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Abstract : The nth Birkhoff polytope is the set of all doubly stochastic n × n matrices, that is, those matrices with

nonnegative real coefficients in which every row and column sums to one. A wide open problem concerns the volumes

of these polytopes, which have been known for n ≤ 8. We present a new, complex-analytic way to compute the

Ehrhart polynomial of the Birkhoff polytope, that is, the function counting the integer points in the dilated polytope.

One reason to be interested in this counting function is that the leading term of the Ehrhart polynomial is—up to a

trivial factor—the volume of the polytope. We implemented our methods in the form of a computer program, which

yielded the Ehrhart polynomial (and hence the volume) of the ninth Birkhoff polytope.

1 Introduction

One of the most intriguing objects of combinatorial geometry is the nth Birkhoff polytope

Bn =


 x11 · · · x1n

...
...

xn1 . . . xnn

 ∈ Rn2
: xjk ≥ 0,

∑
j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n

 ,

often described as the set of all n × n doubly stochastic matrices. Bn is a convex polytope with
integer vertices. It possesses fascinating combinatorial properties [4, 5, 6, 8, 23] and relates to
many mathematical areas [10, 14]. A long-standing open problem is the determination of the
relative volume of Bn, which had been known only up to n = 8 [7, 17]. In this paper, we propose a
new method of calculating this volume and use it to compute volB9.

One of the recent attempts to compute volBn relies on the theory of counting functions for the
integer points in polytopes. Ehrhart proved [11] that for a polytope P ⊂ Rd with integral vertices,
the number

LP(t) := #
(
tP ∩ Zd

)
is a polynomial in the positive integer variable t. He showed various other properties for this
counting function (in fact, in the more general setting of P having rational vertices), of which we
mention three here:

• The degree of LP is the dimension of P.

• The leading term of LP is the relative volume of P, normalized with respect to the sublattice
of Zd on the affine subspace spanned by P.

1To appear in Discrete & Computational Geometry
2E-mail to the first author on Wed, 14 Aug 2002 16:29:35 -0400 (EDT)
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• Since LP is a polynomial, we can evaluate it at nonpositive integers. These evaluations yield

LP(0) = χ(P) , (1)

LP(−t) = (−1)dimPLP◦(t) . (2)

Here χ(P) denotes the Euler characteristic, P◦ the relative interior of P. The reciprocity law (2)
was in its full generality proved by Macdonald [15].

The application of this theory to the Birkhoff polytope Bn incorporates the nice interpretation of
the number of integral points in tBn as the number of semi-magic squares, namely, square matrices
whose nonnegative integral coefficients sum up to the same integer t along each row and column.

We will denote the Ehrhart polynomial of Bn by

Hn(t) := LBn(t) .

It is not hard to see that dimBn = (n− 1)2, hence Hn is a polynomial in t of degree (n− 1)2. The
first two of these polynomials are trivial:

H1(t) = 1 , H2(t) = t + 1 ,

the first nontrivial case was computed by MacMahon [16] as

H3(t) = 3
(

t + 3
4

)
+
(

t + 2
2

)
. (3)

The structural properties of Hn were first studied in [12, 18, 20]. It is a nice exercise to deduce
from (2) that

Hn(−n− t) = (−1)n−1 Hn(t) (4)

and
Hn(−1) = Hn(−2) = · · · = Hn(−n + 1) = 0 .

This allows the following strategy of computing Hn, and therefore, the volume of Bn: compute
the first

(
n−1

2

)
values of Hn, use the above symmetry and trivial values of Hn, and calculate the

polynomial Hn by interpolation. In fact, as far as we are aware of, the volume of B8 was computed
using essentially this method, combined with some nice computational tricks [7, 17].

We propose a new, completely different approach of computing Hn (and hence volBn). It is based
on an analytic method by the first author of computing the Ehrhart polynomial of a polytope [2].
We will introduce the application of this method to the Birkhoff polytope in the following section.

