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Meet my friends . ..

If the solution set of a linear system of (in-)equalities is bounded, we call
this solution set a polytope. Alternatively, a polytope is the convex hull of
a finite set of points in R%.
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Meet my friends . ..

If the solution set of a linear system of (in-)equalities is bounded, we call
this solution set a polytope. Alternatively, a polytope is the convex hull of

a finite set of points in R.

Example: the 3-dimensional unit cube . ..

[ (z,y,2) ER3: ) i

0<zxr<lI1 |
0<y<I1
0<z2<1
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Meet my friends . ..

If the solution set of a linear system of (in-)equalities is bounded, we call
this solution set a polytope. Alternatively, a polytope is the convex hull of
a finite set of points in R%.

Example: the 3-dimensional unit cube . ..
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Meet my friends . ..

The standard simplex

A = {XERd:ZEl—I—HZ‘Q—I—'--—FZBdSl,JijO}

= conv{(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...
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Meet my friends . ..

The standard simplex ,
A = {XERd::1:1—|—$2—|—---—|—xd§1,:17j20} ,
= conv{(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}

The pyramid over the (d — 1)-dimensional unit cube O: the convex hull of
O (lifted into dimension d) and (0,0,...,0,1) or

Pop — (1, 22,...,2q9) € R?:
Y 0<x,x2,...,2g-1 < 1—24<1
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Meet my friends . ..

The cross-polytope
&= {(aj17$27'°°7$d)€Rd: ‘$1|+|$2‘++‘$d‘§1}
= conv{(+1,0,...,0),(0,+1,0,...,0),...,(0,...,0,%+1)}
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A Plug For Great, Free Software

YOU should check out Ewgenij Gawrilow and Michael Joswig's polymake

www.math.tu-berlin.de/polymake
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Z%), compute its
(continuous) volume

vol P ::/ dx .
73
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Z%), compute its
(continuous) volume

vol P ::/ dx .
P

Approach: Discretize the problem . . .

177d
vol P = lim #(PﬂtZ) .

t—o00 td
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Zd), compute its
(continuous) volume

vol P ::/ dx .
P

Approach: Discretize the problem . . .

17d
vol P = lim #(PﬂtZ) .

t— 00 td

For a positive integer ¢ we define the discrete volume of P as

Lp(t) :=# (PNniz?).
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Z%), compute its
(continuous) volume

vol P ::/ dx .
P

Approach: Discretize the problem . ..

# (PN 1Z%) |

volP = lim
td

t— o0

For a positive integer ¢ we define the discrete volume of P as
Lp(t) = # (73 N %Zd) :
Today's real goal: Given a lattice polytope P, compute Lp(t).
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Why Should We Care?

» Linear systems are everywhere, and so polytopes are everywhere.
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Why Should We Care?

» Linear systems are everywhere, and so polytopes are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck 7



Why Should We Care?

» Linear systems are everywhere, and so polytopes are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

» Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.
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Why Should We Care?

» Linear systems are everywhere, and so polytopes are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

» Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

» Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.
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Why Should We Care?

» Linear systems are everywhere, and so polytopes are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

» Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

» Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

» Polytopes are cool.
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A Warm-Up Example

Let's consider the unit square 0 = {(z,y) e R?: 0 < z,y <1}
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A Warm-Up Example

Let's consider the unit square 0 = {(z,y) e R?: 0 < z,y <1}

I ® © o o o o o LD(t):#(Dﬂ%ZQ):...
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A Warm-Up Example

Let's consider the unit square 0 = {(z,y) e R?: 0 < z,y <1}

®© © o o o o o LD(t):#(Dﬂ%ZQ):(t—I—l)Q
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A Warm-Up Example

Let's consider the unit square 0 = {(z,y) e R?: 0 < z,y <1}

© © o o o o o Lno(t) :#(DH%ZQ) = (t—i—1)2
oo 9o o 0o ¢ o
t2+2t+1
® © 06 o o o o VOI(D) ~ lim + 2t + 1
® © o o o o o o t— 00 t2
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A Warm-Up Example

Let's consider the unit square 0 = {(z,y) e R?: 0 < z,y <1}

© © o o o o o Lno(t) :#(DH%ZQ) = (t—i—1)2
oo 9o o 0o ¢ o
t2+2t+1
® © 06 o o o o VOI(D) ~ lim + 2t + 1
® © o o o o o o t— 00 t2

