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Meet my friends . . .

If the solution set of a linear system of (in-)equalities is bounded, we call
this solution set a polytope. Alternatively, a polytope is the convex hull of
a finite set of points in Rd.
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Meet my friends . . .

If the solution set of a linear system of (in-)equalities is bounded, we call
this solution set a polytope. Alternatively, a polytope is the convex hull of
a finite set of points in Rd.

Example: the 3-dimensional unit cube . . .


(x, y, z) ∈ R3 :

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1


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Meet my friends . . .

If the solution set of a linear system of (in-)equalities is bounded, we call
this solution set a polytope. Alternatively, a polytope is the convex hull of
a finite set of points in Rd.

Example: the 3-dimensional unit cube . . .


(x, y, z) ∈ R3 :

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1


. . . is the convex hull of

(0, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(1, 1, 0)
(1, 0, 1)
(0, 1, 1)
(1, 1, 1)
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Meet my friends . . .

The standard simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
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Meet my friends . . .

The standard simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

The pyramid over the (d− 1)-dimensional unit cube 2: the convex hull of
2 (lifted into dimension d) and (0, 0, . . . , 0, 1) or

Pyr =
{

(x1, x2, . . . , xd) ∈ Rd :
0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}

Discreet\ e Volume Computations for Polytopes: An Invitation to Ehrhart Theory Matthias Beck 3



Meet my friends . . .

The cross-polytope

3 =
{
(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1

}
= conv {(±1, 0, . . . , 0) , (0,±1, 0, . . . , 0) , . . . , (0, . . . , 0,±1)}
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A Plug For Great, Free Software

YOU should check out Ewgenij Gawrilow and Michael Joswig’s polymake

www.math.tu-berlin.de/polymake
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Zd), compute its
(continuous) volume

volP :=
∫
P

dx .
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Zd), compute its
(continuous) volume

volP :=
∫
P

dx .

Approach: Discretize the problem . . .

volP = lim
t→∞

#
(
P ∩ 1

tZ
d
)

td
.
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Given a lattice polytope P (i.e., the extreme points are in Zd), compute its
(continuous) volume

volP :=
∫
P

dx .

Approach: Discretize the problem . . .

volP = lim
t→∞

#
(
P ∩ 1

tZ
d
)

td
.

For a positive integer t we define the discrete volume of P as

LP(t) := #
(
P ∩ 1

tZ
d
)
.
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Today’s Goal

Given a lattice polytope P (i.e., the extreme points are in Zd), compute its
(continuous) volume

volP :=
∫
P

dx .

Approach: Discretize the problem . . .

volP = lim
t→∞

#
(
P ∩ 1

tZ
d
)

td
.

For a positive integer t we define the discrete volume of P as

LP(t) := #
(
P ∩ 1

tZ
d
)
.

Today’s real goal: Given a lattice polytope P, compute LP(t) .
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

I Polytopes are cool.
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A Warm-Up Example

Let’s consider the unit square 2 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}
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A Warm-Up Example

Let’s consider the unit square 2 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}

L2(t) = #
(
2 ∩ 1

tZ
2
)

= . . .
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A Warm-Up Example

Let’s consider the unit square 2 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}

L2(t) = #
(
2 ∩ 1

tZ
2
)

= (t + 1)2
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A Warm-Up Example

Let’s consider the unit square 2 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}

L2(t) = #
(
2 ∩ 1

tZ
2
)

= (t + 1)2

vol (2) = lim
t→∞

t2 + 2t + 1
t2

= 1
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A Warm-Up Example

Let’s consider the unit square 2 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}

L2(t) = #
(
2 ∩ 1

tZ
2
)

= (t + 1)2

vol (2) = lim
t→∞

t2 + 2t + 1
t2

= 1

2◦ =
{
(x, y) ∈ R2 : 0 < x, y < 1

}
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A Warm-Up Example

Let’s consider the unit square 2 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}

L2(t) = #
(
2 ∩ 1

tZ
2
)

= (t + 1)2

vol (2) = lim
t→∞

t2 + 2t + 1
t2

= 1

2◦ =
{
(x, y) ∈ R2 : 0 < x, y < 1

}

L2◦(t) = #
(

2◦ ∩ 1
t
Z2

)
= (t− 1)2 = t2 − 2t + 1 = L2(−t)
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A Warm-Up Example in General Dimension

For the unit d-cube 2 =
{
(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xj ≤ 1

}
we obtain

the analogous formulas

L2(t) = (t + 1)d and L2◦(t) = (t− 1)d.
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A Warm-Up Example in General Dimension

For the unit d-cube 2 =
{
(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xj ≤ 1

}
we obtain

the analogous formulas

L2(t) = (t + 1)d and L2◦(t) = (t− 1)d.

