MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework II due 11 February

- (1) Prove that a polytope P is the affine image of a crosspolytope if and only if P is centrally symmetric.
- (2) (Collaborative) For today,¹ let's define a *vertex* of a polytope *P* as a point $\mathbf{v} \in P$ such that for every line *L* through \mathbf{v} and every neighborhood *N* of \mathbf{v} , there exists a point in $L \cap N$ that is not in *P*. Prove that the vertices of the *n*th Birkhoff–von Neumann polytope are the $n \times n$ permutation matrices.
- (3) Let H_1, H_2, \ldots, H_m be halfspaces in \mathbb{R}^d defining the polyhedron $P = \bigcap_{j=1}^m H_j$. This representation of *P* is *irredundant* if $P \neq \bigcap_{j \in I} H_j$ for any $I \subsetneq [m]$, i.e., we need all *m* halfspaces to describe *P*. Find a polyhedron *P* that has two irredundant representations with different *m*'s. (*Hint:* A point in the plane will do.)
- (4) The *lineality space* of a polyhedron $P \subseteq \mathbf{R}^d$ is the inclusion-maximal linear subspace $L \subseteq \mathbf{R}^d$ such that $\mathbf{p} + L \subseteq P$ for some $\mathbf{p} \in P$. Now let $P = {\mathbf{x} \in \mathbf{R}^d : \mathbf{A}\mathbf{x} \leq \mathbf{b}}$. Show that the lineality space of *P* is the null space of **A**.

¹We'll still have a different (more robust) definition of *vertex* soon.