0°={(z,y) eR?: 0 < z,y <1}
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A Warm-Up Example

Let's consider the unit square 0 = {(z,y) e R?: 0 < z,y <1}

© © o o o o o Lno(t) :#(DH%ZQ) = (t—i—1)2
oo 9o o 0o ¢ o
t2+2t+1
® © 06 o o o o VOI(D) ~ lim + 2t + 1
® © o o o o o o t— 00 t2

0°={(z,y) eR?: 0 < z,y <1}

Loo(t) = # (DO N %ZQ> = (t—1)°=t*—2t+1= Lo(—t)
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A Warm-Up Example in General Dimension

For the unit d-cube O = {(xl,xg, ..., Tq) € R%: 0 < x; < 1} we obtain
the analogous formulas

Lo(t) = (t+1)¢ and Loo(t) = (t — 1)
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A Warm-Up Example in General Dimension

For the unit d-cube O = {(xl,:cg, ..., Tq) € R%: 0 < x; < 1} we obtain
the analogous formulas

Lo(t) = (t+1)¢ and Loo(t) = (t — 1)

Note that

Lo(t) = zd: (Z) th. vol (O) =1

k=0

(where (') := m(m_l)(m_ﬁ)"'(m_"ﬂ) are the binomial coefficients)
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A Warm-Up Example in General Dimension

For the unit d-cube O = {(xl,:cg, ..., Tq) € R%: 0 < x; < 1} we obtain
the analogous formulas

Lo(t) = (t+1)¢ and Loo(t) = (t — 1)

Note that

Lo(t) = zd: (Z) th. vol (O) =1

k=0

(where (') := m(m_l)(m_ﬁ)'"(m_nﬂ) are the binomial coefficients), and

Lo(—t) = (—1)%Lgo(t) .
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The Standard Simplex

The standard d-simplex [ N .

A = {XERd::El—l—ajg—l—---—i—a:dgl,ijO}
conv{(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}
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The Standard Simplex

The standard d-simplex [ N .

A = {XERd::Ul—l—ajg—l—---—i—azdgl,ijO}
conv{(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}

has discrete volume

La(t) = #{(ml,...,md)EZ‘éO: m1+---+md§t}
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The Standard Simplex

The standard d-simplex [ N .

A = {XERd::Ul—l—ajg—l—---—i—azdgl,ijO}
conv{(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}

has discrete volume

La(t) = #{(ml,...,md)EZ%o: m1+---+md§t}

— #{(ml,,md+1)€Z§_glml—|—_|_md+1:t}
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The Standard Simplex

The standard d-simplex [ N .

A = {XERd::Ul—l—ajg—l—---—i—azdgl,ijO}
conv{(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}

has discrete volume

La(t) = #{(ml,...,md)EZ%o: m1+---+md§t}

— #{(ml,,md+1)€Z§_glml—|—_|_md+1:t}

(39
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The Standard Simplex

The standard d-simplex

A = {xERd:xl—l—ajg—l—-o-—l—xdgl,ijO}

has discrete volume

LA(t) — #{(ml,...,md)EZ%O:m1_|_..._|_md§t}
= {mae e ma) € ZE g =)

<t+d> (At +d—1)- (t+ 1)
d d! ’

. 1
a polynomial in ¢ with leading coefficient vol (A) = o
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The Standard Simplex

The standard d-simplex [} N .

A = {xeR':az1+ao+--+a4<1,2; >0}
conv {(0,0,...,0),(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}

has discrete volume

La(t) = (tzd) _+d)(t+d—-1)---(t+1)

d! ’
. . . - 1
a polynomial in ¢ with leading coefficient vol (A) = o
- )d—k
Incidentally, = Z stirl(d + 1, k 4+ 1) t*

where stirl(n, j) are the Stirling numbers of the first kind.
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The Standard Simplex

The interior of the d-simplex,

AO:{XERd: x1+x2—|—'o-—|—xd<1,a:j>0} ...........
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The Standard Simplex

