

Homework III due 18 February

- (1) Let $P = \operatorname{conv}(S) \subset \mathbf{R}^d$ be a polytope.
 - (a) Let $\mathbf{p}, \mathbf{q} \in S$. Show that if $P = \operatorname{conv}(S \setminus \{\mathbf{p}\}) = \operatorname{conv}(S \setminus \{\mathbf{q}\})$, then $P = \operatorname{conv}(S \setminus \{\mathbf{p}, \mathbf{q}\})$.
 - (b) Conclude there is a unique inclusion-minimal set $V \subseteq S$ such that P = conv(V).
- (2) (**Collaborative**) Let *C* be the V-cone generated by $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$.
 - (a) Show that the lineality space of *C* is nontrivial if and only if there is some $\mathbf{p} \in C \setminus \{\mathbf{0}\}$ such that $-\mathbf{p} \in C$.¹
 - (b) Show that there is some $\mathbf{p} \neq \mathbf{0}$ with $\pm \mathbf{p} \in C$ if and only if there are $\mu_1, \ldots, \mu_k \ge 0$ not all zero such that

$$\mathbf{0} = \boldsymbol{\mu}_1 \mathbf{u}_1 + \cdots + \boldsymbol{\mu}_k \mathbf{u}_k.$$

(3) Given the polyhedron

$$P = \left\{ \mathbf{x} \in \mathbf{R}^d : \mathbf{a}_i \mathbf{x} \le b_i \text{ for } 1 \le i \le k \right\},\$$

we employ the usual definition of the (topological) *interior* of *P*: For $\mathbf{p} \in \mathbf{R}^d$ and $\varepsilon > 0$, let $B(\mathbf{p}, \varepsilon)$ be the ball of radius ε centered at \mathbf{p} . A point $\mathbf{p} \in P$ is an *interior point* of *P* if $B(\mathbf{p}, \varepsilon) \subseteq P$ for some $\varepsilon > 0$. Show that the interior of *P* equals

$$\left\{ \mathbf{x} \in \mathbf{R}^d : \mathbf{a}_i \mathbf{x} < b_i \text{ for } 1 \le i \le k \right\}.$$

(It might help to picture, say, the unit square in \mathbb{R}^2 .)

(4) Given the polyhedron

$$P = \left\{ \mathbf{x} \in \mathbf{R}^d : \mathbf{a}_i \mathbf{x} \le b_i \text{ for } 1 \le i \le k \right\},\$$

let $I := \{i \in [k] : \mathbf{a}_i \mathbf{p} = b_i \text{ for all } \mathbf{p} \in P\}.$

- (a) Show that the affine hull aff(P) of P equals $\{\mathbf{x} \in \mathbf{R}^d : \mathbf{a}_i \mathbf{x} = b_i \text{ for all } i \in I\}$.
- (b) The *relative interior of P* consists of all points \mathbf{p} with

$$B(\mathbf{p}, \varepsilon) \cap \operatorname{aff}(P) \subseteq P$$

for some $\varepsilon > 0$. Show that the relative interior of *P* equals $\{\mathbf{x} \in P : \mathbf{a}_i \mathbf{x} < b_i \text{ for all } i \notin I\}$. (Again it might be helpful to consider a running example, such as the square in \mathbf{R}^3 with vertices (1,0,0), (1,1,0), (0,0,1), and (0,1,1).)

¹A cone with trivial lineality space is called *pointed*; so this exercise yields two alternative definitions.