MATH 850

(1) Let Δ be a simplicial complex with corresponding Stanley-Reisner ideal I_{Δ}, and let

$$
m^{\tau}:=\left\langle x_{j}: j \in \tau\right\rangle
$$

the monomial (prime) ideal corresponding to $\tau \subseteq[n]$. Show that

$$
I_{\Delta}=\bigcap_{\sigma \in \Delta} m^{[n] \backslash \sigma}
$$

(2) Let $R:=\mathbb{F}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and $I:=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$. Compute a finite free resolution for the R-module R / I.
(3) Let Δ be the boundary of a pentagon. Compute I_{Δ} and one of its finite free resolutions.
(4) Let Δ be the boundary of an octahedron. Compute I_{Δ} and one of its finite free resolutions.
(5) Let $I:=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}\right\rangle \subset \mathbb{F}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, and let I_{d} denote the \mathbb{F}-vector space of homogeneous polynomials in I of degree d. Compute the Hilbert function $h_{I}(n):=\operatorname{dim}_{\mathbb{F}}\left(I_{n}\right)$ and the Hilbert series

$$
H_{I}(x):=\sum_{n \geq 0} h_{I}(n) x^{n} .
$$

(6) Compute the Hilbert series of $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{5}\right] / I_{\Delta}$ for Δ be the boundary of a pentagon, and verify that it yields the correct face numbers.
(7) Compute the Hilbert series of $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{6}\right] / I_{\Delta}$ for Δ be the boundary of an octahedron, and verify that it yields the correct face numbers.
(8) Let $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$. Prove that the following are equivalent:
(a) There exists a polynomial $p(x)$ of degree d such that $f(n)=p(n)$ for sufficiently large integers n.
(b) There exists a polynomial $g(x)$ such that

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{g(x)}{(1-x)^{d+1}}
$$

(9) Let Δ_{1} and Δ_{2} be simplicial complexes on the disjoint sets E_{1} and E_{2}. The join $\Delta_{1} \star \Delta_{2}$ is the simplicial complex on $E_{1} \cup E_{2}$ whose faces are the sets $\sigma_{1} \cup \sigma_{2}$ for $\sigma_{1} \in \Delta_{1}$ and $\sigma_{2} \in \Delta_{2}$. Compute the h-vector of $\Delta_{1} \star \Delta_{2}$ in terms of the h-vectors for Δ_{1} and Δ_{2}.
(10) Find the open software system Macaulay2 and figure out how to compute free resolutions with it. Go play.

