(1) Let $P=\operatorname{conv}(S) \subset \mathbf{R}^{d}$ be a polytope.
(a) Let $\mathbf{p}, \mathbf{q} \in S$. Show that if $P=\operatorname{conv}(S \backslash\{\mathbf{p}\})=\operatorname{conv}(S \backslash\{\mathbf{q}\})$, then $P=\operatorname{conv}(S \backslash\{\mathbf{p}, \mathbf{q}\})$.
(b) Conclude there is a unique inclusion-minimal set $V \subseteq S$ such that $P=\operatorname{conv}(V)$.
(2) (Collaborative) Let C be the V-cone generated by $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$.
(a) Show that the lineality space of C is nontrivial if and only if there is some $\mathbf{p} \in C \backslash\{\boldsymbol{0}\}$ such that $-\mathbf{p} \in C$.
(b) Show that there is some $\mathbf{p} \neq \mathbf{0}$ with $\pm \mathbf{p} \in C$ if and only if there are $\mu_{1}, \ldots, \mu_{k} \geq 0$ not all zero such that

$$
\mathbf{0}=\mu_{1} \mathbf{u}_{1}+\cdots+\mu_{k} \mathbf{u}_{k}
$$

(3) Given the polyhedron

$$
P=\left\{\mathbf{x} \in \mathbf{R}^{d}: \mathbf{a}_{i} \mathbf{x} \leq b_{i} \text { for } 1 \leq i \leq k\right\}
$$

we employ the usual definition of the (topological) interior of P : For $\mathbf{p} \in \mathbf{R}^{d}$ and $\varepsilon>0$, let $B(\mathbf{p}, \varepsilon)$ be the ball of radius ε centered at \mathbf{p}. A point $\mathbf{p} \in P$ is an interior point of P if $B(\mathbf{p}, \varepsilon) \subseteq P$ for some $\varepsilon>0$. Show that the interior of P equals

$$
\left\{\mathbf{x} \in \mathbf{R}^{d}: \mathbf{a}_{i} \mathbf{x}<b_{i} \text { for } 1 \leq i \leq k\right\}
$$

(It might help to picture, say, the unit square in \mathbf{R}^{2}.)
(4) Given the polyhedron

$$
P=\left\{\mathbf{x} \in \mathbf{R}^{d}: \mathbf{a}_{i} \mathbf{x} \leq b_{i} \text { for } 1 \leq i \leq k\right\}
$$

let $I:=\left\{i \in[k]: \mathbf{a}_{i} \mathbf{p}=b_{i}\right.$ for all $\left.\mathbf{p} \in P\right\}$.
(a) Show that the affine hull $\operatorname{aff}(P)$ of P equals $\left\{\mathbf{x} \in \mathbf{R}^{d}: \mathbf{a}_{i} \mathbf{x}=b_{i}\right.$ for all $\left.i \in I\right\}$.
(b) The relative interior of P consists of all points \mathbf{p} with

$$
B(\mathbf{p}, \varepsilon) \cap \operatorname{aff}(P) \subseteq P
$$

for some $\varepsilon>0$. Show that the relative interior of P equals $\left\{\mathbf{x} \in P: \mathbf{a}_{i} \mathbf{x}<b_{i}\right.$ for all $\left.i \notin I\right\}$. (Again it might be helpful to consider a running example, such as the square in \mathbf{R}^{3} with vertices $(1,0,0),(1,1,0),(0,0,1)$, and $(0,1,1)$.)

[^0]
[^0]: ${ }^{1}$ A cone with trivial lineality space is called pointed; so this exercise yields two alternative definitions.

