(1) Compute the face numbers of
(a) the d-cube
(b) the d-cross polytope
and verify that they satisfy the Euler-Poincaré relation.
(2) Let P be a polytope with vertex set V, and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. Prove that the face $F \in \Phi(P)$ is the join of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ if and only if $\frac{1}{k}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\cdots+\mathbf{v}_{k}\right) \in F^{\circ}$.
(3) Fix a polytope P with the origin in its interior. For a nonempty face F of P, let

$$
C(F):=\bigcup_{t>0} t F^{\circ}
$$

and $C(\varnothing):=\{\mathbf{0}\}$.
(a) Show that, for each proper face F, the set $C(F)$ is a relatively open cone of dimension $\operatorname{dim}(F)+1$.
(b) Prove that

$$
C(P)=\operatorname{aff}(P)=\biguplus_{F \prec P} C(F)
$$

(4) For a polyhedron $P \subseteq \mathbf{R}^{d}$ with lineality space L, we write F / L for the projection of a face F of P in $\mathbf{R}^{d} / L{ }^{1}$
(a) Show that F / L is a face of P / L.
(b) Prove that the map $\Phi(P) \rightarrow \Phi(P / L)$ given by $F \mapsto F / L$ is an isomorphism of face lattices. ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ If you are not a fan of quotient spaces, we can identify F / L with the orthogonal projection of F onto the orthogonal complement of L.
 ${ }^{2}$ Two posets Φ and Ψ are isomorphic if there is a bijection $\Phi \rightarrow \Psi$ that respects the order relations in Φ and Ψ.