Note that

L2(t) =
d∑

k=0

(
d

k

)
tk, vol (2) = 1

(where
(
m
n

)
:= m(m−1)(m−2)···(m−n+1)

n! are the binomial coefficients)
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A Warm-Up Example in General Dimension

For the unit d-cube 2 =
{
(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xj ≤ 1

}
we obtain

the analogous formulas

L2(t) = (t + 1)d and L2◦(t) = (t− 1)d.

Note that

L2(t) =
d∑

k=0

(
d

k

)
tk, vol (2) = 1

(where
(
m
n

)
:= m(m−1)(m−2)···(m−n+1)

n! are the binomial coefficients), and

L2(−t) = (−1)dL2◦(t) .
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The Standard Simplex

The standard d-simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
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The Standard Simplex

The standard d-simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1 + · · ·+ md ≤ t
}
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The Standard Simplex

The standard d-simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1 + · · ·+ md ≤ t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t

}
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The Standard Simplex

The standard d-simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1 + · · ·+ md ≤ t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t

}
=

(
t + d

d

)
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The Standard Simplex

The standard d-simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1 + · · ·+ md ≤ t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t

}
=

(
t + d

d

)
=

(t + d)(t + d− 1) · · · (t + 1)
d!

,

a polynomial in t with leading coefficient vol (∆) =
1
d!

.
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The Standard Simplex

The standard d-simplex

∆ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1, xj ≥ 0

}
= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) =
(

t + d

d

)
=

(t + d)(t + d− 1) · · · (t + 1)
d!

,

a polynomial in t with leading coefficient vol (∆) =
1
d!

.

Incidentally, L∆(t) =
1
d!

d∑
k=0

(−1)d−k stirl(d + 1, k + 1) tk ,

where stirl(n, j) are the Stirling numbers of the first kind.
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The Standard Simplex

The interior of the d-simplex,

∆◦ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd < 1, xj > 0

}
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The Standard Simplex

The interior of the d-simplex,

∆◦ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd < 1, xj > 0

}
,

has discrete volume

L∆◦(t) = #
{
(m1, . . . ,md) ∈ Zd

>0 : m1 + · · ·+ md < t
}
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The Standard Simplex

The interior of the d-simplex,

∆◦ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd < 1, xj > 0

}
,

has discrete volume

L∆◦(t) = #
{
(m1, . . . ,md) ∈ Zd

>0 : m1 + · · ·+ md < t
}

= #
{
(m1, . . . ,md+1) ∈ Zd+1

>0 : m1 + · · ·+ md+1 = t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t− d− 1

}
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The Standard Simplex

The interior of the d-simplex,

∆◦ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd < 1, xj > 0

}
,

has discrete volume

L∆◦(t) = #
{
(m1, . . . ,md) ∈ Zd

>0 : m1 + · · ·+ md < t
}

= #
{
(m1, . . . ,md+1) ∈ Zd+1

>0 : m1 + · · ·+ md+1 = t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t− d− 1

}
=

(
t− 1

d

)
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The Standard Simplex

The interior of the d-simplex,

∆◦ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd < 1, xj > 0

}
,

has discrete volume

L∆◦(t) = #
{
(m1, . . . ,md) ∈ Zd

>0 : m1 + · · ·+ md < t
}

= #
{
(m1, . . . ,md+1) ∈ Zd+1

>0 : m1 + · · ·+ md+1 = t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t− d− 1

}
=

(
t− 1

d

)
=

(t− 1)(t− 2) · · · (t− d)
d!

