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Dedekind Sums

Let

((x)) :=

{
{x} − bxc − 1

2 if x /∈ Z,
0 if x ∈ Z,

and define for positive integers a and b the Dedekind sum

s (a, b) :=
b−1∑
k=0

((
ka

b

))((
k

b

))
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{
{x} − bxc − 1

2 if x /∈ Z,
0 if x ∈ Z,

and define for positive integers a and b the Dedekind sum

s (a, b) :=
b−1∑
k=0

((
ka

b

))((
k

b

))

= −1
b

b−1∑
k=1

⌊
ka

b

⌋
(k − 1) + easy(a, b) .

Dedekind–Carlitz Polynomials as Lattice-Point Enumerators in Rational Polyhedra Matthias Beck 3



Dedekind Sums

Let

((x)) :=

{
{x} − bxc − 1

2 if x /∈ Z,
0 if x ∈ Z,

and define for positive integers a and b the Dedekind sum

s (a, b) :=
b−1∑
k=0

((
ka

b

))((
k

b

))

= −1
b

b−1∑
k=1

⌊
ka

b

⌋
(k − 1) + easy(a, b) .

Since their introduction in the 1880’s, the Dedekind sum and its
generalizations have intrigued mathematicians from various areas such as
analytic and algebraic number theory, topology, algebraic and combinatorial
geometry, and algorithmic complexity.
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Dedekind–Carlitz Polynomials

In the 1970’s, Leonard Carlitz introduced the following polynomial
generalization of the Dedekind sum:

c (u, v; a, b) :=
b−1∑
k=1

ub
ka
b cvk−1.
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Dedekind–Carlitz Polynomials

In the 1970’s, Leonard Carlitz introduced the following polynomial
generalization of the Dedekind sum:

c (u, v; a, b) :=
b−1∑
k=1

ub
ka
b cvk−1.

Carlitz proved the following reciprocity law if a and b are relatively prime:

(v − 1) c (u, v; a, b) + (u− 1) c (v, u; b, a) = ua−1vb−1 − 1 .
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Dedekind–Carlitz Polynomials

In the 1970’s, Leonard Carlitz introduced the following polynomial
generalization of the Dedekind sum:

c (u, v; a, b) :=
b−1∑
k=1

ub
ka
b cvk−1.

Carlitz proved the following reciprocity law if a and b are relatively prime:

(v − 1) c (u, v; a, b) + (u− 1) c (v, u; b, a) = ua−1vb−1 − 1 .

Applying u ∂u twice and v ∂v once gives Dedekind’s reciprocity law

s (a, b) + s (b, a) = −1
4

+
1
12

(
a

b
+

1
ab

+
b

a

)
.
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Enter Polyhedral Geometry

Decompose the first quadrant R2
≥0 into the two cones

K1 = {λ1(0, 1) + λ2(a, b) : λ1, λ2 ≥ 0} ,
K2 = {λ1(1, 0) + λ2(a, b) : λ1 ≥ 0, λ2 > 0} .
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Enter Polyhedral Geometry

Decompose the first quadrant R2
≥0 into the two cones

K1 = {λ1(0, 1) + λ2(a, b) : λ1, λ2 ≥ 0} ,
K2 = {λ1(1, 0) + λ2(a, b) : λ1 ≥ 0, λ2 > 0} .

Let’s compute the integer-point transforms

σK1(u, v) :=
∑

(m,n)∈K1∩Z2

umvn
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Enter Polyhedral Geometry

Decompose the first quadrant R2
≥0 into the two cones

K1 = {λ1(0, 1) + λ2(a, b) : λ1, λ2 ≥ 0} ,
K2 = {λ1(1, 0) + λ2(a, b) : λ1 ≥ 0, λ2 > 0} .