Some recent refreshing approaches—of a more algebraic-geometric/topological flavor—to the prob-
lem of computing volBn and Hn can be found in [1, 9, 22].
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2 An integral counting integers

A convex polytope P ⊂ Rd is an intersection of halfspaces. This allows the compact description

P =
{
x ∈ Rd : Ax ≤ b

}
,

for some (m× d)-matrix A and m-dimensional vector b. Here the inequality is understood compo-
nentwise. In fact, we may convert these inequalities into equalities by introducing ‘slack variables.’
If P has rational vertices (those polytopes are called rational), we can choose A and b in such a
way that all their entries are integers. In summary, we may assume that a convex rational polytope
P is given by

P =
{
x ∈ Rd

≥0 : Ax = b
}

, (5)

where A ∈ Mm×d(Z) and b ∈ Zm. (If we are interested in counting the integer points in P, we may
assume that P is in the nonnegative orthant, i.e., the points in P have nonnegative coordinates, as
translation by an integer vector does not change the lattice-point count.) The following straight-
forward theorem can be found in [2]. We use the standard multivariate notation vw := vw1

1 · · · vwn
n .

Theorem 1 [2, Theorem 8] Suppose the convex rational polytope P is given by (5), and denote the
columns of A by c1, . . . , cd. Then

LP(t) =
1

(2πi)m

∫
|z1|=ε1

· · ·
∫
|zm|=εm

z−tb1−1
1 · · · z−tbm−1

m

(1− zc1) · · · (1− zcd)
dz .

Here 0 < ε1, . . . , εm < 1 are distinct real numbers.

It should be mentioned that LP is in general not a polynomial if the vertices of P are not integral,
but a quasipolynomial, that is, an expression of the form

cd(t)td + · · ·+ c1(t)t + c0(t) ,

where c0, . . . , cd are periodic functions in t. (See, for example, [19, Section 4.4] for more information
about quasipolynomials.) Theorem 1 applies to these slightly more general counting functions;
however, in this article we will only deal with polytopes with integer vertices, for which LP is a
polynomial.

We also note here that Theorem 1 can be used to quickly compute by hand formulas for certain
classes of polytopes (see, for example, [2]). In this project, we take a slightly different approach
and use this theorem to efficiently derive formulas with the help of a computer.

We can view the Birkhoff polytope Bn as given in the form of (5), where

A =



1 · · · 1
1 · · · 1

. . .
1 · · · 1

1 1 1
. . . . . . · · · . . .

1 1 1
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is a (2n× n2)-matrix and b = (1, . . . , 1) ∈ Z2n. Hence Theorem 1 gives for this special case

Hn(t) =
1

(2πi)2n

∫
· · ·
∫

(z1 · · · z2n)−t−1

(1− z1zn+1)(1− z1zn+2) · · · (1− znz2n)
dz .

Here it is understood that each integral is over a circle with radius < 1 centered at 0; all appearing
radii should be different. We can separate, say, the last n variables and obtain

Hn(t) =
1

(2πi)n

∫
· · ·
∫

(z1 · · · zn)−t−1

(
1

2πi

∫
z−t−1

(1− z1z) · · · (1− znz)
dz

)n

dzn · · · dz1 .

We may choose the radius of the integration circle of the innermost integral to be smaller than the
radii of the other integration paths. Then this innermost integral is easy to compute: It is equal
to the residue at 0 of

1
zt+1(1− z1z) · · · (1− znz)

and, by the residue theorem, equal to the negative of the sum of the residues at z−1
1 , . . . , z−1

n . (Note
that here we use the fact that t > 0.) The residues at these simple poles are easily computed: the
one, say, at 1/z1 can be calculated as

lim
z→1/z1

(
z − 1

z1

)
1

zt+1(1− z1z) · · · (1− znz)
= lim

z→1/z1

z − 1
z1

1− z1z

1
zt+1(1− z2z) · · · (1− znz)

= − 1
z1

zt+1
1

(1− z2/z1) · · · (1− zn/z1)
= − zt+n−1

1

(z1 − z2) · · · (z1 − zn)
.

This yields the starting point for our computations.

Theorem 2 For any distinct 0 < ε1, . . . , εn < 1,

Hn(t) =
1

(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1 · · · zn)−t−1

(
n∑

k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n

dzn · · · dz1 .