The interior of the d-simplex,

AO:{XERd: r1+ x4+ -+ xq <1, xj>0}7 ...........
has discrete volume

’,

Lao(t) = #{(m1,...,mq) €Z%y: m1i+ - +mg <t}
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The Standard Simplex

The interior of the d-simplex,

AO:{XERd: x1+x2—|—-o-—|—xd<1,a:j>0}, ...........

has discrete volume

’,

#{(m,...,ma) €ZL: my+ - +mg <t}

Lao(t)
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The Standard Simplex

The interior of the d-simplex,

AO:{XERd: x1+x2—|—-o-—|—xd<1,a:j>0}, ...........

has discrete volume

’,

#{(m1, ... ,ma) €ZL0: myi+ - +mg <t}

Lao(t)

— #{(mh---,de)EZé};l: m1+---+md+1:t—d—1}
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The Standard Simplex

The interior of the d-simplex,

AO:{XERd: x1+x2—|—-o-—|—xd<1,a:j>0}, ...........

has discrete volume

’,

#{(m1, ... ,ma) €ZL0: myi+ - +mg <t}

Lao(t)

— #{(mh---,de)EZé};l: m1+---+md+1:t—d—1}

- ()
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The Standard Simplex

The interior of the d-simplex,

AO:{XERdZ $1+£E2—|—'°'—|—33d<1,513j>0}7 ...........

has discrete volume

LAO(t) — #{(ml,...,md)EZio:m1_|_..._|_md<t}
— #{(mly...,md+1>€Zi_51:m1_|_...+md+1:t}

— #{(ml,...,de)EZ?&l: m1-|-..._|_md+1:t_d_1}

(1Y) -

a polynomial that happens to satisfy the algebraic relation
t—1 —t+d
— (—1)¢
(a)) = ()
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The Standard Simplex

The interior of the d-simplex,

AO:{XERdZ $1+£E2—|—'°'—|—33d<1,513j>0}7 ...........

has discrete volume

LAO(t) — #{(ml,...,md)EZio:m1_|_..._|_md<t}
— #{(mly...,md+1>€Zi_51:m1_|_...+md+1:t}

— #{(ml,...,de)EZ?&l: m1-|-..._|_md+1:t_d_1}

(1Y) -

a polynomial that happens to satisfy the algebraic relation

(t ; 1) _ (—1)d<—t; d)’ thatis,  La(—t) = (=1)%Las(t) .
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Generating Functions

The discrete volume La(t) = (
the friendly generating function

> ("

>0

t+d
d

)

) of the standard d-simplex comes with

1
(1 — z)d+1 "

Zt:
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Generating Functions

The discrete volume La(t) = (t‘gd) of the standard d-simplex comes with
the friendly generating function

> ()

>0

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhI’p = 1—|—ZL73
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Generating Functions

The discrete volume La(t) = (t‘gd) of the standard d-simplex comes with

the friendly generating function

> ()

>0

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

Ehrp(z) =1+ ) Lp(t) 2"

The Ehrhart series for the unit d-cube O is
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Generating Functions

The discrete volume La(t) = (t‘gd) of the standard d-simplex comes with

the friendly generating function

> ()

>0

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhI’p = 1—|—ZL73

The Ehrhart series for the unit d-cube O is

Ehrg(z —1—|—Z ithzt

t>1 t>1
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Generating Functions

The discrete volume La(t) = (tgd) of the standard d-simplex comes with

the friendly generating function

2 (t;d>zt: T

>0

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhI‘p =1+ Z Lp
The Ehrhart series for the unit d-cube O is
k) 2 k—1

d.t_ Zkl A(d,
Bhra(e) = 1+ 3(0 4 1)¢ = Lyt = Tk AT

t>1 t>1

where A(d, k) are Eulerian numbers.
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Pyramids over the Unit Cube

Recall the pyramid over the (d — 1)-dimensional
unit cube O: the convex hull of O (lifted
into dimension d) and (0,0,...,0,1)or [ LN N

PYI‘ — (331,[1327., .7£Cd) c Rd:
0<zy,22,...,2q1 <1 —24<1 |~ ”
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Pyramids over the Unit Cube

Recall the pyramid over the (d — 1)-dimensional
unit cube O: the convex hull of O (lifted
into dimension d) and (0,0,...,0,1) or