Let’s compute the integer-point transforms

σK1(u, v) :=
∑

(m,n)∈K1∩Z2

umvn = σΠ1(u, v)

∑
j≥0

vj

∑
k≥0

ukavkb


=

σΠ1(u, v)
(1− v) (1− uavb)

,

where Π1 is the fundamental parallelogram of K1:

Π1 = {λ1(0, 1) + λ2(a, b) : 0 ≤ λ1, λ2 < 1} .
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Carlitz Reciprocity

The integer points in this parallelogram are

Π1 ∩ Z2 =
{

(0, 0),
(
k,

⌊
kb

a

⌋
+ 1
)

: 1 ≤ k ≤ a− 1, k ∈ Z
}
.
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Carlitz Reciprocity

The integer points in this parallelogram are

Π1 ∩ Z2 =
{

(0, 0),
(
k,

⌊
kb

a

⌋
+ 1
)

: 1 ≤ k ≤ a− 1, k ∈ Z
}
,

from which we obtain

σK1(u, v) =
1 +

∑a−1
k=1 u

kvb
kb
a c+1

(1− v)(1− uavb)
=

1 + uv c (v, u; b, a)
(v − 1) (uavb − 1)

.
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Carlitz Reciprocity

The integer points in this parallelogram are

Π1 ∩ Z2 =
{

(0, 0),
(
k,

⌊
kb

a

⌋
+ 1
)

: 1 ≤ k ≤ a− 1, k ∈ Z
}
,

from which we obtain

σK1(u, v) =
1 +

∑a−1
k=1 u

kvb
kb
a c+1

(1− v)(1− uavb)
=

1 + uv c (v, u; b, a)
(v − 1) (uavb − 1)

.

Analogously, one computes σK2(u, v) = u+uv c(u,v;a,b)

(u−1)(uavb−1) and Carlitz’s

reciprocity law follows from

σK1(u, v) + σK2(u, v) = σR2
≥0

(u, v) =
1

(1− u)(1− v)
.
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Higher Dimensions

Our proof has a natural generalization to the higher-dimensional Dedekind–
Carlitz polynomials

c (u1, u2, . . . , un; a1, a2, . . . , an) :=
an−1∑
k=1

u

j
ka1
an

k
1 u

j
ka2
an

k
2 · · ·u

—
kan−1

an

�
n−1 uk−1

n ,

where u1, u2, . . . , un are indeterminates and a1, a2, . . . , an are positive
integers.
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Higher Dimensions

Our proof has a natural generalization to the higher-dimensional Dedekind–
Carlitz polynomials

c (u1, u2, . . . , un; a1, a2, . . . , an) :=
an−1∑
k=1

u

j
ka1
an

k
1 u

j
ka2
an

k
2 · · ·u

—
kan−1

an

�
n−1 uk−1

n ,

where u1, u2, . . . , un are indeterminates and a1, a2, . . . , an are positive
integers. Berndt–Dieter proved that if a1, a2, . . . , an are pairwise relatively
prime then

(un − 1) c (u1, u2, . . . , un; a1, a2, . . . , an)

+ (un−1 − 1) c (un, u1, . . . , un−2, un−1; an, a1, . . . , an−2, an−1)

+ · · ·+ (u1 − 1) c (u2, u3, . . . , un, u1; a2, a3, . . . , an, a1)

= ua1−1
1 ua2−1

2 · · ·uan−1
n − 1 .
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Higher Dimensions

Our proof has a natural generalization to the higher-dimensional Dedekind–
Carlitz polynomials

c (u1, u2, . . . , un; a1, a2, . . . , an) :=
an−1∑
k=1

u

j
ka1
an

k
1 u

j
ka2
an

k
2 · · ·u

—
kan−1

an

�
n−1 uk−1

n ,

where u1, u2, . . . , un are indeterminates and a1, a2, . . . , an are positive
integers. Berndt–Dieter proved that if a1, a2, . . . , an are pairwise relatively
prime then

(un − 1) c (u1, u2, . . . , un; a1, a2, . . . , an)

+ (un−1 − 1) c (un, u1, . . . , un−2, un−1; an, a1, . . . , an−2, an−1)

+ · · ·+ (u1 − 1) c (u2, u3, . . . , un, u1; a2, a3, . . . , an, a1)

= ua1−1
1 ua2−1

2 · · ·uan−1
n − 1 .

