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Warm-Up Trivia

I Let’s say we add two random 100-digit integers. How often should we
expect to carry a digit?
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I Let’s say we add two random 100-digit integers. How often should we
expect to carry a digit?

I How about if we add three random 100-digit integers?
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Warm-Up Trivia

I Let’s say we add two random 100-digit integers. How often should we
expect to carry a digit?

I How about if we add three random 100-digit integers?

I How about if we add four random 100-digit integers?
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Warm-Up Trivia

I Let’s say we add two random 100-digit integers. How often should we
expect to carry a digit?

I How about if we add three random 100-digit integers?

I How about if we add four random 100-digit integers?

The Eulerian polynomial Ad(t) is defined through
∑
m≥0

md tm =
Ad(t)

(1− t)d+1

Persi Diaconis will tell you that the coefficients of Ad(t) (the Eulerian
numbers) play a role here. . .
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)

LP(m) := #
(
mP ∩ Zd

)
(discrete volume of P )
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)

LP(m) := #
(
mP ∩ Zd

)
(discrete volume of P )

EhrP(t) := 1 +
∑
m≥1

LP(m) tm
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)

LP(m) := #
(
mP ∩ Zd

)
(discrete volume of P )

EhrP(t) := 1 +
∑
m≥1

LP(m) tm

Theorem (Ehrhart 1962) LP(m) is a polynomial in m of degree d .
Equivalently,

EhrP(t) =
h(t)

(1− t)d+1

where h(t) is a polynomial of degree at most d.
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)

LP(m) := #
(
mP ∩ Zd

)
(discrete volume of P )

EhrP(t) := 1 +
∑
m≥1

LP(m) tm

Theorem (Ehrhart 1962) LP(m) is a polynomial in m of degree d .
Equivalently,

EhrP(t) =
h(t)

(1− t)d+1

where h(t) is a polynomial of degree at most d.

Write the Ehrhart h-vector of P as h(t) = hdt
d +hd−1t

d−1 + · · ·+h0, then

LP(m) =
d∑

j=0

hj

(
m+ d− j

d

)
.
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)

LP(m) := #
(
mP ∩ Zd

)
(discrete volume of P )

EhrP(t) := 1 +
∑
m≥1

LP(m) tm =
h(t)

(1− t)d+1

(Serious) Open Problem Classify Ehrhart h-vectors.
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Ehrhart Polynomials

P ⊂ Rd – lattice polytope of dimension d (vertices in Zd)

LP(m) := #
(
mP ∩ Zd

)
(discrete volume of P )

EhrP(t) := 1 +
∑
m≥1

LP(m) tm =
h(t)

(1− t)d+1

(Serious) Open Problem Classify Ehrhart h-vectors.

Easier Problem Study EhrnP(t) = 1 +
∑
m≥1

LP(nm) tm as n increases.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

I Polytopes are cool.
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0

(1− t)d+1

I (Ehrhart) h0 = 1 , h1 = #
(
P ∩ Zd

)
− d− 1 , hd = #

(
P◦ ∩ Zd

)
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0

(1− t)d+1

I (Ehrhart) h0 = 1 , h1 = #
(
P ∩ Zd

)
− d− 1 , hd = #

(
P◦ ∩ Zd

)
I (Ehrhart) volP =

1
d!

(hd + hd−1 + · · ·+ h1 + 1)
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0
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)
− d− 1 , hd = #

(
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)
I (Ehrhart) volP =

1
d!

(hd + hd−1 + · · ·+ h1 + 1)

I (Stanley 1980) hj ∈ Z≥0
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0

(1− t)d+1

I (Ehrhart) h0 = 1 , h1 = #
(
P ∩ Zd

)
− d− 1 , hd = #

(
P◦ ∩ Zd

)
I (Ehrhart) volP =

1
d!

(hd + hd−1 + · · ·+ h1 + 1)

I (Stanley 1980) hj ∈ Z≥0

I (Stanley 1991) Whenever hs > 0 but hs+1 = · · · = hd = 0 , then
h0 + h1 + · · ·+ hj ≤ hs + hs−1 + · · ·+ hs−j for all 0 ≤ j ≤ s.
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0

(1− t)d+1

I (Ehrhart) h0 = 1 , h1 = #
(
P ∩ Zd

)
− d− 1 , hd = #

(
P◦ ∩ Zd

)
I (Ehrhart) volP =

1
d!

