MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework VII due 18 March

- (1) Show that the function $\chi_{\mathscr{H}} : PC(\mathscr{H}) \to \mathbb{Z}$ which we defined in class is a valuation.
- (2) Let $\Delta = \operatorname{conv}(V)$ be a simplex.
 - (a) Prove that conv(W) is a face of Δ , for any subset $W \subseteq V$, and conclude that the face lattice of Δ is a Boolean lattice.
 - (b) Show that, for $-1 \le j \le k \le d$, the number of *j*-faces contained in any given *k*-face, equals $\binom{k+1}{i+1}$.
- (3) Let $P \subseteq \mathbf{R}^d$ be a polyhedron. For $\mathbf{w} \in \mathbf{R}^d$, let $F_{\mathbf{w}}(P)$ be the face of *P* that maximizes the linear functional $\mathbf{w}\mathbf{x}$, i.e.,

$$F_{\mathbf{w}}(P) = \{\mathbf{y} \in P : \mathbf{w} \, \mathbf{y} \ge \mathbf{w} \, \mathbf{x} \text{ for all } \mathbf{x} \in P\}.$$

- (a) Prove that $F_{\mathbf{w}}(P+Q) = F_{\mathbf{w}}(P) + F_{\mathbf{w}}(Q)$.
- (b) Thinking of $[0, 1]^d$ as the Minkowski sum of d unit line segments, use (a) to recompute the face lattice of the d-cube.
- (4) Recall the definition of a *simplicial* polytope *P*: all facets are simplices—in poset language, any interval $[\emptyset, F]$ for a facet *F* of *P* is a Boolean lattice. Dually, we define a polytope *P* to be *simple* if any interval $[\mathbf{v}, P]$ for a vertex \mathbf{v} of *P* is a Boolean lattice.¹ Prove the *Dehn–Sommerville relations*:

$$f_k := \sum_{j=0}^k (-1)^j {d-j \choose d-k} f_j.$$

(*Hint:* start with $f_k = \sum_{\substack{F \leq P \\ \dim F = k}} 1$ and then use the Euler–Poincaré relation for each *F*.)

¹There is a nicer definition of a *simple d*-polytope: every vertex is contained in exactly *d* edges. The easiest way to see how this definition implies that any interval $[\mathbf{v}, P]$ for a vertex \mathbf{v} of *P* is a Boolean lattice involves the notion of polar duality.