Remark. It can be proved from the form of the integrand that Hn is indeed a polynomial in t: To
compute the integral, one has to execute a (huge) number of limit computations, which yield “at
worst” powers of t (as a consequence of L’Hospital’s Rule). In fact, one can make this property
more apparent by noticing that the expression in parenthesis is actually a polynomial; namely

Hn(t) =
1

(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1 · · · zn)−t−1

( ∑
m1+···+mn=t

zm1
1 · · · zmn

n

)n

dzn · · · dz1 ,

where the sum is over all ordered partitions of t. This formula can also be proved “more directly”
combinatorially.3

3The authors thank Sinai Robins and Frank Sottile for their help in the proof of this equivalence and its combi-
natorial interpretation.
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3 Small n do not require a computer

We will now illustrate the computation of Hn (and hence volBn) by means of Theorem 2 for n = 3
and 4. These calculations “by hand” give an idea what computational tricks one might use in
tackling larger n with the aid of a computer.

By the theorem,

H3(t) =
1

(2πi)3

∫
(z1z2z3)−t−1

(
zt+2
1

(z1 − z2)(z1 − z3)
+

zt+2
2

(z2 − z1)(z2 − z3)
+

zt+2
3

(z3 − z1)(z3 − z2)

)3

dz.

We have to order the radii of the integration paths for each variable; we choose 0 < ε3 < ε2 < ε1 < 1.
We heavily use this fact after multiplying out the cubic: integrating, for example, the term

z−t−1
1 z−t−1

2 z2t+5
3

(z3 − z2)3(z3 − z1)3

with respect to z3 gives 0, as this function is analytic at the z3-origin and |z1| , |z2| > ε3. After
exploiting this observation for all the terms stemming from the cubic, the only integrals surviving
are

1
(2πi)3

∫
z2t+5
1 z−t−1

2 z−t−1
3

(z1 − z2)3(z1 − z3)3
dz

and

− 3
(2πi)3

∫
zt+3
1 z2z

−t−1
3

(z1 − z2)3(z1 − z3)2(z2 − z3)
dz .

The first integral factors and yields, again by residue calculus,

1
(2πi)3

∫
z2t+5
1 z−t−1

2 z−t−1
3

(z1 − z2)3(z1 − z3)3
dz =

1
(2πi)3

∫
z2t+5
1

(∫
z−t−1

(z1 − z)3
dz

)2

dz1

=
1

2πi

∫
z2t+5
1

(
−1

2
(−t− 1)(−t− 2) z−t−3

1

)2

dz1 =
(

t + 2
2

)2

.

For the second integral, it is most efficient to integrate with respect to z2 first:

− 3
(2πi)3

∫
zt+3
1 z2z

−t−1
3

(z1 − z2)3(z1 − z3)2(z2 − z3)
dz = − 3

(2πi)2

∫
zt+3
1 z−t

3

(z1 − z3)5
dz3 dz1

= − 3
2πi

∫
zt+3
1

1
4!

(−t)(−t− 1)(−t− 2)(−t− 3) z−t−4
1 dz1 = −3

(
t + 3

4

)
.

Adding up the last two lines gives finally

H3(t) =
(

t + 2
2

)2

− 3
(

t + 3
4

)
=

1
8
t4 +

3
4
t3 +

15
8

t2 +
9
4
t + 1 ,

which is equal to (3). To obtain the volume of B3, the leading term of H3 has to be multiplied by
the relative volume of the fundamental domain of the sublattice of Z9 in the affine space spanned
by B3. This volume is 9; hence

volB3 =
9
8

.
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In general, it is not hard to prove (see, for example, the appendix of [7]) that the relative volume
of the fundamental domain of the sublattice of Zn2

in the affine space spanned by Bn is nn−1.

The number of integrals we have to evaluate to compute H4 is only slightly higher. By Theorem 2,

H4(t) =
1

(2πi)4

∫
|z1|=ε1

∫
|z2|=ε2

∫
|z3|=ε3

∫
|z4|=ε4

(z1z2z3z4)−t−1

(
4∑

k=1

zt+3
k∏

j 6=k(zk − zj)

)4

dz .