(hd + hd−1 + · · ·+ h1 + 1)

I (Stanley 1980) hj ∈ Z≥0

I (Stanley 1991) Whenever hs > 0 but hs+1 = · · · = hd = 0 , then
h0 + h1 + · · ·+ hj ≤ hs + hs−1 + · · ·+ hs−j for all 0 ≤ j ≤ s.

I (Hibi 1994) h0 + · · ·+ hj+1 ≥ hd + · · ·+ hd−j for 0 ≤ j ≤
⌊

d
2

⌋
− 1.
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0

(1− t)d+1

I (Ehrhart) h0 = 1 , h1 = #
(
P ∩ Zd

)
− d− 1 , hd = #

(
P◦ ∩ Zd

)
I (Ehrhart) volP =

1
d!

(hd + hd−1 + · · ·+ h1 + 1)

I (Stanley 1980) hj ∈ Z≥0

I (Stanley 1991) Whenever hs > 0 but hs+1 = · · · = hd = 0 , then
h0 + h1 + · · ·+ hj ≤ hs + hs−1 + · · ·+ hs−j for all 0 ≤ j ≤ s.

I (Hibi 1994) h0 + · · ·+ hj+1 ≥ hd + · · ·+ hd−j for 0 ≤ j ≤
⌊

d
2

⌋
− 1.

I (Hibi 1994) If hd > 0 then h1 ≤ hj for 2 ≤ j < d.
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General Properties of Ehrhart h-Vectors

EhrP(t) = 1 +
∑
m≥1

#
(
mP ∩ Zd

)
tm =

hdt
d + hd−1t

d−1 + · · ·+ h0

(1− t)d+1

I (Stapledon 2009) Many more inequalities for the hj’s arising from
Kneser’s Theorem (arXiv:0904.3035)
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General Properties of Ehrhart h-Vectors

A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.
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General Properties of Ehrhart h-Vectors

A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers
of the simplices in τ of different dimensions.
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General Properties of Ehrhart h-Vectors

A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers
of the simplices in τ of different dimensions.

I (Stanley 1980) If P admits a unimodular triangulation then h(t) =
(1− t)d+1 EhrP(t) is the h-polynomial of the triangulation.
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General Properties of Ehrhart h-Vectors

A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers
of the simplices in τ of different dimensions.

I (Stanley 1980) If P admits a unimodular triangulation then h(t) =
(1− t)d+1 EhrP(t) is the h-polynomial of the triangulation.

I Recent papers of Reiner–Welker and Athanasiadis use this as a starting
point to give conditions under which the Ehrhart h-vector is unimodal,
i.e., hd ≤ hd−1 ≤ · · · ≤ hk ≥ hk−1 ≥ · · · ≥ h0 for some k.
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The Main Question

Define h0(n), h1(n), . . . , hd(n) through

EhrnP(t) =
hd(n) td + hd−1(n) td−1 + · · ·+ h0(n)

(1− t)d+1
.

What does the Ehrhart h-vector (h0(n), h1(n), . . . , hd(n)) look like as n
increases?
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The Main Question

Define h0(n), h1(n), . . . , hd(n) through

EhrnP(t) =
hd(n) td + hd−1(n) td−1 + · · ·+ h0(n)

(1− t)d+1
.

What does the Ehrhart h-vector (h0(n), h1(n), . . . , hd(n)) look like as n
increases?

Let h(t) = (1− t)d+1 EhrP(t). The operator Un defined through

EhrnP(t) = 1 +
∑
m≥1

LP(nm) tm =
Un h(t)

(1− t)d+1

appears in Number Theory as a Hecke operator and in Commutative Algebra
in Veronese subring constructions.
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Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970’s)
For every lattice polytope P there exists an integer m such that mP admits
a regular unimodular triangulation.
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Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970’s)
For every lattice polytope P there exists an integer m such that mP admits
a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope P there exists an integer m such that kP
admits a regular unimodular triangulation for k ≥ m.
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Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970’s)
For every lattice polytope P there exists an integer m such that mP admits
a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope P there exists an integer m such that kP
admits a regular unimodular triangulation for k ≥ m.