Pyr:{ (1, 29,...,74) € RY: }

0<xy,22,...,29-1 <1 —24<1

Its discrete volume is

prr(t) = #{(ml,...,md)EZd: 0 < mjq,
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Pyramids over the Unit Cube

Recall the pyramid over the (d — 1)-dimensional
unit cube O: the convex hull of O (lifted
into dimension d) and (0,0,...,0,1) or

Pyr:{ (1, 29,...,74) € RY: }

0<xy,22,...,29-1 <1 —24<1

Its discrete volume is

prr(t) = {(ml, e ,md) c 72 0 < mjq,
t
— Z (t—md—l— l)d_l
md:O
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Pyramids over the Unit Cube

Recall the pyramid over the (d — 1)-dimensional
unit cube O: the convex hull of O (lifted
into dimension d) and (0,0,...,0,1) or

Pyr:{ (1, 29,...,74) € RY: }

0<xy,22,...,29-1 <1 —24<1

Its discrete volume is

prr(t) = #{(ml,...,md) EZd: 0 < mjq,
t t+1

= Z (t—mg+1)"" = de_l
mg=0 k=1
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Pyramids over the Unit Cube

Recall the pyramid over the (d — 1)-dimensional
unit cube O: the convex hull of O (lifted
into dimension d) and (0,0,...,0,1)or [ LN N

T1.%o.....2q) € R
O Lo

0<zy,29,...,2q-1 <1—24<1

Its discrete volume is

Lpy(t) = #{(ml,...,md)EZd: Ogml,...,md_lgt—mdgt}
' 41
— Z (t—md+1)d_1:de_1
mg=0 k=1

- é (Ba(t + 2) — Bq(0)),

where Bg(x) denotes the d'th Bernoulli polynomial. The Bernoulli polyno-

mials are monic, and so vol(Pyr) = - .
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Pyramids over the Unit Cube

The Bernoulli polynomials are defined through

e — 1 K N N .

k>0 \/
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Pyramids over the Unit Cube

The Bernoulli polynomials are defined through

e — 1 k!
£>0

and have many interesting properties, e.g.,

Ba(l — ) = (=1)By(z) .

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory
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Pyramids over the Unit Cube

The Bernoulli polynomials are defined through

z e’? Z Bi(x) J

ez —1 Kt NN .
k>0 \/

and have many interesting properties, e.g.,

By(1 —x) = (—1)By(x) .
The discrete volume of the interior of Pyr can be computed similarly:

LPyro(t) — (Bd(t o 1) - Bd(o)) )

which gives
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A Pyramid Exercise

If P is a (d—1)-dimensional lattice polytope, let Pyr(P) be the convex hull
of P (lifted into dimension d) and the point (0,0,...,0,1). Then

Ehl‘p(Z)
1—2z

Ehrpyr(p) (Z) —
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A Pyramid Exercise

If P is a (d—1)-dimensional lattice polytope, let Pyr(P) be the convex hull
of P (lifted into dimension d) and the point (0,0,...,0,1). Then

Ehl‘p(Z) .

Ehrpyr(p) (Z) — 1_ -

For example, for the pyramid over the unit (d — 1)-cube, we obtain

d—1 _
L A(d—1,k) 281
Ehrpy.o)(2) = k_1<1 — )+l ’

where A(d, k) are Eulerian numbers.
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The Cross-Polytope

To compute the discrete volume of the cross-polytope

» 5
& = {(:Ul,xg,...,a:d) e RY \x1|+|$2\++\xd\ < ]_}
conv {(£1,0,...,0),(0,+1,0,...,0),...,(0,...,0,+1)},

we start with an exercise about bipyramids:
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The Cross-Polytope

To compute the discrete volume of the cross-polytope

» 5
& = {(ZUl,xg,...,ZEd) e RY \x1|+|x2\++\xd\ < ]_}
conv {(£1,0,...,0),(0,+1,0,...,0),...,(0,...,0,+1)},

we start with an exercise about bipyramids:

If P is a (d — 1)-dimensional lattice polytope, let BiPyr(P) be the convex
hull of P (lifted into dimension d) and the points (0,0,...,0,£1). Then

1+ 2

EhrBiPyr(p) (Z) = 1_ - EhI’p(Z) .