Again we have a choice of ordering the radii; we use 0 < ε4 < ε3 < ε2 < ε1 < 1. After multiplying
out the quartic, we have to calculate five integrals; their evaluation—again straightforward by means
of the residue theorem—is as follows. As before, we can ‘save’ computation effort by choosing a
particular order with which we integrate and by factoring an integral if possible.

1
(2πi)4

∫
z3t+11
1 z−t−1

2 z−t−1
3 z−t−1

4

(z1 − z2)4(z1 − z3)4(z1 − z4)4
dz =

1
(2πi)4

∫
z3t+11
1

(∫
z−t−1

(z1 − z)4
dz

)3

dz1

=
(

t + 3
3

)3

,

− 4
(2πi)4

∫
z2t+8
1 z2

2z
−t−1
3 z−t−1

4

(z1 − z2)4(z1 − z3)3(z1 − z4)3(z2 − z3)(z2 − z4)
dz

= − 4
(2πi)4

∫
z2t+8
1 z2

2

(z1 − z2)4

(∫
z−t−1

(z1 − z)3(z2 − z)
dz

)2

dz1 dz2

=
4

(2πi)2

∫
z2t+8
1 z−t+1

2

(z1 − z2)7

(
2
(

t + 2
2

)
z−t−3
1

z1 − z2
+ 2(t + 1)

z−t−2
1

(z1 − z2)2
+ 2

z−t−1
1

(z1 − z2)3
− z−t−1

2

(z1 − z2)3

)
dz

= 8
(

t + 2
2

)(
t + 5

7

)
+ 8(t + 1)

(
t + 6

8

)
+ 8
(

t + 7
9

)
− 4
(

2t + 8
9

)
,

4
(2πi)4

∫
z2t+8
1 z−t−1

2 z2
3z
−t−1
4

(z1 − z2)3(z1 − z3)4(z1 − z4)3(z2 − z3)(z3 − z4)
dz

=
4

(2πi)3

∫
z2t+8
1 z−t+1

2 z−t−1
4

(z1 − z2)3(z1 − z4)7(z2 − z4)
dz

=
4

(2πi)2

∫
z2t+8
1 z−t−1

4

(z1 − z4)7

((
t + 2

2

)
z−t−3
1

z1 − z4
+ (t + 1)

z−t−2
1

(z1 − z4)2
+

z−t−1
1

(z1 − z4)3

)
dz

= 4
((

t + 2
2

)(
t + 5

7

)
+ (t + 1)

(
t + 6

8

)
+
(

t + 7
9

))
,

6
(2πi)4

∫
zt+5
1 zt+5

2 z−t−1
3 z−t−1

4

(z1 − z2)4(z1 − z3)2(z1 − z4)2(z2 − z3)2(z2 − z4)2
dz

=
6

(2πi)4

∫
zt+5
1 zt+5

2

(z1 − z2)4

(∫
z−t−1

(z1 − z)2(z2 − z)2
dz

)2

dz1 dz2

=
6

(2πi)2

∫
zt+5
1 zt+5

2

(z1 − z2)4

(
(t + 1)2

z−2t−4
2

(z1 − z2)4
− 4(t + 1)

z−2t−3
2

(z1 − z2)5
+ 4

z−2t−2
2

(z1 − z2)6

)
dz

= 6(t + 1)2
(

t + 5
7

)
− 24(t + 1)

(
t + 5

8

)
+ 24

(
t + 5

9

)
,
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− 12
(2πi)4

∫
zt+5
1 z2

2z
2
3z
−t−1
4

(z1 − z2)3(z1 − z3)3(z1 − z4)2(z2 − z3)2(z2 − z4)(z3 − z4)
dz

= − 12
(2πi)3

∫
zt+5
1 z2

2z
−t+1
4

(z1 − z2)3(z1 − z4)5(z2 − z4)3
dz

= − 12
(2πi)2

∫
zt+5
1 z−t+1

4

(z1 − z4)5

(
1

(z1 − z4)3
+ 6

z4

(z1 − z4)4
+ 6

z2
4

(z1 − z4)5

)
dz

= −12
(

t + 5
7

)
− 72

(
t + 5

8

)
− 72

(
t + 5

9

)
.