We could shift the cones involved in our proofs by a fixed vector. This gives
rise to shifts in the greatest-integer functions, and the resulting Carlitz sums
are polynomial analogues of Dedekind–Rademacher sums.
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Computational Complexity

Dedekind reciprocity immediately yields an efficient algorithm to compute
Dedekind sums; however, we do not know how to derive a similar complexity
statement from Carlitz reciprocity.
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Computational Complexity

Dedekind reciprocity immediately yields an efficient algorithm to compute
Dedekind sums; however, we do not know how to derive a similar complexity
statement from Carlitz reciprocity.

Fortunately, Barvinok proved in the 1990’s that in fixed dimension, the
integer-point transform σP (z1, z2, . . . , zd) of a rational polyhedron P can be
computed as a sum of rational functions in z1, z2, . . . , zd in time polynomial
in the input size of P.
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Dedekind reciprocity immediately yields an efficient algorithm to compute
Dedekind sums; however, we do not know how to derive a similar complexity
statement from Carlitz reciprocity.

Fortunately, Barvinok proved in the 1990’s that in fixed dimension, the
integer-point transform σP (z1, z2, . . . , zd) of a rational polyhedron P can be
computed as a sum of rational functions in z1, z2, . . . , zd in time polynomial
in the input size of P. Thus our cones imply immediately:

Theorem For fixed n, the higher-dimensional Dedekind–Carlitz polynomial
c (u1, u2, . . . , un; a1, a2, . . . , an) can be computed in time polynomial in the
size of a1, a2, . . . , an.
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Computational Complexity

Dedekind reciprocity immediately yields an efficient algorithm to compute
Dedekind sums; however, we do not know how to derive a similar complexity
statement from Carlitz reciprocity.

Fortunately, Barvinok proved in the 1990’s that in fixed dimension, the
integer-point transform σP (z1, z2, . . . , zd) of a rational polyhedron P can be
computed as a sum of rational functions in z1, z2, . . . , zd in time polynomial
in the input size of P. Thus our cones imply immediately:

Theorem For fixed n, the higher-dimensional Dedekind–Carlitz polynomial
c (u1, u2, . . . , un; a1, a2, . . . , an) can be computed in time polynomial in the
size of a1, a2, . . . , an.

In particular, there is a more economical way to write the “long” polynomial
c (u1, u2, . . . , un; a1, a2, . . . , an) as a short sum of rational functions. Our
theorem also implies that any Dedekind-like sum that can be derived from
Dedekind–Carlitz polynomials can also be computed efficiently.
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General 2-Dimensional Rational Cones

Theorem Let a, b, c, d ∈ Z>0 such that ad > bc and gcd(a, b) = gcd(c, d) =
1 , and define x, y ∈ Z through ax + by = 1 . Then the cone K :=
{λ(a, b) + µ(c, d) : λ, µ ≥ 0} has the integer-point transform

σK(u, v) =
1 + ua−yvb+x c

(
uavb, u−yvx; cx+ dy, ad− bc

)
(uavb − 1) (ucvd − 1)

.
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General 2-Dimensional Rational Cones

Theorem Let a, b, c, d ∈ Z>0 such that ad > bc and gcd(a, b) = gcd(c, d) =
1 , and define x, y ∈ Z through ax + by = 1 . Then the cone K :=
{λ(a, b) + µ(c, d) : λ, µ ≥ 0} has the integer-point transform

σK(u, v) =
1 + ua−yvb+x c

(
uavb, u−yvx; cx+ dy, ad− bc

)
(uavb − 1) (ucvd − 1)

.

We can decompose R2
≥0 into K plus two more cones whose integer-point

transform can be computed as shown earlier. This immediately yields a
polynomial generalization of a three-term reciprocity law of Pommersheim:

Theorem Let a, b, c, d, x, y be as above, then

uv(u− 1)
(
uavb − 1

)
c (v, u; d, c) + uv(v − 1)

(
ucvd − 1

)
c (u, v; a, b)

+ua−yvb+x (u− 1) (v − 1) c
(
uavb, u−yvx; cx+ dy, ad− bc

)
= ua+cvb+d − uavb(uv − v + 1)− ucvd(uv − u+ 1) + uv .
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Enter Brion Decompositions

Brion’s theorem says that for a rational convex polytope P , we have the
following identity of rational functions:

σP(z) =
∑

v

σKv(z) ,

where the sum is over all vertices of P and Kv denotes the vertex cone at
vertex v.
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Enter Brion Decompositions

Brion’s theorem says that for a rational convex polytope P , we have the
following identity of rational functions:

σP(z) =
∑

v

σKv(z) ,

where the sum is over all vertices of P and Kv denotes the vertex cone at
vertex v.

