(1) A finite poset $(\Phi, \preceq)$ in which the meet of any two elements exists is called a meet semilattice. Show that if a meet semilattice $(\Phi, \preceq)$ has a maximum element, then it is a lattice.
(2) Give a complete description of the faces of $[-1,1]^{d}$ and their face lattice.
(3) A polytope $P$ is simplicial if every proper face of $P$ is a simplex. Show that a cross polytope is simplicial.
(4) (Collaborative) Let $P \subset \mathbf{R}^{d}$ be a polytope of dimension $<d$. For a point $\mathbf{v} \in \mathbf{R}^{d} \backslash \operatorname{aff}(P)$, we define the pyramid ${ }^{1}$

$$
\mathbf{v} * P:=\operatorname{conv}(P \cup\{\mathbf{v}\})
$$

Prove that for each face $F \preceq P$, the polytope $\mathbf{v} * F$ is a face of $\mathbf{v} * P$. Conversely, show that every face of $\mathbf{v} * P$ is either a face of $P$ or of the form $\mathbf{v} * F$ for some face $F \preceq P$.

[^0]
[^0]:    ${ }^{1}$ One can show that $\mathbf{v} * P$ is linearly isomorphic to $\mathbf{w} * P$ for any other $\mathbf{w} \in \mathbf{R}^{d} \backslash \operatorname{aff}(P)$, which justifies calling this the pyramid over $P$.

