MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework IX due 8 April

- (1) Let c_n denote the number of triangulations (using only the vertices) of an (n+2)-gon. (a) Find a recurrence relation for c_n .
 - (b) Compute the generating function $C(x) := 1 + \sum_{n \ge 1} c_n x^n$ and derive a closed form for c_n .¹
- (2) Let $P \subseteq \mathbf{R}^d$ be a polyhedron and $\mathbf{x} \in \mathbf{R}^d$. We say that $\mathbf{y} \in P$ is visible from \mathbf{x} if the line segment from \mathbf{x} to \mathbf{y} intersects P only in \mathbf{y} . Prove that $\mathbf{x} \in \mathbf{R}^d$ is beyond a given face F of P if and only if all points in F are visible from \mathbf{x} .
- (3) Compute $\mathbb{H}_{\mathbf{q}}\Delta_{\tau}$ for the simplices in Exercise VIII.2, with $\mathbf{q} = \frac{1}{d+1}(1, 2, \dots, d)$.
- (4) Fix linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d \in \mathbf{R}^d$ and consider the simplicial cone

$$C := \mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_1 + \mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_2 + \dots + \mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_d.$$

Prove that, for

$$\hat{C} := \mathbf{R}_{>\mathbf{0}}\mathbf{v}_1 + \dots + \mathbf{R}_{>\mathbf{0}}\mathbf{v}_{m-1} + \mathbf{R}_{>\mathbf{0}}\mathbf{v}_m + \dots + \mathbf{R}_{>\mathbf{0}}\mathbf{v}_d,$$

there exists $\mathbf{q} \in \mathbf{R}^d$ (generic relative to *C*) such that

$$\hat{C} = \mathbb{H}_{\mathbf{q}} C$$

Conversely, show that, for every generic $\mathbf{q} \in \mathbf{R}^d$ relative to *C*, the half-open cone $\mathbb{H}_{\mathbf{q}}C$ is of the form \hat{C} for some reordering of the \mathbf{v}_i 's and some *m*.

¹Here you will need the *binomial series* $(1+x)^{\alpha} = \sum_{n\geq 0} {\alpha \choose n} x^n$, for $\alpha \in \mathbf{R}$, with ${\alpha \choose n} := \frac{1}{n!} \alpha(\alpha - 1) \cdots (\alpha - n + 1)$. Calculus rocks.