(b) For every d there exists an integer md such that, if P is a d-dimensional
lattice polytope, then mdP admits a regular unimodular triangulation.
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Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970’s)
For every lattice polytope P there exists an integer m such that mP admits
a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope P there exists an integer m such that kP
admits a regular unimodular triangulation for k ≥ m.

(b) For every d there exists an integer md such that, if P is a d-dimensional
lattice polytope, then mdP admits a regular unimodular triangulation.

(c) For every d there exists an integer md such that, if P is a d-dimensional
lattice polytope, then kP admits a regular unimodular triangulation for
k ≥ md.
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Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d -dimensional lattice
polytope P admits a regular unimodular triangulation, then the Ehrhart
h-vector of P satisfies

(a) hj+1 ≥ hd−j for 0 ≤ j ≤ bd2c − 1 ,

(b) hbd+1
2 c
≥ hbd+1

2 c+1
≥ · · · ≥ hd−1 ≥ hd ,

(c) hj ≤
(
h1+j−1

j

)
for 0 ≤ j ≤ d .
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Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d -dimensional lattice
polytope P admits a regular unimodular triangulation, then the Ehrhart
h-vector of P satisfies

(a) hj+1 ≥ hd−j for 0 ≤ j ≤ bd2c − 1 ,

(b) hbd+1
2 c
≥ hbd+1

2 c+1
≥ · · · ≥ hd−1 ≥ hd ,

(c) hj ≤
(
h1+j−1

j

)
for 0 ≤ j ≤ d .

In particular, if the Ehrhart h-vector of P is symmetric and P admits a
regular unimodular triangulation, then the Ehrhart h-vector is unimodal.
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Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d -dimensional lattice
polytope P admits a regular unimodular triangulation, then the Ehrhart
h-vector of P satisfies

(a) hj+1 ≥ hd−j for 0 ≤ j ≤ bd2c − 1 ,

(b) hbd+1
2 c
≥ hbd+1

2 c+1
≥ · · · ≥ hd−1 ≥ hd ,

(c) hj ≤
(
h1+j−1

j

)
for 0 ≤ j ≤ d .

In particular, if the Ehrhart h-vector of P is symmetric and P admits a
regular unimodular triangulation, then the Ehrhart h-vector is unimodal.

There are (many) lattice polytopes for which (some of these) inequalities
fail and one may hope to use this theorem to construct a counter-example
to the Knudsen–Mumford–Waterman Conjectures.
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Veronese Polynomials Are Eventually Unimodal

Theorem (Brenti–Welker 2008) For any d ∈ Z>0, there exists real numbers
α1 < α2 < · · · < αd−1 < αd = 0 , such that, if h(t) is a polynomial
of degree at most d with nonnegative integer coefficients and constant
term 1 , then for n sufficiently large, Un h(t) has negative real roots
β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 and lim

n→∞
βj(n) = αj.
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Theorem (Brenti–Welker 2008) For any d ∈ Z>0, there exists real numbers
α1 < α2 < · · · < αd−1 < αd = 0 , such that, if h(t) is a polynomial
of degree at most d with nonnegative integer coefficients and constant
term 1 , then for n sufficiently large, Un h(t) has negative real roots
β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 and lim

n→∞
βj(n) = αj.

Here “sufficiently large” depends on h(t).

Asymptotics of Ehrhart Series of Lattice Polytopes Matthias Beck 12



Veronese Polynomials Are Eventually Unimodal

Theorem (Brenti–Welker 2008) For any d ∈ Z>0, there exists real numbers
α1 < α2 < · · · < αd−1 < αd = 0 , such that, if h(t) is a polynomial
of degree at most d with nonnegative integer coefficients and constant
term 1 , then for n sufficiently large, Un h(t) has negative real roots
β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 and lim

n→∞
βj(n) = αj.

Here “sufficiently large” depends on h(t).

