Homework XII due in early May
(1) Let P be a polytope. Show that the following statements are equivalent:
(a) P is a zonotope;
(b) every 2-dimensional face of P is a zonotope;
(c) every 2 -dimensional face of P is centrally symmetric.;
(2) A set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbf{R}^{d}$ are in general position if no $k+1$ of them is contained in a linear subspace of dimension k, for any $1 \leq k \leq d$. Show that all proper faces of a zonotope generated by vectors in general position are parallelepipeds.
(3) Given the zonotope Z generated by the vectors $\pm \mathbf{u}_{1}, \pm \mathbf{u}_{2}, \ldots, \pm \mathbf{u}_{n} \in \mathbf{R}^{d}$, consider the hyperplane arrangement \mathscr{H} consisting of the n hyperplanes in \mathbf{R}^{d} through the origin with normal vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$. Show that there is a one-to-one correspondence between the vertices of Z and the regions of \mathscr{H} (i.e., the maximal connected components of $\mathbf{R}^{d} \backslash \bigcup \mathscr{H}$). Can you give an analogous correspondence for the other faces of Z ?
(4) Let P be the $(d-1)$-dimensional permutahedron (living in \mathbf{R}^{d}). We proved in class that P is a translate of the zonotope Z generated by $\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{d-1}-\mathbf{e}_{d}$. Prove that Z can be written as the disjoint union

$$
Z=\{\mathbf{0}\} \cup \bigcup_{S \in I}\left(\sum_{\mathbf{e}_{j}-\mathbf{e}_{k} \in S}\left(\mathbf{0}, \mathbf{e}_{j}-\mathbf{e}_{k}\right]\right)
$$

where I consist of all nonempty linearly independent subsets of $\left\{\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{d-1}-\mathbf{e}_{d}\right\}$.