,

a polynomial that happens to satisfy the algebraic relation(
t− 1

d

)
= (−1)d

(
−t + d

d

)
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The Standard Simplex

The interior of the d-simplex,

∆◦ =
{
x ∈ Rd : x1 + x2 + · · ·+ xd < 1, xj > 0

}
,

has discrete volume

L∆◦(t) = #
{
(m1, . . . ,md) ∈ Zd

>0 : m1 + · · ·+ md < t
}

= #
{
(m1, . . . ,md+1) ∈ Zd+1

>0 : m1 + · · ·+ md+1 = t
}

= #
{

(m1, . . . ,md+1) ∈ Zd+1
≥0 : m1 + · · ·+ md+1 = t− d− 1

}
=

(
t− 1

d

)
=

(t− 1)(t− 2) · · · (t− d)
d!

,

a polynomial that happens to satisfy the algebraic relation(
t− 1

d

)
= (−1)d

(
−t + d

d

)
, that is, L∆(−t) = (−1)dL∆◦(t) .
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Generating Functions

The discrete volume L∆(t) =
(
t+d
d

)
of the standard d-simplex comes with

the friendly generating function

∑
t≥0

(
t + d

d

)
zt =

1
(1− z)d+1

.
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Generating Functions

The discrete volume L∆(t) =
(
t+d
d

)
of the standard d-simplex comes with

the friendly generating function

∑
t≥0

(
t + d

d

)
zt =

1
(1− z)d+1

.

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhrP(z) := 1 +
∑
t≥1

LP(t) zt.
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∑
t≥0

(
t + d

d

)
zt =

1
(1− z)d+1

.

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhrP(z) := 1 +
∑
t≥1

LP(t) zt.

The Ehrhart series for the unit d-cube 2 is

Ehr2(z) = 1 +
∑
t≥1

(t + 1)d zt
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Generating Functions

The discrete volume L∆(t) =
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d

)
of the standard d-simplex comes with

the friendly generating function

∑
t≥0
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t + d

d

)
zt =

1
(1− z)d+1

.

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhrP(z) := 1 +
∑
t≥1

LP(t) zt.

The Ehrhart series for the unit d-cube 2 is

Ehr2(z) = 1 +
∑
t≥1

(t + 1)d zt =
1
z

∑
t≥1

td zt
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Generating Functions

The discrete volume L∆(t) =
(
t+d
d

)
of the standard d-simplex comes with

the friendly generating function

∑
t≥0

(
t + d

d

)
zt =

1
(1− z)d+1

.

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhrP(z) := 1 +
∑
t≥1

LP(t) zt.

The Ehrhart series for the unit d-cube 2 is

Ehr2(z) = 1 +
∑
t≥1

(t + 1)d zt =
1
z

∑
t≥1

td zt =
∑d

k=1 A(d, k) zk−1

(1− z)d+1
,

where A(d, k) are Eulerian numbers.
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Pyramids over the Unit Cube

Recall the pyramid over the (d− 1)-dimensional
unit cube 2: the convex hull of 2 (lifted
into dimension d) and (0, 0, . . . , 0, 1) or

Pyr =
{

(x1, x2, . . . , xd) ∈ Rd :
0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
.
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Pyramids over the Unit Cube

Recall the pyramid over the (d− 1)-dimensional
unit cube 2: the convex hull of 2 (lifted
into dimension d) and (0, 0, . . . , 0, 1) or

Pyr =
{

(x1, x2, . . . , xd) ∈ Rd :
0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
.

Its discrete volume is

LPyr(t) = #
{
(m1, . . . ,md) ∈ Zd : 0 ≤ m1, . . . ,md−1 ≤ t−md ≤ t

}
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Pyramids over the Unit Cube

Recall the pyramid over the (d− 1)-dimensional
unit cube 2: the convex hull of 2 (lifted
into dimension d) and (0, 0, . . . , 0, 1) or

Pyr =
{

(x1, x2, . . . , xd) ∈ Rd :
0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
.

Its discrete volume is

LPyr(t) = #
{
(m1, . . . ,md) ∈ Zd : 0 ≤ m1, . . . ,md−1 ≤ t−md ≤ t

}
=

t∑
md=0

(t−md + 1)d−1
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Pyramids over the Unit Cube

Recall the pyramid over the (d− 1)-dimensional
unit cube 2: the convex hull of 2 (lifted
into dimension d) and (0, 0, . . . , 0, 1) or

Pyr =
{

(x1, x2, . . . , xd) ∈ Rd :
0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
.