If the polynomial p(t) = adt
d +ad−1t

d−1 + · · ·+a0 has negative roots, then
its coefficients are (strictly) log concave (a2

j > aj−1aj+1).
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Veronese Polynomials Are Eventually Unimodal

Theorem (Brenti–Welker 2008) For any d ∈ Z>0, there exists real numbers
α1 < α2 < · · · < αd−1 < αd = 0 , such that, if h(t) is a polynomial
of degree at most d with nonnegative integer coefficients and constant
term 1 , then for n sufficiently large, Un h(t) has negative real roots
β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 and lim

n→∞
βj(n) = αj.

Here “sufficiently large” depends on h(t).

If the polynomial p(t) = adt
d +ad−1t

d−1 + · · ·+a0 has negative roots, then
its coefficients are (strictly) log concave (a2

j > aj−1aj+1) which, in turn,
implies that the coefficients are (strictly) unimodal (ad < ad−1 < · · · <
ak > ak−1 > · · · > a0 for some k).
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A General Theorem

The Eulerian polynomial Ad(t) is defined through
∑
m≥0

md tm =
Ad(t)

(1− t)d+1
.

Theorem (MB–Stapledon) Fix a positive integer d and let ρ1 < ρ2 < · · · <
ρd = 0 denote the roots of Ad(t) . There exist M,N depending only on
d such that, if h(t) is a polynomial of degree at most d with nonnegative
integer coefficients and constant term 1 , then for n ≥ N , Un h(t) has
negative real roots β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with
lim

n→∞
βj(n) = ρj, and the coefficients of Un h(t) satisfy hj(n) < M hd(n).
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(1− t)d+1
.

Theorem (MB–Stapledon) Fix a positive integer d and let ρ1 < ρ2 < · · · <
ρd = 0 denote the roots of Ad(t) . There exist M,N depending only on
d such that, if h(t) is a polynomial of degree at most d with nonnegative
integer coefficients and constant term 1 , then for n ≥ N , Un h(t) has
negative real roots β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with
lim

n→∞
βj(n) = ρj, and the coefficients of Un h(t) satisfy hj(n) < M hd(n).

In particular, the coefficients of Un h(t) are unimodal for n ≥ N .

Asymptotics of Ehrhart Series of Lattice Polytopes Matthias Beck 13



A General Theorem

The Eulerian polynomial Ad(t) is defined through
∑
m≥0

md tm =
Ad(t)

(1− t)d+1
.

Theorem (MB–Stapledon) Fix a positive integer d and let ρ1 < ρ2 < · · · <
ρd = 0 denote the roots of Ad(t) . There exist M,N depending only on
d such that, if h(t) is a polynomial of degree at most d with nonnegative
integer coefficients and constant term 1 , then for n ≥ N , Un h(t) has
negative real roots β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with
lim

n→∞
βj(n) = ρj, and the coefficients of Un h(t) satisfy hj(n) < M hd(n).

In particular, the coefficients of Un h(t) are unimodal for n ≥ N .

Furthermore, if h0 + · · ·+hj+1 ≥ hd + · · ·+hd−j for 0 ≤ j ≤
⌊

d
2

⌋
− 1, with

at least one strict inequality, then we may choose N such that, for n ≥ N ,

h0 = h0(n) < hd(n) < h1(n) < · · · < hj(n) < hd−j(n) < hj+1(n)

< · · · < hbd+1
2 c

(n) < M hd(n) .
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An Ehrhartian Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let ρ1 < ρ2 < · · · <
ρd = 0 denote the roots of the Eulerian polynomial Ad(t). There exist M,N
depending only on d such that, if P is a d-dimensional lattice polytope with
Ehrhart series numerator h(t), then for n ≥ N , Un h(t) has negative real
roots β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with lim

n→∞
βj(n) = ρj.
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ρd = 0 denote the roots of the Eulerian polynomial Ad(t). There exist M,N
depending only on d such that, if P is a d-dimensional lattice polytope with
Ehrhart series numerator h(t), then for n ≥ N , Un h(t) has negative real
roots β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with lim

n→∞
βj(n) = ρj.

In particular, the coefficients of Un h(t) are unimodal for n ≥ N .