Adding them all up gives

H4(t) =
11

11340
t9 +

11
630

t8 +
19
135

t7 +
2
3

t6 +
1109
540

t5 +
43
10

t4 +
35117
5670

t3 +
379
63

t2 +
65
18

t + 1

and hence
volB4 = 43 · 11

11340
=

176
2835

.

4 Larger n do

As we have seen in the examples, after multiplying out the integrand of Theorem 2, many of the
terms do not contribute to the integral. The following proposition will provide us with a general
statement to that effect.

For a rational function f in n variables zj we use the notation dr(f) for the degree of f in the
variables z1, . . . , zr.

Proposition 3 Suppose p1, . . . , pn are integers, qjk are nonnegative integers (1 ≤ j < k ≤ n),
1 > ε1 > · · · > εn > 0, and

f(z1, . . . , zn) =

∏
1≤j≤n z

pj

j∏
1≤j<k≤n(zj − zk)qjk

.

If 1 ≤ r ≤ n and dr(f) < −r then∫
|z1|=ε1

· · ·
∫
|zn|=εn

f(z) dz = 0 .

Proof. We need only show that ∫
|z1|=ε1

· · ·
∫
|zr|=εr

f(z) dz = 0 , (∗)

for then we can integrate over all n variables by first integrating over z1 . . . zr.
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If r = 1 then f , considered as a function of z1, is analytic outside the circle |z1| = ε1 and has zero
residue at infinity since its degree is less than −1, so (∗) follows.

We continue by induction, so suppose r > 1 and (∗) is true for smaller r. Suppose that dr(f) < −r;
we may assume dr−1(f) ≥ −(r − 1). Note that dr(f) ≥ dr−1(f) + d where d is the degree of
f in the single variable zr (the discrepancy is the sum of the exponents qjr for j < r). Hence
d ≤ dr(f) − dr−1(f) < −1. We consider f as a function of zr and apply the residue theorem to
the region outside the circle |zr| = εr. As above f has zero residue at infinity, so we only need to
consider the residues at the poles zj for j < r. Evaluating these residues converts the integral of f
into a (possibly huge) linear combination of integrals of functions of the same form as f , but in the
n− 1 variables z1, . . . , zr−1, zr+1, . . . , zn. If g is any one of these functions then we easily calculate
dr−1(g) = dr(f) + 1 < −(r − 1), and, by the induction hypothesis, the integral of g is zero. �

From this proposition we obtain the starting point for our ‘algorithm.’

Corollary 4 For 1 > ε1 > · · · > εn > 0 and t ≥ 0, Hn(t) =

1
(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1 · · · zn)−t−1
∑

m1+···+mn=n

∗
(

n

m1, . . . ,mn

) n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)mk

dz ,

where
∑∗ denotes that we only sum over those n-tuples of non-negative integers satisfying m1 +

· · ·+ mn = n and m1 + · · ·+ mr > r if 1 ≤ r < n.

Remark. The condition on m1, . . . ,mn can be visualized through lattice paths from (0, 0) to (n, n)
using the steps (1,m1), (1,m2), . . . , (1,mn). The condition means that these paths stay strictly
above the diagonal (except at the start and end).4

Proof. By Theorem 2,

Hn(t) =
1

(2πi)n

∫
· · ·
∫

(z1 · · · zn)−t−1

(
n∑

k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n

dz

=
1

(2πi)n

∫
· · ·
∫

(z1 · · · zn)−t−1
∑

m1+···+mn=n

(
n

m1, . . . ,mn

) n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)mk

dz .

We select a partition m1 + · · ·+ mn = n and rewrite the corresponding integrand in the language
of Proposition 3:

pj = (n− 1)mj + t(mj − 1)− 1 , qjk = mj + mk .

Now suppose 1 ≤ r < n. The degree of the denominator in z1, . . . , zr is
r∑

j=1

n∑
k=j+1

(mj + mk) = (n− 1)
r∑

j=1

mj + r

n∑
j=r+1

mj = (n− 1)
r∑

j=1

mj + nr − r

r∑
j=1

mj

= (n− 1)
r∑

j=1

mj + nr − r
r∑

j=1

(mj − 1)− r2 .

