MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework V due 4 March

- (1) A finite poset (Φ, \preceq) in which the meet of any two elements exists is called a *meet semilattice*. Show that if a meet semilattice (Φ, \preceq) has a maximum element, then it is a lattice.
- (2) Give a complete description of the faces of $[-1,1]^d$ and their face lattice.
- (3) A polytope P is *simplicial* if every proper face of P is a simplex. Show that a cross polytope is simplicial.
- (4) (**Collaborative**) Let $P \subset \mathbf{R}^d$ be a polytope of dimension < d. For a point $\mathbf{v} \in \mathbf{R}^d \setminus \operatorname{aff}(P)$, we define the pyramid¹

$$\mathbf{v} * P := \operatorname{conv}(P \cup \{\mathbf{v}\}).$$

Prove that for each face $F \leq P$, the polytope $\mathbf{v} * F$ is a face of $\mathbf{v} * P$. Conversely, show that every face of $\mathbf{v} * P$ is either a face of P or of the form $\mathbf{v} * F$ for some face $F \leq P$.

¹One can show that $\mathbf{v} * P$ is linearly isomorphic to $\mathbf{w} * P$ for any other $\mathbf{w} \in \mathbf{R}^d \setminus \operatorname{aff}(P)$, which justifies calling this *the* pyramid over *P*.