Furthermore, they satisfy

1 = h0(n) < hd(n) < h1(n) < · · · < hj(n) < hd−j(n) < hj+1(n)

< · · · < hbd+1
2 c

(n) < M hd(n) .
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Ingredients I

Stapledon’s Decomposition A polynomial h(t) = hd+1t
d+1 +hdt

d + · · ·+h0

of degree at most d+1 has a unique decomposition h(t) = a(t)+b(t) where
a(t) and b(t) are polynomials satisfying a(t) = td a(1

t) and b(t) = td+1 b(1
t).
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d+1 +hdt

d + · · ·+h0

of degree at most d+1 has a unique decomposition h(t) = a(t)+b(t) where
a(t) and b(t) are polynomials satisfying a(t) = td a(1

t) and b(t) = td+1 b(1
t).

I The coefficients of a(t) are positive if and only if h0 + · · · + hj ≥
hd+1 + · · ·+ hd+1−j for 0 ≤ j <

⌊
d
2

⌋
.
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t) and b(t) = td+1 b(1
t).

I The coefficients of a(t) are positive if and only if h0 + · · · + hj ≥
hd+1 + · · ·+ hd+1−j for 0 ≤ j <

⌊
d
2

⌋
.

I The coefficients of a(t) are strictly unimodal if and only if hj+1 > hd−j

for 0 ≤ j ≤ bd2c − 1.
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Stapledon’s Decomposition A polynomial h(t) = hd+1t
d+1 +hdt

d + · · ·+h0

of degree at most d+1 has a unique decomposition h(t) = a(t)+b(t) where
a(t) and b(t) are polynomials satisfying a(t) = td a(1

t) and b(t) = td+1 b(1
t).

I The coefficients of a(t) are positive if and only if h0 + · · · + hj ≥
hd+1 + · · ·+ hd+1−j for 0 ≤ j <

⌊
d
2

⌋
.

I The coefficients of a(t) are strictly unimodal if and only if hj+1 > hd−j

for 0 ≤ j ≤ bd2c − 1.

Theorem (Stapledon 2008) If h(t) is the Ehrhart h-vector of a lattice
d -polytope, then the coefficients of a(t) satisfy 1 = a0 ≤ a1 ≤ aj for
2 ≤ j ≤ d− 1.
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of degree at most d+1 has a unique decomposition h(t) = a(t)+b(t) where
a(t) and b(t) are polynomials satisfying a(t) = td a(1

t) and b(t) = td+1 b(1
t).

I The coefficients of a(t) are positive if and only if h0 + · · · + hj ≥
hd+1 + · · ·+ hd+1−j for 0 ≤ j <

⌊
d
2

⌋
.

I The coefficients of a(t) are strictly unimodal if and only if hj+1 > hd−j

for 0 ≤ j ≤ bd2c − 1.

Theorem (Stapledon 2008) If h(t) is the Ehrhart h-vector of a lattice
d -polytope, then the coefficients of a(t) satisfy 1 = a0 ≤ a1 ≤ aj for
2 ≤ j ≤ d− 1.

Corollary Hibi’s inequalities h0+ · · ·+hj+1 ≥ hd+ · · ·+hd−j for the Ehrhart
h-vector are strict.
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Ingredients II

Let h(t) = hd+1t
d+1 + hdt

d + · · · + h0 be a polynomial of degree at most

d + 1 and expand h(t)

(1−t)d+1 = h0 +
∑

m≥1 g(m) tm, for some polynomial

g(m) = gdm
d + gd−1m

d−1 + · · ·+ g0.
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Ingredients II

Let h(t) = hd+1t
d+1 + hdt

d + · · · + h0 be a polynomial of degree at most

d + 1 and expand h(t)

(1−t)d+1 = h0 +
∑

m≥1 g(m) tm, for some polynomial

g(m) = gdm
d + gd−1m

d−1 + · · ·+ g0.

Theorem (Betke–McMullen 1985) If hj ≥ 0 for 0 ≤ j ≤ d+ 1, then for any
1 ≤ r ≤ d− 1,

gr ≤ (−1)d−rSr(d) gd +
(−1)d−r−1 h0 Sr+1(d)

(d− 1)!
,

where Si(d) is the Stirling number of the first kind.
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Let h(t) = hd+1t
d+1 + hdt

d + · · · + h0 be a polynomial of degree at most

d + 1 and expand h(t)

(1−t)d+1 = h0 +
∑

m≥1 g(m) tm, for some polynomial

g(m) = gdm
d + gd−1m

d−1 + · · ·+ g0.