4The authors thank Lou Billera for pointing out this lattice-path interpretation.
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We subtract this from
∑r

j=1 pj to get

dr(f) = (t + r)
r∑

j=1

(mj − 1)− r(n− r)− r .

Here t is non-negative and r(n − r) is positive, so Proposition 3 implies that the integral is zero
unless

∑r
j=1(mj − 1) > 0. �

Theoretically, Corollary 4 tells us what we have to do to compute Hn. Thus the integrals we
computed in our calculations of H3 and H4 are exactly the non-zero integrals according to this
result. For practical purposes, however, the statement is almost worthless for larger values of n.
The first problem is that the number of terms in the sum equals the (n− 1)th Catalan number

1
n

(
2(n− 1)
n− 1

)
=

(2n− 2)!
n!(n− 1)!

,

which grows exponentially with n. Another slippery point is the evaluation of each integral. As
we have seen in the examples, and as can be easily seen for the general case, we can compute
each integral step by step one variable at a time. However, this means at each step we convert
a rational function into a sum of rational functions (of one variable less) by means of the residue
theorem. Again, this means that the number of (single-variable) integrals we have to compute grows
immensely as n increases. In fact, if we just ‘feed’ the statement of Corollary 4 into a computer and
tell it to integrate each summand, say, starting with z1, then z2, and so on, the computation time
explodes once one tries n = 7 or 8. We feel that computationally this is as involved as calculating
a sufficient number of values of Hn and then interpolating this polynomial. However, complex
analysis allows us some shortcuts which turn out to speed up the computation by a huge factor and
which make Corollary 4 valuable, even from a computational perspective. These ‘tricks’ all showed
up already in the examples and include

1. realizing when a function is analytic at the zk-origin,

2. trying to choose the most efficient order of variables to integrate (based on estimating how
many terms will be generated by the residue calculations, for each available variable), and

3. factoring the integral if some of the variables appear in a symmetric fashion.

Finally, if we are only interested in the volume of Bn, we may also be

4. suppressing a particular integral if it does not contribute to the leading term of Hn.

It is worth noting that each of these computational ‘speed-ups’ decreases the total computation
time substantially. By applying them to Corollary 4, we implemented a C++ program for the
specific functions we have to integrate to compute Hn. We were able to verify all previously
known polynomials (n ≤ 8) and to compute volB9 and H9. The results of our calculations,
including the polynomials Hn for n ≤ 9, and the source code for our program are available at
www.math.binghamton.edu/dennis/Birkhoff. The following table gives the volumes together
with the respective computing time (on a 1GHz PC running under Linux). Note that computing the
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full polynomial Hn takes longer, as we cannot make use of shortcut #4. In fact, the computation of
H9 took about 325 days of computer time, although the elapsed time was only about two weeks since
we distributed the calculations among a number of machines (8 – 40, depending on availability).

n volBn time
1 1 < .01 sec
2 2 < .01 sec

3 9
8 < .01 sec

4 176
2835 < .01 sec

5 23590375
167382319104 < .01 sec

6 9700106723
1319281996032·106 .18 sec

7 77436678274508929033
137302963682235238399868928·108 15 sec

8 5562533838576105333259507434329
12589036260095477950081480942693339803308928·1010 54 min

9 559498129702796022246895686372766052475496691
2153302766311808894781211017508325066061406891577233480945238016·1014 317 hr

We are currently using the idle time on our departmental machines to compute the volume of the
Birkhoff polytope for n = 10. We estimate the computation time to be about 10 years on one
computer; our distributed calculation should be finished by the Winter of 2002. We will post the
result on the Mathematics ArXiv (front.math.ucdavis.edu).

We hope that the reader will take this immense computing time as a challenge to improve our
algorithms, and work towards n = 11.

5 An outlook towards transportation polytopes

The Birkhoff polytopes are special cases of transportation polytopes, which are defined below. The
study of this class of polytopes, which are naturally at least as fascinating as the Birkhoff polytopes,
was motivated by problems in linear programming; for combinatorial properties see, for example,
[10, 13]. The goal of this section is to show how our methods can be applied in this more general
setting.

