MATH 883: POLYTOPES & VARIETIES Spring 2022

Homework XI due 22 April

- (1) Compute the Ehrhart polynomial of the octahedron with vertices $(\pm 1,0,0)$, $(0,\pm 1,0)$, and $(0,0,\pm 1)$. Think about how this could generalize to the *d*-dimensional cross polytope.
- (2) Let *P* be a lattice polytope. Show that the constant term of the h^* -polynomial of *P* is 1. Conclude that $ehr_P(0) = 1$.
- (3) Let $P \subset \mathbf{R}^d$ be a lattice *d*-polytope with h^* -polynomial $h_P^*(z) = h_0^* + h_1^* z + \dots + h_d^* z^{d-1}$ Prove: (a) $h_1^* = |P \cap \mathbf{Z}^d| - d - 1$. (b) $h_d^* = |P^\circ \cap \mathbf{Z}^d|$. (c) $h_0^* + h_1^* + \dots + h_d^* = d! \operatorname{vol}(P)$.
- (4) A *reflexive polytope* is a lattice polytope *P* such that the origin is the unique interior lattice point of *P* and

 $\operatorname{ehr}_{P^{\circ}}(n) = \operatorname{ehr}_{P}(n-1)$ for all $n \in \mathbb{Z}_{>0}$.

Prove that if P is a lattice d-polytope that contains the origin in its interior and that has the Ehrhart series

Ehr_P(z) =
$$\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_1^* z + h_0^*}{(1-z)^{d+1}}$$
,

then *P* is reflexive if and only if $h_k^* = h_{d-k}^*$ for all $0 \le k \le \frac{d}{2}$.

 $^{{}^{1}}h_{P}^{*}(z)$ might not have degree *d*, i.e., we allow leading coefficients to be 0.