(1) For the time being ${ }^{1}$, let's define the vertices of a V-polytope as follows: Given $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{d}$, let $P:=\operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. Then \mathbf{v}_{j} is not a vertex of P if $P=\operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, \mathbf{v}_{n}\right\}$; all other \mathbf{v}_{j} 's are vertices of P.
(a) Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}^{k}$ be an affine map. Show that $f(P)$ is convex.
(b) What are the vertices of $f(P)$? (Caveat: This question has, in some cases, only a partial answer.)
(2) Let P and Q be V-polytopes in \mathbf{R}^{1}, with vertices $\mathbf{p}_{1}, \mathbf{p}_{2}$ and $\mathbf{q}_{1}, \mathbf{q}_{2}$, respectively.
(a) Define an affine map such that $f(P)=Q$.
(b) Now assume P and Q are still 1-dimensional but live in \mathbf{R}^{d} and \mathbf{R}^{k}, respectively. Define an affine map such that $f(P)=Q$.
(3) (Collaborative) Do one of the following problems:
(a) Define a SageMath function that implements (2b), that is, takes as input two points in \mathbf{R}^{d} (the vertices of P) and two points in \mathbf{R}^{k} (the vertices of Q) and outputs the matrix and translation vector defining the affine map f that takes P to Q.
(b) Find a nontrivial ${ }^{2}$ polytope on www. polytopia.eu and realize it. ${ }^{3}$
(4) Consider the following optimization problem:

$$
\begin{aligned}
\min & -x_{1}-x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 3 \\
& 2 x_{1}+x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

(a) Compute the V-description of the feasible region.
(b) Solve the optimization problem.

[^0]
[^0]: ${ }^{1}$ We'll have a different (more robust) definition of vertex soon.
 ${ }^{2}$ Let's say nontrivial means at least one vertex is on 4 edges and at least one face is not a triangle.
 ${ }^{3}$ This means finding vertex coordinates so that your polytope has the same combinatorics, i.e., isomorphic vertexedge adjacencies. (Trust your intuition of what same combinatorics means, and trust that this intuition will be challenged in dimensions >3.)