Fix positive real numbers a1, . . . , am, b1, . . . , bn such that a1 + · · · + am = b1 + · · · + bn. Let
a = (a1, . . . , am),b = (b1, . . . , bn).

Ta,b =


 x11 · · · x1n

...
...

xm1 . . . xmn

 ∈ Rmn : xjk ≥ 0,

∑
k xjk = aj for all 1 ≤ j ≤ m,∑
j xjk = bk for all 1 ≤ k ≤ n
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is the set of solutions to the transportation problem with parameters a,b. It is a convex polytope
of dimension (m − 1)(n − 1) in Rmn—hence we refer to Ta,b as a transportation polytopes. Note
that Bn = T1,1 where 1 = (1, . . . , 1) ∈ Zn. We will be exclusively interested in the case when
a1, . . . , am, b1, . . . , bn are integers. One reason for this is that the vertices of Ta,b are then integral.
Let

T (a,b) = T (a1, . . . , am, b1, . . . , bn) = # (Ta,b ∩ Zmn)

denote the number of integer points in the transportation polytope with integral parameters a,b.
Geometrically, each of these parameters determines the position of a hyperplane bounding the poly-
tope Ta,b. It is well known that T (a,b) is a piecewise-defined polynomial in a1, . . . , am, b1, . . . , bn.
The regions in which T (a,b) is a polynomial depends on the normal cones of the polytopes involved;
for details, we refer to [21].

Moreover, one can derive results for the counting function T (a,b) which are ‘higher-dimensional’
extensions of (4), by application of the main theorem in [3], which in turn is a generalization of the
Ehrhart-Macdonald reciprocity theorem (2). To state this theorem, we need to define the following
integer-point counting function. Suppose P is a rational polytope given in the form (5); denote by
P(t) =

{
x ∈ Rd : Ax = t

}
a polytope which we obtain from P = P(b) by translating (some of)

its bounding hyperplanes. (Classical Ehrhart dilation is the special case t = tb.) Let

LP(t) = #
(
P(t) ∩ Zd

)
.

[3, Theorem 4] states that LP and LP◦ are piecewise-defined (multivariable) quasipolynomials
satisfying

LP(−t) = (−1)dimPLP◦(t) .

As easily as (4) follows from (2), this reciprocity theorem yields a symmetry result for the trans-
portation counting function. Let 1d denote the d-dimensional vector all of whose entries are one.
Then

T (−a− n1m,−b−m1n) = (−1)mn−1 T (a,b) .

We finally turn to the problem of writing T (a,b) in form of an integral. As with Bn, we can view
Ta,b as given in the form of (5) and apply the philosophy of Theorem 1 to obtain

T (a,b) =
1

(2πi)m+n

∫
· · ·
∫

z−a1−1
1 · · · z−am−1

m w−b1−1
1 · · ·w−bn−1

n∏
1≤j≤m
1≤k≤n

(1− zjwk)
dz dw .

Again the integral with respect to each (one-dimensional) variable is over a circle with radius < 1
centered at 0, and all appearing radii are different. As in the Birkhoff case, we can separate, say,
the w-variables and obtain

T (a,b) =
1

(2πi)m+n

∫
· · ·
∫

z−a1−1
1 · · · z−am−1

m

n∏
k=1

∫
w−bk−1

k∏m
j=1 (1− zjwk)

dwk dz .

And as with the Birkhoff polytope, the innermost integrals are easy to compute by means of the
residue theorem. This yields the following statement which generalizes Theorem 2.
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Theorem 5 For any distinct 0 < ε1, . . . , εm < 1,

T (a,b) =
1

(2πi)m

∫
|z1|=ε1

· · ·
∫
|zm|=εm

z−a1−1
1 · · · z−am−1

m

n∏
k=1

m∑
j=1

zbk+m−1
j∏

l 6=j(zj − zl)
dz .

Remark. As with Theorem 2, it can be proved from the form of the integrand that T (a,b) is indeed
a piecewise-defined polynomial in a1, . . . , am, b1, . . . , bn.