Its discrete volume is

LPyr(t) = #
{
(m1, . . . ,md) ∈ Zd : 0 ≤ m1, . . . ,md−1 ≤ t−md ≤ t

}
=

t∑
md=0

(t−md + 1)d−1 =
t+1∑
k=1

kd−1
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Pyramids over the Unit Cube

Recall the pyramid over the (d− 1)-dimensional
unit cube 2: the convex hull of 2 (lifted
into dimension d) and (0, 0, . . . , 0, 1) or

Pyr =
{

(x1, x2, . . . , xd) ∈ Rd :
0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
.

Its discrete volume is

LPyr(t) = #
{
(m1, . . . ,md) ∈ Zd : 0 ≤ m1, . . . ,md−1 ≤ t−md ≤ t

}
=

t∑
md=0

(t−md + 1)d−1 =
t+1∑
k=1

kd−1

=
1
d

(Bd(t + 2)−Bd(0)) ,

where Bd(x) denotes the d’th Bernoulli polynomial. The Bernoulli polyno-
mials are monic, and so vol(Pyr) = 1

d .
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Pyramids over the Unit Cube

The Bernoulli polynomials are defined through

z exz

ez − 1
=

∑
k≥0

Bk(x)
k!

zk

Discreet\ e Volume Computations for Polytopes: An Invitation to Ehrhart Theory Matthias Beck 14



Pyramids over the Unit Cube

The Bernoulli polynomials are defined through

z exz

ez − 1
=

∑
k≥0

Bk(x)
k!

zk

and have many interesting properties, e.g.,

Bd(1− x) = (−1)dBd(x) .
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Pyramids over the Unit Cube

The Bernoulli polynomials are defined through

z exz

ez − 1
=

∑
k≥0

Bk(x)
k!

zk

and have many interesting properties, e.g.,

Bd(1− x) = (−1)dBd(x) .

The discrete volume of the interior of Pyr can be computed similarly:

LPyr◦(t) =
1
d

(Bd(t− 1)−Bd(0)) ,

which gives
LPyr(−t) = (−1)dLPyr◦(t) .
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A Pyramid Exercise

If P is a (d−1)-dimensional lattice polytope, let Pyr(P) be the convex hull
of P (lifted into dimension d) and the point (0, 0, . . . , 0, 1). Then

EhrPyr(P)(z) =
EhrP(z)
1− z

.
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A Pyramid Exercise

If P is a (d−1)-dimensional lattice polytope, let Pyr(P) be the convex hull
of P (lifted into dimension d) and the point (0, 0, . . . , 0, 1). Then

EhrPyr(P)(z) =
EhrP(z)
1− z

.

For example, for the pyramid over the unit (d− 1)-cube, we obtain

EhrPyr(2)(z) =
∑d−1

k=1 A(d− 1, k) zk−1

(1− z)d+1
,

where A(d, k) are Eulerian numbers.
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The Cross-Polytope

To compute the discrete volume of the cross-polytope

3 =
{
(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1

}
= conv {(±1, 0, . . . , 0) , (0,±1, 0, . . . , 0) , . . . , (0, . . . , 0,±1)} ,

we start with an exercise about bipyramids:
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The Cross-Polytope

To compute the discrete volume of the cross-polytope

3 =
{
(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1

}
= conv {(±1, 0, . . . , 0) , (0,±1, 0, . . . , 0) , . . . , (0, . . . , 0,±1)} ,

we start with an exercise about bipyramids:

If P is a (d− 1)-dimensional lattice polytope, let BiPyr(P) be the convex
hull of P (lifted into dimension d) and the points (0, 0, . . . , 0,±1). Then

EhrBiPyr(P)(z) =
1 + z

1− z
EhrP(z) .
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The Cross-Polytope

To compute the discrete volume of the cross-polytope

3 =
{
(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1

}
= conv {(±1, 0, . . . , 0) , (0,±1, 0, . . . , 0) , . . . , (0, . . . , 0,±1)} ,

we start with an exercise about bipyramids:

If P is a (d− 1)-dimensional lattice polytope, let BiPyr(P) be the convex
hull of P (lifted into dimension d) and the points (0, 0, . . . , 0,±1). Then

EhrBiPyr(P)(z) =
1 + z

1− z
EhrP(z) .

