(1) Let $\Delta=\operatorname{conv}\left(\mathbf{u}_{0}, \ldots, \mathbf{u}_{d}\right) \subset \mathbf{R}^{d}$ and $\Delta^{\prime}=\operatorname{conv}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{e}\right) \subset \mathbf{R}^{e}$ be two simplices and let $P:=$ $\Delta \times \Delta^{\prime}$ be their Cartesian product.
(a) We can identify the vertices of P with nodes of the square grid $\{0, \ldots, d\} \times\{0, \ldots, e\}$. A lattice path from $(0,0)$ to (d, e) is a path on the grid that uses only unit steps \rightarrow and \uparrow. Show that any such path encodes a unique $(d+e)$-simplex contained in P.
(b) Show that the collection of all such simplices yields a triangulation of P.
(2) Given a permutation $\tau \in S_{d}$ on d letters, let

$$
\Delta_{\tau}:=\left\{\mathbf{x} \in \mathbf{R}^{d}: 0 \leq x_{\tau(1)} \leq x_{\tau(2)} \leq \cdots \leq x_{\tau(d)} \leq 1\right\}
$$

Convince yourself that Δ_{τ} is a simplex, and prove that $\left\{\Delta_{\tau}: \tau \in S_{d}\right\}$ yields a triangulation of $[0,1]^{d}$.
(3) Show that any subdivision of a polygon without new vertices is regular.
(4) (The mother of all nonregular triangulations)
(a) Prove that the triangulation below (of a triangle, with three additional vertices) is not regular.
(b) Give an example of a nonregular subdivision of a polytope in every dimension ≥ 3.

