(1) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbf{R}^{d}$, and randomly choose real numbers $h_{1}, h_{2}, \ldots, h_{m}$. Prove that the zonotope generated by $\left(\mathbf{v}_{1}, h_{1}\right),\left(\mathbf{v}_{2}, h_{2}\right), \ldots,\left(\mathbf{v}_{m}, h_{m}\right) \in \mathbf{R}^{d+1}$ is cubical, i.e., all of its proper faces are parallelepipeds.
(2) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbf{R}^{d}$, randomly choose real numbers $h_{1}, h_{2}, \ldots, h_{m}$, and construct the zonotopes Z generated by $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbf{R}^{d}$ and \widehat{Z} by $\left(\mathbf{v}_{1}, h_{1}\right),\left(\mathbf{v}_{2}, h_{2}\right), \ldots,\left(\mathbf{v}_{m}, h_{m}\right) \in \mathbf{R}^{d+1}$.
(a) Revisit Problems VII(3) and (1) above to show that each bounded face of the polyhedron ${ }^{1}$ $\widehat{Z}+\uparrow_{\mathbf{R}}$ is a parallelepiped.
(b) Let $\pi: \mathbf{R}^{d+1} \rightarrow \mathbf{R}^{d}$ be the projection that forgets the last coordinate. Prove that

$$
\left\{\pi(F): F \text { bounded face of } \widehat{Z}+\uparrow_{\mathbf{R}}\right\}
$$

is a subdivision of Z into parallelepipeds. ${ }^{2}$
(3) We could take the subdivision in Problem (2) one step further and make it disjoint; we have seen this in one instant, namely Problem XII(4), and so we will concentrate on the special case of permutahedra. In preparation, show that, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbf{Z}^{d}$ are linearly independent, then the Ehrhart polynomial of the half-open parallelelepiped

$$
P:=(0,1] \mathbf{v}_{1}+(0,1] \mathbf{v}_{2}+\cdots+(0,1] \mathbf{v}_{m}
$$

is $\operatorname{ehr}_{P}(n)=\operatorname{vol}(P) n^{m}$ where $\operatorname{vol}(P)$ denotes relative volume.
(4) Let P be the $(d-1)$-dimensional permutahedron (living in \mathbf{R}^{d}). Recall that in Problem XII(4) you proved that P is a (lattice) translate of

$$
\{\mathbf{0}\} \cup \bigcup_{S \in I}\left(\sum_{\mathbf{e}_{j}-\mathbf{e}_{k} \in S}\left(\mathbf{0}, \mathbf{e}_{j}-\mathbf{e}_{k}\right]\right)
$$

where I consist of all nonempty linearly independent subsets of $\left\{\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{d-1}-\mathbf{e}_{d}\right\}$.
(a) Show that each of the parallelepipeds in (\star) has relative volume 1 .
(b) To each subset S in (\star) we associate the graph G_{S} with nodes $[d]$ and edges $\left\{j k: \mathbf{e}_{j}-\mathbf{e}_{k} \in S\right\}$. Prove that S is linearly independent if and only if G_{S} is a forest, i.e., does not contain any cycles.
(c) Show that the coefficient c_{k} of the Ehrhart polynomial

$$
L_{P}(t)=c_{d-1} t^{d-1}+c_{d-2} t^{d-2}+\cdots+c_{0}
$$

of the permutahedron equals the number of labeled forests on d nodes with k edges.

[^0]
[^0]: ${ }^{1}$ Shall we call it a zonohedron?
 ${ }^{2}$ Such a subdivision is called a regular tiling of Z.

