{

c
(
x2− 1

3

)
: c ∈ C

}
. �

5We have just computed the first three Legendre polynomials.