Let a and b be relatively prime positive integers and ∆ the triangle with
vertices (0, 0) , (a, 0) , and (0, b) . Brion’s theorem allows us to give a
novel expression for the Dedekind–Carlitz polynomial as the integer-point
transform of a certain triangle.

Theorem (u− 1)σ∆(u, v) = uav c
(

1
u, v; a, b

)
+ u

(
ua + vb

)
− v

b+1 − 1
v − 1

.
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Mordell–Pommersheim Tetrahedra

Mordell established the first connection between lattice point formulas and
Dedekind sums in the 1950’s; his theorem below was vastly generalized in
the 1990’s by Pommersheim.

Let T be the convex hull of (a, 0, 0), (0, b, 0), (0, 0, c), and (0, 0, 0), where
a, b, and c are pairwise relatively prime positive integers. Then the Ehrhart
polynomial #

(
tT ∩ Z3

)
of T is

LT (t) =
abc

6
t3 +

ab+ ac+ bc+ 1
4

t2

+
(

3
4

+
a+ b+ c

4
+

1
12

(
bc

a
+
ca

b
+
ab

c
+

1
abc

)
−s (bc, a)− s (ca, b)− s (ab, c)

)
t+ 1 .
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Mordell–Pommersheim Tetrahedra

For positive integers a, b, c , and indeterminates u, v, w , we define the
Dedekind–Rademacher–Carlitz sum

drc(u, v, w; a, b, c) :=
c−1∑
k=0

b−1∑
j=0

ub
ja
b +ka

c cvjwk.
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Mordell–Pommersheim Tetrahedra

For positive integers a, b, c , and indeterminates u, v, w , we define the
Dedekind–Rademacher–Carlitz sum

drc(u, v, w; a, b, c) :=
c−1∑
k=0

b−1∑
j=0

ub
ja
b +ka

c cvjwk.

Theorem Let T be the convex hull of (a, 0, 0), (0, b, 0), (0, 0, c), and (0, 0, 0)
where a, b, and c are pairwise relatively prime positive integers. Then

(u− 1)(v − 1)(w − 1)
(
ua − vb

)
(ua − wc)

(
vb − wc

)
σtT (u, v, w)

= u(t+2)a(v − 1)(w − 1)
(
vb − wc

) (
(u− 1) + drc

(
u−1, v, w; a, b, c

))
−v(t+2)b(u− 1)(w − 1) (ua − wc)

(
(v − 1) + drc

(
v−1, u, w; b, a, c

))
+w(t+2)c(u− 1)(w − 1)

(
ua − vb

) (
(w − 1) + drc

(
w−1, u, v; c, a, b

))
−
(
ua − vb

)
(ua − wc)

(
vb − wc

)
.
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Mordell–Pommersheim Tetrahedra

For positive integers a, b, c , and indeterminates u, v, w , we define the
Dedekind–Rademacher–Carlitz sum
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c−1∑
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j=0

ub
ja
b +ka

c cvjwk.

Theorem Let T be the convex hull of (a, 0, 0), (0, b, 0), (0, 0, c), and (0, 0, 0)
where a, b, and c are pairwise relatively prime positive integers. Then

(u− 1)(v − 1)(w − 1)
(
ua − vb

)
(ua − wc)

(
vb − wc

)
σtT (u, v, w)

= u(t+2)a(v − 1)(w − 1)
(
vb − wc

) (
(u− 1) + drc

(
u−1, v, w; a, b, c

))
−v(t+2)b(u− 1)(w − 1) (ua − wc)

(
(v − 1) + drc

(
v−1, u, w; b, a, c

))
+w(t+2)c(u− 1)(w − 1)

(
ua − vb

) (
(w − 1) + drc

(
w−1, u, v; c, a, b

))
−
(
ua − vb

)
(ua − wc)

(
vb − wc

)
.

The Mordell–Pommersheim theorem follows with LT (t) = σtT (1, 1, 1).
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