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck 16



The Cross-Polytope

To compute the discrete volume of the cross-polytope

» !
{(a:l,xg,...,xd) e RY: x| + |wa| 4+ -+ + |z4] < 1}
— conv {(+1,0,...,0),(0,41,0,...,0),...,(0,...,0,41)},

&

we start with an exercise about bipyramids:

If P is a (d — 1)-dimensional lattice polytope, let BiPyr(P) be the convex
hull of P (lifted into dimension d) and the points (0,0,...,0,£1). Then

1+ 2
1 — 2z

Ehrgipy,(p)(2) = Ehrp(z) .

For example, the d-dimensional cross-polytope < is the bipyramid over the
(d — 1)-dimensional cross-polytope.
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The Cross-Polytope

We thus recursively compute

(1+ 2)¢
(1 — z)d+1

EhI‘<> (Z) =
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The Cross-Polytope

We thus recursively compute

(1+ 2)¢
(1 — z)d+1 "’

Ehl‘<> (Z) =

from which one can expand
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The Cross-Polytope '

We thus recursively compute

(14 2)¢

Eth(Z) — (1 — Z)d_H '

from which one can expand

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck



The Cross-Polytope i

We thus recursively compute

(1+2)
(1 — z)d+1 "’

EhI‘<> (Z) =

from which one can expand

=050

2d

a polynomial in ¢ with leading coefficient vol(<) = T

Using the binomial reciprocity (md_l) — (—1)d(_”é+d) , we can see that

Lo(~1) = (~1)"Los(t) .
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Pick’s Theorem

For a lattice polygon ‘P containing I interior and B boundary lattice point,
Pick's Theorem tells us how to compute the area of P:

1
A:I—|—§B—1.
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Pick’s Theorem

For a lattice polygon ‘P containing I interior and B boundary lattice point,
Pick's Theorem tells us how to compute the area of P:

1
A:I—|—§B—1.

Do-it-yourself proof:

(1) Convince yourself that Pick's formula is “additive”.

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck 18



Pick’s Theorem

For a lattice polygon ‘P containing I interior and B boundary lattice point,
Pick's Theorem tells us how to compute the area of P:

1
A:[+§B—1.

Do-it-yourself proof:

(1) Convince yourself that Pick's formula is “additive”.

(2) Reduce to rectangles and right-angled triangles.

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck 18



Pick’s Theorem

For a lattice polygon ‘P containing I interior and B boundary lattice point,
Pick's Theorem tells us how to compute the area of P:

1
A:[+§B—1.

Do-it-yourself proof:

(1) Convince yourself that Pick's formula is “additive”.

(2) Reduce to rectangles and right-angled triangles.

(3) Prove Pick's formula for these two cases.
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Pick’s Theorem Extended

P — lattice polygon with area A and B boundary lattice points

For a positive integer ¢, let A(t) denote the area of P and B(t) the number
of boundary lattice points of ¢P.
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Pick’s Theorem Extended

P — lattice polygon with area A and B boundary lattice points

For a positive integer ¢, let A(t) denote the area of P and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A - t°.

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck 19



Pick’s Theorem Extended

P — lattice polygon with area A and B boundary lattice points

For a positive integer ¢, let A(t) denote the area of P and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A - t°.

Nice Exercise: B(t) =B -t
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Pick’s Theorem Extended

P — lattice polygon with area A and B boundary lattice points

For a positive integer ¢, let A(t) denote the area of P and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A - t°.

Nice Exercise: B(t) =B -t

1
Thus Pick’'s Theorem gives  Lpo(t) = At? — §Bt +1
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Pick’s Theorem Extended

P — lattice polygon with area A and B boundary lattice points

For a positive integer ¢, let A(t) denote the area of P and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A - t°.

Nice Exercise: B(t) =B -t

1
Thus Pick’'s Theorem gives  Lpo(t) = At? — §Bt +1

1
and Lp(t):Lpo(t)+Bt:At2+§Bt+1.

Discregte Volume Computations for Polytopes: An Invitation to Ehrhart Theory ()  Matthias Beck 19



Pick’s Theorem Extended

P — lattice polygon with area A and B boundary lattice points

For a positive integer ¢, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A - t°.

