Asymptotics of Ehrhart Series of Lattice Polytopes

Matthias Beck (SF State)

math.sfsu.edu/beck

Joint with Alan Stapledon (MSRI & UBC)

arXiv:0804.3639 to appear in Math. Zeitschrift

Let's say we add two random 100-digit integers. How often should we expect to carry a digit?

- Let's say we add two random 100-digit integers. How often should we expect to carry a digit?
- ► How about if we add three random 100-digit integers?

- Let's say we add two random 100-digit integers. How often should we expect to carry a digit?
- ► How about if we add three random 100-digit integers?
- ► How about if we add four random 100-digit integers?

- Let's say we add two random 100-digit integers. How often should we expect to carry a digit?
- ► How about if we add three random 100-digit integers?
- ► How about if we add four random 100-digit integers?

The Eulerian polynomial $A_d(t)$ is defined through $\sum_{m \ge 0} m^d t^m = \frac{A_d(t)}{(1-t)^{d+1}}$

Persi Diaconis will tell you that the coefficients of $A_d(t)$ (the Eulerian numbers) play a role here...

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $L_{\mathcal{P}}(m) := \# \left(m \mathcal{P} \cap \mathbb{Z}^d \right)$ (discrete volume of P)

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $L_{\mathcal{P}}(m) := \# \left(m \mathcal{P} \cap \mathbb{Z}^d \right)$ (discrete volume of P)

 $\operatorname{Ehr}_{\mathcal{P}}(t) := 1 + \sum_{m \ge 1} L_{\mathcal{P}}(m) t^m$

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $L_{\mathcal{P}}(m) := \# \left(m \mathcal{P} \cap \mathbb{Z}^d \right)$ (discrete volume of P)

$$\operatorname{Ehr}_{\mathcal{P}}(t) := 1 + \sum_{m \ge 1} L_{\mathcal{P}}(m) t^m$$

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(m)$ is a polynomial in m of degree d. Equivalently, h(t)

$$\operatorname{Ehr}_{\mathcal{P}}(t) = \frac{n(t)}{(1-t)^{d+1}}$$

where h(t) is a polynomial of degree at most d.

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $L_{\mathcal{P}}(m) := \# \left(m \mathcal{P} \cap \mathbb{Z}^d \right)$ (discrete volume of P)

$$\operatorname{Ehr}_{\mathcal{P}}(t) := 1 + \sum_{m \ge 1} L_{\mathcal{P}}(m) t^m$$

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(m)$ is a polynomial in m of degree d. Equivalently, h(t)

$$\operatorname{Ehr}_{\mathcal{P}}(t) = \frac{n(t)}{(1-t)^{d+1}}$$

where h(t) is a polynomial of degree at most d.

Write the Ehrhart h-vector of \mathcal{P} as $h(t) = h_d t^d + h_{d-1} t^{d-1} + \dots + h_0$, then $L_{\mathcal{P}}(m) = \sum_{j=0}^d h_j \binom{m+d-j}{d}.$

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $L_{\mathcal{P}}(m) := \# \left(m \mathcal{P} \cap \mathbb{Z}^d \right)$ (discrete volume of P)

$$\operatorname{Ehr}_{\mathcal{P}}(t) := 1 + \sum_{m \ge 1} L_{\mathcal{P}}(m) t^m = \frac{h(t)}{(1-t)^{d+1}}$$

(Serious) Open Problem Classify Ehrhart h-vectors.

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

 $L_{\mathcal{P}}(m) := \# \left(m \mathcal{P} \cap \mathbb{Z}^d \right)$ (discrete volume of P)

$$\operatorname{Ehr}_{\mathcal{P}}(t) := 1 + \sum_{m \ge 1} L_{\mathcal{P}}(m) t^m = \frac{h(t)}{(1-t)^{d+1}}$$

(Serious) Open Problem Classify Ehrhart h-vectors.

Easier Problem Study $\operatorname{Ehr}_{n\mathcal{P}}(t) = 1 + \sum_{m \ge 1} L_{\mathcal{P}}(nm) t^m$ as n increases.

► Linear systems are everywhere, and so polytopes are everywhere.

- ► Linear systems are everywhere, and so polytopes are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

- ► Linear systems are everywhere, and so polytopes are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

- ► Linear systems are everywhere, and so polytopes are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

- ► Linear systems are everywhere, and so polytopes are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Polytopes are cool.

