(1) Compute the integer-point transform $\sigma_{C}(\mathbf{z})$ for the following (affine) cones:
(a) $C=\left\{\lambda_{1}(0,1)+\lambda_{2}(1,0): \lambda_{1}, \lambda_{2} \geq 0\right\}$;
(b) $C=\left\{\lambda_{1}(0,1)+\lambda_{2}(1,1): \lambda_{1}, \lambda_{2} \geq 0\right\}$;
(c) $C=\left\{(3,4)+\lambda_{1}(0,1)+\lambda_{2}(2,1): \lambda_{1}, \lambda_{2} \geq 0\right\}$.
(2) Compute the Ehrhart polynomials and the Ehrhart series of the simplices with the following vertices:
(a) $(0,0,0),(1,0,0),(0,2,0)$, and $(0,0,3)$;
(b) $(0,0,0,0),(1,0,0,0),(0,2,0,0),(0,0,3,0)$, and $(0,0,0,4)$.
(3) A lattice simplex $\Delta=\operatorname{conv}\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right\} \subset \mathbf{R}^{d}$ is unimodular if $\mathbf{v}_{1}-\mathbf{v}_{0}, \mathbf{v}_{2}-\mathbf{v}_{0}, \ldots, \mathbf{v}_{d}-\mathbf{v}_{0}$ is a lattice basis of \mathbf{Z}^{d}, i.e., every vector in \mathbf{Z}^{d} can be uniquely written as an integer combination of $\mathbf{v}_{1}-\mathbf{v}_{0}, \mathbf{v}_{2}-\mathbf{v}_{0}, \ldots, \mathbf{v}_{d}-\mathbf{v}_{0}$. Compute the Ehrhart polynomial of Δ and conclude that vol $\Delta=\frac{1}{d!}$.
(4) Let $\Delta \subset \mathbf{R}^{d}$ be a unimodular d-simplex and \mathbf{q} a point generic relative to Δ. Prove that

$$
h_{\mathbb{H}_{\mathbf{q}} \Delta}^{*} \Delta(z)=z^{r}
$$

where r is the number of visible facets in $\mathbb{H}_{\mathbf{q}} \Delta$.

