MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework X due 15 April

(1) Compute the integer-point transform $\sigma_C(\mathbf{z})$ for the following (affine) cones:

- (a) $C = \{\lambda_1(0,1) + \lambda_2(1,0) : \lambda_1, \lambda_2 \ge 0\};$
- (b) $C = \{\lambda_1(0,1) + \lambda_2(1,1) : \lambda_1, \lambda_2 \ge 0\};$
- (c) $C = \{(3,4) + \lambda_1(0,1) + \lambda_2(2,1) : \lambda_1, \lambda_2 \ge 0\}.$
- (2) Compute the Ehrhart polynomials and the Ehrhart series of the simplices with the following vertices:
 - (a) (0,0,0), (1,0,0), (0,2,0), and (0,0,3);
 - (b) (0,0,0,0), (1,0,0,0), (0,2,0,0), (0,0,3,0), and (0,0,0,4).
- (3) A lattice simplex $\Delta = \operatorname{conv} \{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d\} \subset \mathbf{R}^d$ is *unimodular* if $\mathbf{v}_1 \mathbf{v}_0, \mathbf{v}_2 \mathbf{v}_0, \dots, \mathbf{v}_d \mathbf{v}_0$ is a lattice basis of \mathbf{Z}^d , i.e., every vector in \mathbf{Z}^d can be uniquely written as an integer combination of $\mathbf{v}_1 \mathbf{v}_0, \mathbf{v}_2 \mathbf{v}_0, \dots, \mathbf{v}_d \mathbf{v}_0$. Compute the Ehrhart polynomial of Δ and conclude that $\operatorname{vol}\Delta = \frac{1}{d!}$.
- (4) Let $\Delta \subset \mathbf{R}^d$ be a unimodular *d*-simplex and **q** a point generic relative to Δ . Prove that

$$h^*_{\mathbb{H}_{\mathbf{q}}\Delta}(z) = z^r$$

where *r* is the number of visible facets in $\mathbb{H}_{\mathbf{q}}\Delta$.