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

 $\blacktriangleright \quad (\mathsf{Ehrhart}) \ h_0 = 1 \ \text{,} \ h_1 = \# \left(\mathcal{P} \cap \mathbb{Z}^d \right) - d - 1 \ \text{,} \ h_d = \# \left(\mathcal{P}^\circ \cap \mathbb{Z}^d \right)$

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

• (Ehrhart)
$$h_0=1$$
 , $h_1=\#\left(\mathcal{P}\cap\mathbb{Z}^d
ight)-d-1$, $h_d=\#\left(\mathcal{P}^\circ\cap\mathbb{Z}^d
ight)$

• (Ehrhart) vol
$$\mathcal{P} = \frac{1}{d!} (h_d + h_{d-1} + \dots + h_1 + 1)$$

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

▶ (Ehrhart)
$$h_0=1$$
 , $h_1=\#\left(\mathcal{P}\cap\mathbb{Z}^d
ight)-d-1$, $h_d=\#\left(\mathcal{P}^\circ\cap\mathbb{Z}^d
ight)$

• (Ehrhart) vol
$$\mathcal{P} = \frac{1}{d!} (h_d + h_{d-1} + \dots + h_1 + 1)$$

▶ (Stanley 1980)
$$h_j \in \mathbb{Z}_{\geq 0}$$

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

▶ (Ehrhart)
$$h_0=1$$
 , $h_1=\#\left(\mathcal{P}\cap\mathbb{Z}^d
ight)-d-1$, $h_d=\#\left(\mathcal{P}^\circ\cap\mathbb{Z}^d
ight)$

• (Ehrhart) vol
$$\mathcal{P} = \frac{1}{d!} (h_d + h_{d-1} + \dots + h_1 + 1)$$

▶ (Stanley 1980)
$$h_j \in \mathbb{Z}_{\geq 0}$$

• (Stanley 1991) Whenever $h_s > 0$ but $h_{s+1} = \cdots = h_d = 0$, then $h_0 + h_1 + \cdots + h_j \le h_s + h_{s-1} + \cdots + h_{s-j}$ for all $0 \le j \le s$.

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

▶ (Ehrhart)
$$h_0=1$$
 , $h_1=\#\left(\mathcal{P}\cap\mathbb{Z}^d
ight)-d-1$, $h_d=\#\left(\mathcal{P}^\circ\cap\mathbb{Z}^d
ight)$

• (Ehrhart) vol
$$\mathcal{P} = \frac{1}{d!} (h_d + h_{d-1} + \dots + h_1 + 1)$$

- ▶ (Stanley 1980) $h_j \in \mathbb{Z}_{\geq 0}$
- (Stanley 1991) Whenever $h_s > 0$ but $h_{s+1} = \cdots = h_d = 0$, then $h_0 + h_1 + \cdots + h_j \le h_s + h_{s-1} + \cdots + h_{s-j}$ for all $0 \le j \le s$.

• (Hibi 1994) $h_0 + \cdots + h_{j+1} \ge h_d + \cdots + h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$.

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

$$\blacktriangleright$$
 (Ehrhart) $h_0=1$, $h_1=\#\left(\mathcal{P}\cap\mathbb{Z}^d
ight)-d-1$, $h_d=\#\left(\mathcal{P}^\circ\cap\mathbb{Z}^d
ight)$

• (Ehrhart) vol
$$\mathcal{P} = \frac{1}{d!} (h_d + h_{d-1} + \dots + h_1 + 1)$$

▶ (Stanley 1980)
$$h_j \in \mathbb{Z}_{\geq 0}$$

• (Stanley 1991) Whenever $h_s > 0$ but $h_{s+1} = \cdots = h_d = 0$, then $h_0 + h_1 + \cdots + h_j \le h_s + h_{s-1} + \cdots + h_{s-j}$ for all $0 \le j \le s$.

• (Hibi 1994) $h_0 + \cdots + h_{j+1} \ge h_d + \cdots + h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$.