For example, the d-dimensional cross-polytope 3 is the bipyramid over the
(d− 1)-dimensional cross-polytope.
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The Cross-Polytope

We thus recursively compute

Ehr3(z) =
(1 + z)d

(1− z)d+1
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The Cross-Polytope

We thus recursively compute

Ehr3(z) =
(1 + z)d

(1− z)d+1
,

from which one can expand

L3(t) =
d∑

k=0

(
d

k

)(
t− k + d

d

)
=

min(d,t)∑
k=0

2k

(
d

k

)(
t

k

)
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The Cross-Polytope

We thus recursively compute

Ehr3(z) =
(1 + z)d

(1− z)d+1
,

from which one can expand

L3(t) =
d∑

k=0

(
d

k

)(
t− k + d

d

)
=

min(d,t)∑
k=0

2k

(
d

k

)(
t

k

)
,

a polynomial in t with leading coefficient vol(3) =
2d

d!
.
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The Cross-Polytope

We thus recursively compute

Ehr3(z) =
(1 + z)d

(1− z)d+1
,

from which one can expand

L3(t) =
d∑

k=0

(
d

k

)(
t− k + d

d

)
=

min(d,t)∑
k=0

2k

(
d

k

)(
t

k

)
,

a polynomial in t with leading coefficient vol(3) =
2d

d!
.

Using the binomial reciprocity
(
m−1

d

)
= (−1)d

(−m+d
d

)
, we can see that

L3(−t) = (−1)dL3◦(t) .
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Pick’s Theorem

For a lattice polygon P containing I interior and B boundary lattice point,
Pick’s Theorem tells us how to compute the area of P :

A = I +
1
2
B − 1 .
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Pick’s Theorem

For a lattice polygon P containing I interior and B boundary lattice point,
Pick’s Theorem tells us how to compute the area of P :

A = I +
1
2
B − 1 .
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Do-it-yourself proof:

(1) Convince yourself that Pick’s formula is “additive”.
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Pick’s Theorem

For a lattice polygon P containing I interior and B boundary lattice point,
Pick’s Theorem tells us how to compute the area of P :

A = I +
1
2
B − 1 .

�
�

�
�

�
�

�
�J

J
J

J
J

���������

,
,

,
,

,
,

,
,

,

���
���












Do-it-yourself proof:

(1) Convince yourself that Pick’s formula is “additive”.

(2) Reduce to rectangles and right-angled triangles.
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Pick’s Theorem

For a lattice polygon P containing I interior and B boundary lattice point,
Pick’s Theorem tells us how to compute the area of P :

A = I +
1
2
B − 1 .
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Do-it-yourself proof:

(1) Convince yourself that Pick’s formula is “additive”.

(2) Reduce to rectangles and right-angled triangles.

(3) Prove Pick’s formula for these two cases.
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Pick’s Theorem Extended

P – lattice polygon with area A and B boundary lattice points

For a positive integer t, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP.
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Pick’s Theorem Extended

P – lattice polygon with area A and B boundary lattice points

For a positive integer t, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A · t2.
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Pick’s Theorem Extended

P – lattice polygon with area A and B boundary lattice points

For a positive integer t, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A · t2.

Nice Exercise: B(t) = B · t
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Pick’s Theorem Extended

P – lattice polygon with area A and B boundary lattice points

For a positive integer t, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A · t2.

Nice Exercise: B(t) = B · t

Thus Pick’s Theorem gives LP◦(t) = A t2 − 1
2
B t + 1
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Pick’s Theorem Extended

P – lattice polygon with area A and B boundary lattice points

For a positive integer t, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A · t2.

Nice Exercise: B(t) = B · t

Thus Pick’s Theorem gives LP◦(t) = A t2 − 1
2
B t + 1

and LP(t) = LP◦(t) + B t = A t2 +
1
2
B t + 1 .
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Pick’s Theorem Extended

P – lattice polygon with area A and B boundary lattice points

For a positive integer t, let A(t) denote the area of tP and B(t) the number
of boundary lattice points of tP. Clearly A(t) = A · t2.

