(1) Describe the cone generated by the vectors $(1,0,0,1),(0,2,3,4),(0,0,3,1),(1,3,2,4),(2,4,6,4)$ by its irredundant linear inequalities.
(2) (Collaborative) Recall that the k-permutahedron P is defined as the convex hull of all permutations of $(1,2, \ldots, k)$.
(a) Compute the affine hull of P.
(b) Verify that for each $\sigma \in\{0,1\}^{k}$ we have $\sigma \mathbf{x} \geq \frac{|\sigma|(|\sigma|+1)}{2}$ for all $\mathbf{x} \in P$; here $|\sigma|$ denotes the number of 1 's in σ. Give an indication that these inequalities and the affine hull define P.
(c) Prove that each permutation of $(1,2, \ldots, k)$ is indeed a vertex of P.
(3) Let $P \subset \mathbf{R}^{d}$ and $Q \subset \mathbf{R}^{e}$ be two polyhedra.
(a) Show that $P \times Q$ is a polyhedron.
(b) Now assume $d=e$ and that the relative interiors of P and Q have a nonempty intersection. In this case, ${ }^{1}$ we define the free sum of P and Q as

$$
P \oplus Q:=\operatorname{conv}(P \cup Q)
$$

Show that $P \oplus Q$ is a polyhedron.
(4) Let $P=\operatorname{conv}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right)$ be a polytope. Show that a point \mathbf{q} is in the relative interior of P if there are $\lambda_{1}, \ldots, \lambda_{m}>0$ such that

$$
\mathbf{q}=\lambda_{1} \mathbf{p}_{1}+\cdots+\lambda_{m} \mathbf{p}_{m} \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{m}=1
$$

When is this an if and only if condition?

[^0]
[^0]: ${ }^{1}$ We can define the free sum of two polyhedra also without this restriction-in fact, for this exercise, the restrictions should not matter-but it won't have nearly as nice properties as under the restriction.