• (Hibi 1994) If
$$h_d > 0$$
 then $h_1 \leq h_j$ for $2 \leq j < d$.

$$\operatorname{Ehr}_{\mathcal{P}}(t) = 1 + \sum_{m \ge 1} \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \dots + h_0}{(1-t)^{d+1}}$$

• (Stapledon 2009) Many more inequalities for the h_j 's arising from Kneser's Theorem (arXiv:0904.3035)

A triangulation τ of \mathcal{P} is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d .

A triangulation τ of \mathcal{P} is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d .

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers of the simplices in τ of different dimensions.

A triangulation τ of \mathcal{P} is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d .

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers of the simplices in τ of different dimensions.

▶ (Stanley 1980) If \mathcal{P} admits a unimodular triangulation then $h(t) = (1-t)^{d+1} \operatorname{Ehr}_{\mathcal{P}}(t)$ is the h-polynomial of the triangulation.

A triangulation τ of \mathcal{P} is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d .

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers of the simplices in τ of different dimensions.

- ▶ (Stanley 1980) If \mathcal{P} admits a unimodular triangulation then $h(t) = (1-t)^{d+1} \operatorname{Ehr}_{\mathcal{P}}(t)$ is the h-polynomial of the triangulation.
- ► Recent papers of Reiner–Welker and Athanasiadis use this as a starting point to give conditions under which the Ehrhart h-vector is unimodal, i.e., h_d ≤ h_{d-1} ≤ ··· ≤ h_k ≥ h_{k-1} ≥ ··· ≥ h₀ for some k.

The Main Question

Define $h_0(n), h_1(n), \ldots, h_d(n)$ through

Ehr_n
$$_{\mathcal{P}}(t) = \frac{h_d(n) t^d + h_{d-1}(n) t^{d-1} + \dots + h_0(n)}{(1-t)^{d+1}}.$$

What does the Ehrhart h-vector $(h_0(n), h_1(n), \dots, h_d(n))$ look like as n increases?

The Main Question

Define $h_0(n), h_1(n), \ldots, h_d(n)$ through

Ehr_n_P(t) =
$$\frac{h_d(n) t^d + h_{d-1}(n) t^{d-1} + \dots + h_0(n)}{(1-t)^{d+1}}$$
.

What does the Ehrhart h-vector $(h_0(n), h_1(n), \ldots, h_d(n))$ look like as n increases?

Let $h(t) = (1-t)^{d+1} \operatorname{Ehr}_{\mathcal{P}}(t)$. The operator U_n defined through

Ehr_{*n*P}(*t*) = 1 +
$$\sum_{m \ge 1} L_P(nm) t^m = \frac{U_n h(t)}{(1-t)^{d+1}}$$

appears in Number Theory as a Hecke operator and in Commutative Algebra in Veronese subring constructions.

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's) For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's) For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's) For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Conjectures

- (a) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.
- (b) For every d there exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $m_d \mathcal{P}$ admits a regular unimodular triangulation.

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's) For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Conjectures

- (a) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.
- (b) For every d there exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $m_d \mathcal{P}$ admits a regular unimodular triangulation.
- (c) For every d there exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m_d$.

Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d-dimensional lattice polytope \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector of \mathcal{P} satisfies

(a)
$$h_{j+1} \ge h_{d-j}$$
 for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$,

(b)
$$h_{\lfloor \frac{d+1}{2} \rfloor} \ge h_{\lfloor \frac{d+1}{2} \rfloor+1} \ge \cdots \ge h_{d-1} \ge h_d$$
,

(c)
$$h_j \leq {h_1+j-1 \choose j}$$
 for $0 \leq j \leq d$.

Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d-dimensional lattice polytope \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector of \mathcal{P} satisfies

(a)
$$h_{j+1} \ge h_{d-j}$$
 for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$,

(b)
$$h_{\lfloor \frac{d+1}{2} \rfloor} \ge h_{\lfloor \frac{d+1}{2} \rfloor+1} \ge \cdots \ge h_{d-1} \ge h_d$$
,

(c)
$$h_j \leq {h_1+j-1 \choose j}$$
 for $0 \leq j \leq d$.

In particular, if the Ehrhart h-vector of \mathcal{P} is symmetric and \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector is unimodal.
Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d-dimensional lattice polytope \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector of \mathcal{P} satisfies

- (a) $h_{j+1} \ge h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor 1$,
- (b) $h_{\lfloor \frac{d+1}{2} \rfloor} \ge h_{\lfloor \frac{d+1}{2} \rfloor+1} \ge \cdots \ge h_{d-1} \ge h_d$,
- (c) $h_j \leq {h_1+j-1 \choose j}$ for $0 \leq j \leq d$.