Theorem (Betke–McMullen 1985) If hj ≥ 0 for 0 ≤ j ≤ d+ 1, then for any
1 ≤ r ≤ d− 1,

gr ≤ (−1)d−rSr(d) gd +
(−1)d−r−1 h0 Sr+1(d)

(d− 1)!
,

where Si(d) is the Stirling number of the first kind.

Theorem (MB–Stapledon) If h0 + · · · + hj ≥ hd+1 + · · · + hd+1−j for
0 ≤ j ≤

⌊
d
2

⌋
, with at least one strict inequality, then

gd−1−2r ≤ Sd−1−2r(d− 1) gd−1 −
(h0 − hd+1)Sd−2r(d− 1)

2(d− 2)!
.
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Ingredients III

Let h(t) = hdm
d +hd−1m

d−1 + · · ·+h0 be a polynomial of degree at most

d and expand h(t)

(1−t)d+1 =
∑

m≥0 g(m) tm, for some polynomial g(m) =
gdm

d + gd−1m
d−1 + · · ·+ g0.
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Ingredients III

Let h(t) = hdm
d +hd−1m

d−1 + · · ·+h0 be a polynomial of degree at most

d and expand h(t)

(1−t)d+1 =
∑

m≥0 g(m) tm, for some polynomial g(m) =
gdm

d + gd−1m
d−1 + · · ·+ g0.

Recall our notation Un h(t) = hd(n) td + hd−1(n) td−1 + · · ·+ h0(n).

Lemma Un h(t) =
d∑

j=0

gj Aj(t) (1− t)d−j nj.
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d−1 + · · ·+h0 be a polynomial of degree at most

d and expand h(t)

(1−t)d+1 =
∑

m≥0 g(m) tm, for some polynomial g(m) =
gdm

d + gd−1m
d−1 + · · ·+ g0.

Recall our notation Un h(t) = hd(n) td + hd−1(n) td−1 + · · ·+ h0(n).

Lemma Un h(t) =
d∑

j=0

gj Aj(t) (1− t)d−j nj.

In particular, for 1 ≤ j ≤ d, hj(n) is a polynomial in n of degree d and

hj(n) = A(d, j) gd n
d+(A(d−1, j)−A(d−1, j−1)) gd−1 n

d−1+O(nd−2) .
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Ingredients IV

Lemma Un h(t) =
d∑

j=0

gj Aj(t) (1− t)d−j nj.
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Ingredients IV

Lemma Un h(t) =
d∑

j=0

gj Aj(t) (1− t)d−j nj.

Exercise The nonzero roots of the Eulerian polynomial Ad(t) =∑d
j=0A(d, j) tj are negative.
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Ingredients IV

Lemma Un h(t) =
d∑

j=0

gj Aj(t) (1− t)d−j nj.

Exercise The nonzero roots of the Eulerian polynomial Ad(t) =∑d
j=0A(d, j) tj are negative.

Theorem (Cauchy) Let p(n) = pd n
d +pd−1 n

d−1 + · · ·+p0 be a polynomial
of degree d with real coefficients. The complex roots of p(n) lie in the open
disc {

z ∈ C : |z| < 1 + max
0≤j≤d

∣∣∣∣pj

pd

∣∣∣∣} .
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Veronese Subrings

Let R = ⊕j≥0Rj be a graded ring; we assume that R0 = K is a field and
that R is finitely generated over K.
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Rjn (nth Veronese subring of R)
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Let R = ⊕j≥0Rj be a graded ring; we assume that R0 = K is a field and
that R is finitely generated over K.

R〈n〉 :=
⊕
j≥0

Rjn (nth Veronese subring of R)

H(R,m) := dimK Rm (Hilbert function of R)

By a theorem of Hilbert H(R,m) is a polynomial in m when m is sufficiently
large. Note that

Un h(t)
(1− t)d+1

=
∑
m≥0

H(R〈n〉,m) tm.
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Veronese Subrings

Let R = ⊕j≥0Rj be a graded ring; we assume that R0 = K is a field and
that R is finitely generated over K.