Nice Exercise: B(t) =B -t

1
Thus Pick's Theorem gives  Lpo(t) = At* — §Bt +1

1
and Lp(t):LPO(t)+Bt:At2—|—§Bt—|—1.

From this one easily obtains

(A-L4+1)224+(A+£-2)2+1
(1—2)° |

Ehl‘p(Z) —
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Ehrhart’s Theorem

Theorem (Ehrhart 1962) Suppose P is a lattice
polytope. Then Lp(t) and Lpo(t) are polyno-
mials in t € Z~ of degree dimP. Equivalently,

Ehrp(z) and Ehrpo(z) are rational functions of

h
the form 1 )(j) 57 for some polynomials /(z).
— 11m
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Ehrhart’s Theorem

Theorem (Ehrhart 1962) Suppose P is a lattice
polytope. Then Lp(t) and Lpo(t) are polyno-
mials in t € Z~ of degree dimP. Equivalently,

Ehrp(z) and Ehrpo(z) are rational functions of

h
the form 1 )(j) 57 for some polynomials /(z).
— 11m

Theorem (Ehrhart—-Macdonald 1971) The polynomials Lp(t) and Lpo(t)

satisfy the reciprocity relation
Lp(—t) = (=1)"™P Lpo(t) .
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If You Want To See More . ..

M. Beck & S. Robins

Computing the continuous discretely
Integer-point enumeration in polyhedra

To be published by Springer at the end of 2006

Electronic copy available at math.sfsu.edu/beck
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Another Plug For Great, Free Software

YOU should check out Jesiis De Loera et al's LattE

www.math.ucdavis.edu/~1latte

and Sven Verdoolaege's barvinok

freshmeat.net/projects/barvinok
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A Few Open Problems

» Choose d + 1 of the 2¢ vertices of the unit d-cube O, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes vol 7
(b) What is the maximum volume of such a §7
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A Few Open Problems

» Choose d + 1 of the 2¢ vertices of the unit d-cube O, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes vol 7

(b) What is the maximum volume of such a §7?

» Find classes of integer d-polytopes (Pg),~, for which each Lp (1) is
symmetric in d and t. (The standard simplices A and the cross-polytopes
& form two such classes.)
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A Few Open Problems

» Choose d + 1 of the 2¢ vertices of the unit d-cube O, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes vol 7
(b) What is the maximum volume of such a §7?

» Find classes of integer d-polytopes (Pg),~, for which each Lp (1) is
symmetric in d and t. (The standard simplices A and the cross-polytopes
& form two such classes.)

» All the roots of the polynomials L (t) have real part —1 (an instance of
a “local Riemann hypothesis”). Find other classes of polytopes whose
lattice-point enumerator exhibits such a special behavior.
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A Few Open Problems

Choose d + 1 of the 2¢ vertices of the unit d-cube O, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes vol 7
(b) What is the maximum volume of such a §7?

Find classes of integer d-polytopes (Pg),~, for which each Lp (t) is
symmetric in d and t. (The standard simplices A and the cross-polytopes
& form two such classes.)

All the roots of the polynomials Lo (t) have real part —% (an instance of
a “local Riemann hypothesis”). Find other classes of polytopes whose
lattice-point enumerator exhibits such a special behavior.

Classify the polynomials of a fixed degree d that are Ehrhart polynomials.
(This is done for d = 2 and partially known for d = 3 and 4).
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A Few Open Problems

Choose d + 1 of the 2¢ vertices of the unit d-cube O, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes vol 7
(b) What is the maximum volume of such a §7

Find classes of integer d-polytopes (Pg),~, for which each Lp (t) is
symmetric in d and t. (The standard simplices A and the cross-polytopes
& form two such classes.)

All the roots of the polynomials Lo (t) have real part —% (an instance of
a “local Riemann hypothesis”). Find other classes of polytopes whose
lattice-point enumerator exhibits such a special behavior.

Classify the polynomials of a fixed degree d that are Ehrhart polynomials.
(This is done for d = 2 and partially known for d = 3 and 4).

Study the roots of Ehrhart polynomials of integral polytopes in a fixed
dimension. Study the roots of the numerator of Ehrhart series.
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