(1) Show that the function $\chi_{\mathscr{H}}: \mathrm{PC}(\mathscr{H}) \rightarrow \mathbf{Z}$ which we defined in class is a valuation.
(2) Let $\Delta=\operatorname{conv}(V)$ be a simplex.
(a) Prove that $\operatorname{conv}(W)$ is a face of Δ, for any subset $W \subseteq V$, and conclude that the face lattice of Δ is a Boolean lattice.
(b) Show that, for $-1 \leq j \leq k \leq d$, the number of j-faces contained in any given k-face, equals $\binom{k+1}{j+1}$.
(3) Let $P \subseteq \mathbf{R}^{d}$ be a polyhedron. For $\mathbf{w} \in \mathbf{R}^{d}$, let $F_{\mathbf{w}}(P)$ be the face of P that maximizes the linear functional $\mathbf{w x}$, i.e.,

$$
F_{\mathbf{w}}(P)=\{\mathbf{y} \in P: \mathbf{w} \mathbf{y} \geq \mathbf{w} \mathbf{x} \text { for all } \mathbf{x} \in P\}
$$

(a) Prove that $F_{\mathbf{w}}(P+Q)=F_{\mathbf{w}}(P)+F_{\mathbf{w}}(Q)$.
(b) Thinking of $[0,1]^{d}$ as the Minkowski sum of d unit line segments, use (a) to recompute the face lattice of the d-cube.
(4) Recall the definition of a simplicial polytope P : all facets are simplices-in poset language, any interval $[\varnothing, F]$ for a facet F of P is a Boolean lattice. Dually, we define a polytope P to be simple if any interval $[\mathbf{v}, P]$ for a vertex \mathbf{v} of P is a Boolean lattice. ${ }^{1}$ Prove the Dehn-Sommerville relations:

$$
f_{k}:=\sum_{j=0}^{k}(-1)^{j}\binom{d-j}{d-k} f_{j} .
$$

(Hint: start with $f_{k}=\sum_{\substack{F \leq P \\ \operatorname{dim} F=k}} 1$ and then use the Euler-Poincaré relation for each F.)

[^0]
[^0]: ${ }^{1}$ There is a nicer definition of a simple d-polytope: every vertex is contained in exactly d edges. The easiest way to see how this definition implies that any interval $[\mathbf{v}, P]$ for a vertex \mathbf{v} of P is a Boolean lattice involves the notion of polar duality.