R〈n〉 :=
⊕
j≥0

Rjn (nth Veronese subring of R)

H(R,m) := dimK Rm (Hilbert function of R)

By a theorem of Hilbert H(R,m) is a polynomial in m when m is sufficiently
large. Note that

Un h(t)
(1− t)d+1

=
∑
m≥0

H(R〈n〉,m) tm.

Example Denote the cone over P × {1} by coneP . Then the semigroup
algebra K[coneP ∩Zd+1] (graded by the projection to the last coordinate)
gives rise to the Hilbert function H(K[coneP ∩ Zd+1],m) = LP(m).
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A Veronese Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let ρ1 < ρ2 < · · · <
ρd = 0 denote the roots of the Eulerian polynomial Ad(t). There exist M,N

depending only on d such that, if R =
⊕
j≥0

Rj is a finitely generated graded

ring over a field R0 = K that is Cohen–Macauley and module finite over
the K -subalgebra generated by R1 , and if the Hilbert function H(R,m)
is a polynomial in m , then for n ≥ N , Un h(t) has negative real roots
β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with lim

n→∞
βj(n) = ρj.
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n→∞
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In particular, the coefficients of Un h(t) are unimodal for n ≥ N .
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A Veronese Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let ρ1 < ρ2 < · · · <
ρd = 0 denote the roots of the Eulerian polynomial Ad(t). There exist M,N

depending only on d such that, if R =
⊕
j≥0

Rj is a finitely generated graded

ring over a field R0 = K that is Cohen–Macauley and module finite over
the K -subalgebra generated by R1 , and if the Hilbert function H(R,m)
is a polynomial in m , then for n ≥ N , Un h(t) has negative real roots
β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with lim

n→∞
βj(n) = ρj.

In particular, the coefficients of Un h(t) are unimodal for n ≥ N .

Furthermore, they satisfy hj(n) < M hd(n) for 0 ≤ j ≤ n and n ≥ N .
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Open Problems

Find optimal choices for M and N in any of our theorems.
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Open Problems

Find optimal choices for M and N in any of our theorems.

Conjecture For Ehrhart series of d-dimensional polytopes, N = d.

(Open for d ≥ 3)
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One Result about Explicit Bounds

Recall our inequalities hj+1(n) > hd−j(n) in the main theorem. . .

Theorem (MB–Stapledon) Fix a positive integer d and set N = d if d is
even and N = d+1

2 if d is odd. If h(t) is a polynomial of degree at most d

satisfying h0 + · · ·+ hj+1 > hd + · · ·+ hd−j for 0 ≤ j ≤
⌊

d
2

⌋
− 1, then the

coefficients of Un h(t) satisfy hj+1(n) > hd−j(n) for 0 ≤ j ≤
⌊

d
2

⌋
− 1 and

n ≥ N .
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One Result about Explicit Bounds

Recall our inequalities hj+1(n) > hd−j(n) in the main theorem. . .

Theorem (MB–Stapledon) Fix a positive integer d and set N = d if d is
even and N = d+1

2 if d is odd. If h(t) is a polynomial of degree at most d

satisfying h0 + · · ·+ hj+1 > hd + · · ·+ hd−j for 0 ≤ j ≤
⌊

d
2

⌋
− 1, then the

coefficients of Un h(t) satisfy hj+1(n) > hd−j(n) for 0 ≤ j ≤
⌊

d
2

⌋
− 1 and

n ≥ N .

Corollary Fix a positive integer d and set N = d if d is even and N = d+1
2

if d is odd. If P is a d -dimensional lattice polytope with Ehrhart h-
vector h(t), then the coefficients of Un h(t) satisfy hj+1(n) > hd−j(n) for
0 ≤ j ≤

⌊
d
2

⌋
− 1 and n ≥ N .

Asymptotics of Ehrhart Series of Lattice Polytopes Matthias Beck 22



The Message

The Ehrhart series of nP becomes friendlier as n increases.
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The Message

The Ehrhart series of nP becomes friendlier as n increases.

In fixed dimension, you don’t have to wait forever to make all Ehrhart series
look friendly.
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The Message

The Ehrhart series of nP becomes friendlier as n increases.

In fixed dimension, you don’t have to wait forever to make all Ehrhart series
look friendly.

Homework Figure out what all of this has to do with carrying digits when
summing 100-digit numbers.
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