In particular, if the Ehrhart h-vector of \mathcal{P} is symmetric and \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector is unimodal.

There are (many) lattice polytopes for which (some of these) inequalities fail and one may hope to use this theorem to construct a counter-example to the Knudsen–Mumford–Waterman Conjectures.

Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0$, such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ and $\lim_{n \to \infty} \beta_j(n) = \alpha_j$.

Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0$, such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ and $\lim_{n \to \infty} \beta_j(n) = \alpha_j$.

Here "sufficiently large" depends on h(t).

Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0$, such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ and $\lim_{n \to \infty} \beta_j(n) = \alpha_j$.

Here "sufficiently large" depends on h(t).

If the polynomial $p(t) = a_d t^d + a_{d-1} t^{d-1} + \cdots + a_0$ has negative roots, then its coefficients are (strictly) log concave $(a_j^2 > a_{j-1}a_{j+1})$.

Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0$, such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ and $\lim_{n \to \infty} \beta_j(n) = \alpha_j$.

Here "sufficiently large" depends on h(t).

If the polynomial $p(t) = a_d t^d + a_{d-1} t^{d-1} + \cdots + a_0$ has negative roots, then its coefficients are (strictly) log concave $(a_j^2 > a_{j-1}a_{j+1})$ which, in turn, implies that the coefficients are (strictly) unimodal $(a_d < a_{d-1} < \cdots < a_k > a_{k-1} > \cdots > a_0$ for some k).

A General Theorem

The Eulerian polynomial $A_d(t)$ is defined through $\sum_{m \ge 0} m^d t^m = \frac{A_d(t)}{(1-t)^{d+1}}$.

Theorem (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of $A_d(t)$. There exist M, N depending only on d such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for $n \ge N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$, and the coefficients of $U_n h(t)$ satisfy $h_j(n) < M h_d(n)$.

A General Theorem

The Eulerian polynomial $A_d(t)$ is defined through $\sum_{m \ge 0} m^d t^m = \frac{A_d(t)}{(1-t)^{d+1}}$.

Theorem (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of $A_d(t)$. There exist M, N depending only on d such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$, and the coefficients of $U_n h(t)$ satisfy $h_j(n) < M h_d(n)$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \ge N$.

A General Theorem

The Eulerian polynomial $A_d(t)$ is defined through $\sum_{m \ge 0} m^d t^m = \frac{A_d(t)}{(1-t)^{d+1}}$.

Theorem (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of $A_d(t)$. There exist M, N depending only on d such that, if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for $n \ge N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$, and the coefficients of $U_n h(t)$ satisfy $h_j(n) < M h_d(n)$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \ge N$.

Furthermore, if $h_0 + \cdots + h_{j+1} \ge h_d + \cdots + h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$, with at least one strict inequality, then we may choose N such that, for $n \ge N$,

$$h_0 = h_0(n) < h_d(n) < h_1(n) < \dots < h_j(n) < h_{d-j}(n) < h_{j+1}(n)$$

$$< \dots < h_{\lfloor \frac{d+1}{2} \rfloor}(n) < M h_d(n).$$

An Ehrhartian Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if P is a d-dimensional lattice polytope with Ehrhart series numerator h(t), then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

An Ehrhartian Corollary

Corollary (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if P is a d-dimensional lattice polytope with Ehrhart series numerator h(t), then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \ge N$.

An Ehrhartian Corollary

Corollary (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if P is a d-dimensional lattice polytope with Ehrhart series numerator h(t), then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \ge N$.

Furthermore, they satisfy

 $1 = h_0(n) < h_d(n) < h_1(n) < \dots < h_j(n) < h_{d-j}(n) < h_{j+1}(n)$ $< \dots < h_{\lfloor \frac{d+1}{2} \rfloor}(n) < M h_d(n).$

Stapledon's Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0$ of degree at most d+1 has a unique decomposition h(t) = a(t) + b(t) where a(t) and b(t) are polynomials satisfying $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d+1} b(\frac{1}{t})$.

