MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework VI due 11 March

- (1) Compute the face numbers of
 - (a) the *d*-cube
 - (b) the *d*-cross polytope
 - and verify that they satisfy the Euler-Poincaré relation.
- (2) Let *P* be a polytope with vertex set *V*, and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. Prove that the face $F \in \Phi(P)$ is the join of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ if and only if $\frac{1}{k}(\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k) \in F^{\circ}$.
- (3) Fix a polytope P with the origin in its interior. For a nonempty face F of P, let

$$C(F) := \bigcup_{t>0} tF^{c}$$

and $C(\emptyset) := \{\mathbf{0}\}.$

- (a) Show that, for each proper face F, the set C(F) is a relatively open cone of dimension $\dim(F) + 1$.
- (b) Prove that

$$C(P) = \operatorname{aff}(P) = \biguplus_{F \prec P} C(F).$$

- (4) For a polyhedron $P \subseteq \mathbf{R}^d$ with lineality space *L*, we write F/L for the projection of a face *F* of P in \mathbf{R}^d/L .¹
 - (a) Show that F/L is a face of P/L.
 - (b) Prove that the map $\Phi(P) \rightarrow \Phi(P/L)$ given by $F \mapsto F/L$ is an isomorphism of face lattices.²

¹If you are not a fan of quotient spaces, we can identify F/L with the orthogonal projection of F onto the orthogonal complement of L.

²Two posets Φ and Ψ are *isomorphic* if there is a bijection $\Phi \to \Psi$ that respects the order relations in Φ and Ψ .