Nice Exercise: B(t) = B · t

Thus Pick’s Theorem gives LP◦(t) = A t2 − 1
2
B t + 1

and LP(t) = LP◦(t) + B t = A t2 +
1
2
B t + 1 .

From this one easily obtains

EhrP(z) =

(
A− B

2 + 1
)
z2 +

(
A + B

2 − 2
)
z + 1

(1− z)3
.
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Ehrhart’s Theorem

Theorem (Ehrhart 1962) Suppose P is a lattice
polytope. Then LP(t) and LP◦(t) are polyno-
mials in t ∈ Z>0 of degree dimP. Equivalently,
EhrP(z) and EhrP◦(z) are rational functions of

the form
h(z)

(1− z)dimP+1
for some polynomials h(z).
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Ehrhart’s Theorem

Theorem (Ehrhart 1962) Suppose P is a lattice
polytope. Then LP(t) and LP◦(t) are polyno-
mials in t ∈ Z>0 of degree dimP. Equivalently,
EhrP(z) and EhrP◦(z) are rational functions of

the form
h(z)

(1− z)dimP+1
for some polynomials h(z).

Theorem (Ehrhart–Macdonald 1971) The polynomials LP(t) and LP◦(t)
satisfy the reciprocity relation

LP(−t) = (−1)dimPLP◦(t) .
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If You Want To See More . . .

M. Beck & S. Robins

Computing the continuous discretely
Integer-point enumeration in polyhedra

To be published by Springer at the end of 2006

Electronic copy available at math.sfsu.edu/beck
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Another Plug For Great, Free Software

YOU should check out Jesús De Loera et al’s LattE

www.math.ucdavis.edu/∼latte

and Sven Verdoolaege’s barvinok

freshmeat.net/projects/barvinok
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A Few Open Problems

I Choose d + 1 of the 2d vertices of the unit d-cube 2, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes volS?
(b) What is the maximum volume of such a S?
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A Few Open Problems

I Choose d + 1 of the 2d vertices of the unit d-cube 2, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes volS?
(b) What is the maximum volume of such a S?

I Find classes of integer d -polytopes (Pd)d≥1 for which each LPd
(t) is

symmetric in d and t. (The standard simplices ∆ and the cross-polytopes
3 form two such classes.)
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A Few Open Problems

I Choose d + 1 of the 2d vertices of the unit d-cube 2, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes volS?
(b) What is the maximum volume of such a S?

I Find classes of integer d -polytopes (Pd)d≥1 for which each LPd
(t) is

symmetric in d and t. (The standard simplices ∆ and the cross-polytopes
3 form two such classes.)

I All the roots of the polynomials L3(t) have real part −1
2 (an instance of

a “local Riemann hypothesis”). Find other classes of polytopes whose
lattice-point enumerator exhibits such a special behavior.
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I Choose d + 1 of the 2d vertices of the unit d-cube 2, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes volS?
(b) What is the maximum volume of such a S?

I Find classes of integer d -polytopes (Pd)d≥1 for which each LPd
(t) is

symmetric in d and t. (The standard simplices ∆ and the cross-polytopes
3 form two such classes.)

I All the roots of the polynomials L3(t) have real part −1
2 (an instance of

a “local Riemann hypothesis”). Find other classes of polytopes whose
lattice-point enumerator exhibits such a special behavior.

I Classify the polynomials of a fixed degree d that are Ehrhart polynomials.
(This is done for d = 2 and partially known for d = 3 and 4).
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A Few Open Problems

I Choose d + 1 of the 2d vertices of the unit d-cube 2, and let S be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes volS?
(b) What is the maximum volume of such a S?

I Find classes of integer d -polytopes (Pd)d≥1 for which each LPd
(t) is

symmetric in d and t. (The standard simplices ∆ and the cross-polytopes
3 form two such classes.)

I All the roots of the polynomials L3(t) have real part −1
2 (an instance of

a “local Riemann hypothesis”). Find other classes of polytopes whose
lattice-point enumerator exhibits such a special behavior.

I Classify the polynomials of a fixed degree d that are Ehrhart polynomials.
(This is done for d = 2 and partially known for d = 3 and 4).

I Study the roots of Ehrhart polynomials of integral polytopes in a fixed
dimension. Study the roots of the numerator of Ehrhart series.
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