Stapledon's Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0$ of degree at most d+1 has a unique decomposition h(t) = a(t) + b(t) where a(t) and b(t) are polynomials satisfying $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d+1} b(\frac{1}{t})$.

▶ The coefficients of a(t) are positive if and only if $h_0 + \cdots + h_j \ge h_{d+1} + \cdots + h_{d+1-j}$ for $0 \le j < \lfloor \frac{d}{2} \rfloor$.

Stapledon's Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0$ of degree at most d+1 has a unique decomposition h(t) = a(t) + b(t) where a(t) and b(t) are polynomials satisfying $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d+1} b(\frac{1}{t})$.

- ▶ The coefficients of a(t) are positive if and only if $h_0 + \cdots + h_j \ge h_{d+1} + \cdots + h_{d+1-j}$ for $0 \le j < \lfloor \frac{d}{2} \rfloor$.
- ▶ The coefficients of a(t) are strictly unimodal if and only if $h_{j+1} > h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$.

Stapledon's Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \dots + h_0$ of degree at most d+1 has a unique decomposition h(t) = a(t) + b(t) where a(t) and b(t) are polynomials satisfying $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d+1} b(\frac{1}{t})$.

- ▶ The coefficients of a(t) are positive if and only if $h_0 + \cdots + h_j \ge h_{d+1} + \cdots + h_{d+1-j}$ for $0 \le j < \lfloor \frac{d}{2} \rfloor$.
- ► The coefficients of a(t) are strictly unimodal if and only if $h_{j+1} > h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$.

Theorem (Stapledon 2008) If h(t) is the Ehrhart h-vector of a lattice d-polytope, then the coefficients of a(t) satisfy $1 = a_0 \le a_1 \le a_j$ for $2 \le j \le d-1$.

Stapledon's Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \dots + h_0$ of degree at most d+1 has a unique decomposition h(t) = a(t) + b(t) where a(t) and b(t) are polynomials satisfying $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d+1} b(\frac{1}{t})$.

- ▶ The coefficients of a(t) are positive if and only if $h_0 + \cdots + h_j \ge h_{d+1} + \cdots + h_{d+1-j}$ for $0 \le j < \lfloor \frac{d}{2} \rfloor$.
- ► The coefficients of a(t) are strictly unimodal if and only if $h_{j+1} > h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$.

Theorem (Stapledon 2008) If h(t) is the Ehrhart h-vector of a lattice d-polytope, then the coefficients of a(t) satisfy $1 = a_0 \leq a_1 \leq a_j$ for $2 \leq j \leq d-1$.

Corollary Hibi's inequalities $h_0 + \cdots + h_{j+1} \ge h_d + \cdots + h_{d-j}$ for the Ehrhart h-vector are strict.

Let $h(t) = h_{d+1}t^{d+1} + h_dt^d + \dots + h_0$ be a polynomial of degree at most d+1 and expand $\frac{h(t)}{(1-t)^{d+1}} = h_0 + \sum_{m\geq 1} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \dots + g_0$.

Let $h(t) = h_{d+1}t^{d+1} + h_dt^d + \dots + h_0$ be a polynomial of degree at most d+1 and expand $\frac{h(t)}{(1-t)^{d+1}} = h_0 + \sum_{m\geq 1} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \dots + g_0$.

Theorem (Betke–McMullen 1985) If $h_j \ge 0$ for $0 \le j \le d+1$, then for any $1 \le r \le d-1$,

$$g_r \leq (-1)^{d-r} S_r(d) g_d + \frac{(-1)^{d-r-1} h_0 S_{r+1}(d)}{(d-1)!},$$

where $S_i(d)$ is the Stirling number of the first kind.

Let $h(t) = h_{d+1}t^{d+1} + h_dt^d + \dots + h_0$ be a polynomial of degree at most d+1 and expand $\frac{h(t)}{(1-t)^{d+1}} = h_0 + \sum_{m\geq 1} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \dots + g_0$.

Theorem (Betke–McMullen 1985) If $h_j \ge 0$ for $0 \le j \le d+1$, then for any $1 \le r \le d-1$,

$$g_r \le (-1)^{d-r} S_r(d) g_d + \frac{(-1)^{d-r-1} h_0 S_{r+1}(d)}{(d-1)!},$$

where $S_i(d)$ is the Stirling number of the first kind.

