(1) Compute the Ehrhart polynomial of the octahedron with vertices $( \pm 1,0,0),(0, \pm 1,0)$, and $(0,0, \pm 1)$. Think about how this could generalize to the $d$-dimensional cross polytope.
(2) Let $P$ be a lattice polytope. Show that the constant term of the $h^{*}$-polynomial of $P$ is 1 . Conclude that $\operatorname{ehr}_{P}(0)=1$.
(3) Let $P \subset \mathbf{R}^{d}$ be a lattice $d$-polytope with $h^{*}$-polynomial $h_{P}^{*}(z)=h_{0}^{*}+h_{1}^{*} z+\cdots+h_{d}^{*} z^{d} .{ }^{1}$ Prove:
(a) $h_{1}^{*}=\left|P \cap \mathbf{Z}^{d}\right|-d-1$.
(b) $h_{d}^{*}=\left|P^{\circ} \cap \mathbf{Z}^{d}\right|$.
(c) $h_{0}^{*}+h_{1}^{*}+\cdots+h_{d}^{*}=d!\operatorname{vol}(P)$.
(4) A reflexive polytope is a lattice polytope $P$ such that the origin is the unique interior lattice point of $P$ and

$$
\operatorname{ehr}_{P^{\circ}}(n)=\operatorname{ehr}_{P}(n-1) \quad \text { for all } n \in \mathbf{Z}_{>0}
$$

Prove that if $P$ is a lattice $d$-polytope that contains the origin in its interior and that has the Ehrhart series

$$
\operatorname{Ehr}_{P}(z)=\frac{h_{d}^{*} z^{d}+h_{d-1}^{*} z^{d-1}+\cdots+h_{1}^{*} z+h_{0}^{*}}{(1-z)^{d+1}}
$$

then $P$ is reflexive if and only if $h_{k}^{*}=h_{d-k}^{*}$ for all $0 \leq k \leq \frac{d}{2}$.

[^0]
[^0]:    ${ }^{1} h_{P}^{*}(z)$ might not have degree $d$, i.e., we allow leading coefficients to be 0 .

