(1) Let c_{n} denote the number of triangulations (using only the vertices) of an ($n+2$)-gon.
(a) Find a recurrence relation for c_{n}.
(b) Compute the generating function $C(x):=1+\sum_{n \geq 1} c_{n} x^{n}$ and derive a closed form for $c_{n} .{ }^{1}$
(2) Let $P \subseteq \mathbf{R}^{d}$ be a polyhedron and $\mathbf{x} \in \mathbf{R}^{d}$. We say that $\mathbf{y} \in P$ is visible from \mathbf{x} if the line segment from \mathbf{x} to \mathbf{y} intersects P only in \mathbf{y}. Prove that $\mathbf{x} \in \mathbf{R}^{d}$ is beyond a given face F of P if and only if all points in F are visible from \mathbf{x}.
(3) Compute $\mathbb{H}_{\mathbf{q}} \Delta_{\tau}$ for the simplices in Exercise VIII.2, with $\mathbf{q}=\frac{1}{d+1}(1,2, \ldots, d)$.
(4) Fix linearly independent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d} \in \mathbf{R}^{d}$ and consider the simplicial cone

$$
C:=\mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_{1}+\mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_{2}+\cdots+\mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_{d} .
$$

Prove that, for

$$
\hat{C}:=\mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_{1}+\cdots+\mathbf{R}_{\geq \mathbf{0}} \mathbf{v}_{m-1}+\mathbf{R}_{>0} \mathbf{v}_{m}+\cdots+\mathbf{R}_{>0} \mathbf{v}_{d}
$$

there exists $\mathbf{q} \in \mathbf{R}^{d}$ (generic relative to C) such that

$$
\hat{C}=\mathbb{H}_{\mathbf{q}} C
$$

Conversely, show that, for every generic $\mathbf{q} \in \mathbf{R}^{d}$ relative to C, the half-open cone $\mathbb{H}_{\mathbf{q}} C$ is of the form \hat{C} for some reordering of the \mathbf{v}_{j} 's and some m.

[^0]
[^0]: ${ }^{1}$ Here you will need the binomial series $(1+x)^{\alpha}=\sum_{n \geq 0}\binom{\alpha}{n} x^{n}$, for $\alpha \in \mathbf{R}$, with $\binom{\alpha}{n}:=\frac{1}{n!} \alpha(\alpha-1) \cdots(\alpha-n+1)$. Calculus rocks.