Theorem (MB-Stapledon) If $h_0 + \cdots + h_j \ge h_{d+1} + \cdots + h_{d+1-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor$, with at least one strict inequality, then

$$g_{d-1-2r} \le S_{d-1-2r}(d-1) g_{d-1} - \frac{(h_0 - h_{d+1})S_{d-2r}(d-1)}{2(d-2)!}$$

Let $h(t) = h_d m^d + h_{d-1} m^{d-1} + \dots + h_0$ be a polynomial of degree at most d and expand $\frac{h(t)}{(1-t)^{d+1}} = \sum_{m \ge 0} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \dots + g_0$.

Let $h(t) = h_d m^d + h_{d-1} m^{d-1} + \dots + h_0$ be a polynomial of degree at most d and expand $\frac{h(t)}{(1-t)^{d+1}} = \sum_{m \ge 0} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \dots + g_0$.

Recall our notation $U_n h(t) = h_d(n) t^d + h_{d-1}(n) t^{d-1} + \cdots + h_0(n)$.

Lemma
$$U_n h(t) = \sum_{j=0}^d g_j A_j(t) (1-t)^{d-j} n^j.$$

Let $h(t) = h_d m^d + h_{d-1} m^{d-1} + \dots + h_0$ be a polynomial of degree at most d and expand $\frac{h(t)}{(1-t)^{d+1}} = \sum_{m \ge 0} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \dots + g_0$.

Recall our notation $U_n h(t) = h_d(n) t^d + h_{d-1}(n) t^{d-1} + \cdots + h_0(n)$.

Lemma
$$U_n h(t) = \sum_{j=0}^d g_j A_j(t) (1-t)^{d-j} n^j.$$

In particular, for $1 \leq j \leq d$, $h_j(n)$ is a polynomial in n of degree d and

$$h_j(n) = A(d,j) g_d n^d + (A(d-1,j) - A(d-1,j-1)) g_{d-1} n^{d-1} + O(n^{d-2}).$$

Lemma
$$U_n h(t) = \sum_{j=0}^d g_j A_j(t) (1-t)^{d-j} n^j.$$

Lemma
$$U_n h(t) = \sum_{j=0}^d g_j A_j(t) (1-t)^{d-j} n^j.$$

Exercise The nonzero roots of the Eulerian polynomial $A_d(t) = \sum_{j=0}^{d} A(d,j) t^j$ are negative.

Lemma
$$U_n h(t) = \sum_{j=0}^d g_j A_j(t) (1-t)^{d-j} n^j.$$

Exercise The nonzero roots of the Eulerian polynomial $A_d(t) = \sum_{j=0}^{d} A(d,j) t^j$ are negative.

Theorem (Cauchy) Let $p(n) = p_d n^d + p_{d-1} n^{d-1} + \dots + p_0$ be a polynomial of degree d with real coefficients. The complex roots of p(n) lie in the open disc

$$\left\{ z \in \mathbb{C} : |z| < 1 + \max_{0 \le j \le d} \left| \frac{p_j}{p_d} \right| \right\}.$$

Let $R = \bigoplus_{j \ge 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

Let $R = \bigoplus_{j \ge 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

 $R^{\langle n \rangle} := \bigoplus_{j \ge 0} R_{jn}$ (nth Veronese subring of R)

Let $R = \bigoplus_{j \ge 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{\langle n \rangle} := \bigoplus_{j \ge 0} R_{jn}$$
 (nth Veronese subring of R)

 $H(R,m) := \dim_K R_m$ (Hilbert function of R)

Let $R = \bigoplus_{j \ge 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{\langle n \rangle} := \bigoplus_{j \ge 0} R_{jn}$$
 (nth Veronese subring of R)

 $H(R,m) := \dim_K R_m$ (Hilbert function of R)

By a theorem of Hilbert H(R, m) is a polynomial in m when m is sufficiently large. Note that

$$\frac{\operatorname{U}_n h(t)}{(1-t)^{d+1}} = \sum_{m \ge 0} H(R^{\langle n \rangle}, m) t^m.$$

Let $R = \bigoplus_{j \ge 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{\langle n \rangle} := \bigoplus_{j \ge 0} R_{jn}$$
 (nth Veronese subring of R)