Theoretically we could now use this theorem to produce formulas for T (a,b) just as we did for
Hn(t). There is one major difference: T (a,b) is only a piecewise-defined polynomial. In fact, we can
see this from the form of the integral in Theorem 5: whether we will get a nonzero contribution at a
certain step in the computation depends heavily on the relationship between a1, . . . , am, b1, . . . , bn.

The fact that the counting function T (a,b) is of a somewhat more delicate nature naturally has
computational consequences. We feel that providing any general results on this function would go
beyond the scope of this article and will hopefully be the subject of a future project. On the other
hand, we adjusted our algorithm to compute values of T (a,b) for three (fixed) pairs (a,b), which
have been previously computed by Mount [17] and DeLoera and Sturmfels [9]. The first example is

T ((3046, 5173, 6116, 10928), (182, 778, 3635, 9558, 11110)) =
23196436596128897574829611531938753

The authors reported their computation took 20 minutes (Mount) or 10 minutes (DeLoera–Sturmfels)
[9, 17]. We computed this number in 0.2 seconds, based on Theorem 5. A similar phenomenon
happens with

T ((338106, 574203, 678876, 1213008), (20202, 142746, 410755, 1007773, 1222717)) =
316052820930116909459822049052149787748004963058022997262397

and

T ((30201, 59791, 70017, 41731, 58270), (81016, 68993, 47000, 43001, 20000)) =
24640538268151981086397018033422264050757251133401758112509495633028

which reportedly took 35 minutes/10 days with the DeLoera–Sturmfels algorithm [9], 0.3/2.9 sec-
onds with ours. These timing comparisons ignore differences in machine speeds and implementation
of the algorithms, but suggest that our methods are considerably more efficient.

Acknowledgements. We would like to thank the referees for carefully reading through our paper
and software, and for their many helpful comments. We also thank Dean Hickerson for finding a
missing factor in our original calculation of the volume of B9.
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phantiens linéaires, J. Reine Angew. Math. 227 (1967), 25–49. MR 36 #105

[12] , Sur les carrés magiques, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A651–A654. MR
48 #10859

[13] Victor Klee and Christoph Witzgall, Facets and vertices of transportation polytopes, Mathe-
matics of the Decision Sciences, Part I (Seminar, Stanford, Calif., 1967), Amer. Math. Soc.,
Providence, R.I., 1968, pp. 257–282. MR 38 #4134

[14] Donald E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math.
34 (1970), 709–727. MR 42 #7535

[15] I. G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2)
4 (1971), 181–192. MR 45 #7594

13



[16] Percy A. MacMahon, Combinatory analysis, Chelsea Publishing Co., New York, 1960. MR 25
#5003

[17] John Mount, Fast unimodular counting, Combin. Probab. Comput. 9 (2000), no. 3, 277–285.
MR 2002a:05016

[18] Richard P. Stanley, Linear homogeneous Diophantine equations and magic labelings of graphs,
Duke Math. J. 40 (1973), 607–632. MR 47 #6519

[19] , Enumerative Combinatorics, 2nd ed., vol. I, Cambridge University Press, 1997.

[20] M. L. Stein and P. R. Stein, Enumeration of stochastic matrices with integer elements, Report
No. LA-4434, Los Alamos Scientific Laboratory, University of California, Los Alamos, New
Mexico (1970).

[21] Bernd Sturmfels, On vector partition functions, J. Combin. Theory Ser. A 72 (1995), no. 2,
302–309. MR 97b:52014

[22] , Equations defining toric varieties, Algebraic geometry—Santa Cruz 1995, Amer.
Math. Soc., Providence, RI, 1997, pp. 437–449. MR 99b:14058

[23] Doron Zeilberger, Proof of a conjecture of Chan, Robbins, and Yuen, Electron. Trans. Nu-
mer. Anal. 9 (1999), 147–148 (electronic), Orthogonal polynomials: numerical and symbolic
algorithms (Leganés, 1998). MR 2001b:05015

Department of Mathematical Sciences
State University of New York
Binghamton, NY 13902-6000
matthias@math.binghamton.edu
dennis@math.binghamton.edu

14