 $H(R,m) := \dim_K R_m$ (Hilbert function of R)

By a theorem of Hilbert H(R, m) is a polynomial in m when m is sufficiently large. Note that

$$\frac{\operatorname{U}_n h(t)}{(1-t)^{d+1}} = \sum_{m \ge 0} H(R^{\langle n \rangle}, m) t^m.$$

Example Denote the cone over $\mathcal{P} \times \{1\}$ by cone \mathcal{P} . Then the semigroup algebra $K[\operatorname{cone} \mathcal{P} \cap \mathbb{Z}^{d+1}]$ (graded by the projection to the last coordinate) gives rise to the Hilbert function $H(K[\operatorname{cone} \mathcal{P} \cap \mathbb{Z}^{d+1}], m) = L_{\mathcal{P}}(m)$.

A Veronese Corollary

Corollary (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if $R = \bigoplus_{j \ge 0} R_j$ is a finitely generated graded ring over a field $R_0 = K$ that is Cohen-Macauley and module finite over the K-subalgebra generated by R_1 , and if the Hilbert function H(R, m) is a polynomial in m, then for $n \ge N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

A Veronese Corollary

Corollary (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if $R = \bigoplus_{j \ge 0} R_j$ is a finitely generated graded ring over a field $R_0 = K$ that is Cohen-Macauley and module finite over the K-subalgebra generated by R_1 , and if the Hilbert function H(R, m) is a polynomial in m, then for $n \ge N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \ge N$.

A Veronese Corollary

Corollary (MB-Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if $R = \bigoplus_{j \ge 0} R_j$ is a finitely generated graded ring over a field $R_0 = K$ that is Cohen-Macauley and module finite over the K-subalgebra generated by R_1 , and if the Hilbert function H(R, m) is a polynomial in m, then for $n \ge N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \ge N$.

Furthermore, they satisfy $h_j(n) < M h_d(n)$ for $0 \le j \le n$ and $n \ge N$.

Open Problems

Find optimal choices for M and N in any of our theorems.

Open Problems

Find optimal choices for M and N in any of our theorems.

Conjecture For Ehrhart series of d-dimensional polytopes, N = d.

(Open for $d \geq 3$)

One Result about Explicit Bounds

Recall our inequalities $h_{j+1}(n) > h_{d-j}(n)$ in the main theorem. . .

Theorem (MB-Stapledon) Fix a positive integer d and set N = d if d is even and $N = \frac{d+1}{2}$ if d is odd. If h(t) is a polynomial of degree at most d satisfying $h_0 + \cdots + h_{j+1} > h_d + \cdots + h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$, then the coefficients of $U_n h(t)$ satisfy $h_{j+1}(n) > h_{d-j}(n)$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$ and $n \ge N$.
One Result about Explicit Bounds

Recall our inequalities $h_{j+1}(n) > h_{d-j}(n)$ in the main theorem. . .

Theorem (MB-Stapledon) Fix a positive integer d and set N = d if d is even and $N = \frac{d+1}{2}$ if d is odd. If h(t) is a polynomial of degree at most d satisfying $h_0 + \cdots + h_{j+1} > h_d + \cdots + h_{d-j}$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$, then the coefficients of $U_n h(t)$ satisfy $h_{j+1}(n) > h_{d-j}(n)$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$ and $n \ge N$.

Corollary Fix a positive integer d and set N = d if d is even and $N = \frac{d+1}{2}$ if d is odd. If P is a d-dimensional lattice polytope with Ehrhart h-vector h(t), then the coefficients of $U_n h(t)$ satisfy $h_{j+1}(n) > h_{d-j}(n)$ for $0 \le j \le \lfloor \frac{d}{2} \rfloor - 1$ and $n \ge N$.

The Message

The Ehrhart series of $n\mathcal{P}$ becomes friendlier as n increases.

The Message

The Ehrhart series of $n\mathcal{P}$ becomes friendlier as n increases.

In fixed dimension, you don't have to wait forever to make *all* Ehrhart series look friendly.

The Message

The Ehrhart series of $n\mathcal{P}$ becomes friendlier as n increases.

In fixed dimension, you don't have to wait forever to make *all* Ehrhart series look friendly.

Homework Figure out what all of this has to do with carrying digits when summing 100-digit numbers.