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Chapter 1

Complex Numbers

Die ganzen Zahlen hat der liebe Gott gescha�en, alles andere ist Menschenwerk.
(God created the integers, everything else is made by humans.)
Leopold Kronecker (1823–1891)

The real numbers have many useful properties. There are operations such as addition,
subtraction, and multiplication, as well as division by any nonzero number. There
are useful laws that govern these operations, such as the commutative and distributive
laws. We can take limits and do calculus, di�erentiating and integrating functions.
But you cannot take a square root of −1; that is, you cannot find a real root of the
equation

x 2 + 1 = 0 . (1.1)

Most of you have heard that there is a “new” number i that is a root of (1.1); that
is, i 2 + 1 = 0 or i 2 = −1. We will show that when the real numbers are enlarged
to a new system called the complex numbers, which includes i , not only do we gain
numbers with interesting properties, but we do not lose many of the nice properties
that we had before.

The complex numbers, like the real numbers, will have the operations of addition,
subtraction, multiplication, as well as division by any complex number except zero.
These operations will follow all the laws that we are used to, such as the commutative
and distributive laws. We will also be able to take limits and do calculus. And, there
will be a root of (1.1).

As a brief historical aside, complex numbers did not originate with the search for
a square root of −1; rather, they were introduced in the context of cubic equations.
Scipione del Ferro (1465–1526) and Niccolò Tartaglia (1500–1557) discovered
a way to find a root of any cubic polynomial, which was publicized by Gerolamo
Cardano (1501–1576) and is often referred to as Cardano’s formula. For the cubic
polynomial x 3 + px + q , Cardano’s formula involves the quantity

q

q2

4 +
p3

27 . It is
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not hard to come up with examples for p and q for which the argument of this
square root becomes negative and thus not computable within the real numbers.
On the other hand (e.g., by arguing through the graph of a cubic polynomial),
every cubic polynomial has at least one real root. This seeming contradiction can be
solved using complex numbers, as was probably first exemplified by Rafael Bombelli
(1526–1572).

In the next section we show exactly how the complex numbers are set up, and
in the rest of this chapter we will explore the properties of the complex numbers.
These properties will be of both algebraic (such as the commutative and distributive
properties mentioned already) and geometric nature. You will see, for example, that
multiplication can be described geometrically. In the rest of the book, the calculus
of complex numbers will be built on the properties that we develop in this chapter.

1.1 Definitions and Algebraic Properties

There are many equivalent ways to think about a complex number, each of which
is useful in its own right. In this section, we begin with a formal definition of a
complex number. We then interpret this formal definition in more useful and easier-
to-work-with algebraic language. Later we will see several more ways of thinking
about complex numbers.

Definition. The complex numbers are pairs of real numbers,

C := {(x , y ) : x , y ∈R} ,

equipped with the addition

(x , y ) + (a, b ) := (x + a, y + b ) (1.2)

and the multiplication

(x , y ) · (a, b ) := (xa − y b , x b + ya) . (1.3)

One reason to believe that the definitions of these binary operations are acceptable
is that C is an extension of R, in the sense that the complex numbers of the form
(x , 0) behave just like real numbers:

(x , 0) + (y, 0) = (x + y, 0) and (x , 0) · (y, 0) = (x y, 0) .
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So we can think of the real numbers being embedded inC as those complex numbers
whose second coordinate is zero.

The following result states the algebraic structure that we established with our
definitions.

Proposition 1.1. (C,+, ·) is a field, that is,for all (x , y ), (a, b ), (c , d ) ∈C:

(x , y ) + (a, b ) ∈C (1.4)
�

(x , y ) + (a, b )
�

+ (c , d ) = (x , y ) +
�

(a, b ) + (c , d )
�

(1.5)

(x , y ) + (a, b ) = (a, b ) + (x , y ) (1.6)

(x , y ) + (0, 0) = (x , y ) (1.7)

(x , y ) + (−x ,−y ) = (0, 0) (1.8)

(x , y ) ·
�

(a, b ) + (c , d )
�

= (x , y ) · (a, b ) + (x , y ) · (c , d ) (1.9)

(x , y ) · (a, b ) ∈C (1.10)
�

(x , y ) · (a, b )
�

· (c , d ) = (x , y ) ·
�

(a, b ) · (c , d )
�

(1.11)

(x , y ) · (a, b ) = (a, b ) · (x , y ) (1.12)

(x , y ) · (1, 0) = (x , y ) (1.13)

for all (x , y ) ∈C \ {(0, 0)} : (x , y ) ·
�

x
x 2+y2 , −y

x 2+y2

�

= (1, 0) (1.14)

What we are stating here can be compressed in the language of algebra: equations
(1.4)–(1.8) say that (C,+) is an Abelian group with identity (0, 0); equations (1.10)–
(1.14) say that (C \ {(0, 0)}, ·) is an Abelian group with identity (1, 0).

The proof of Proposition 1.1 is straightforward but nevertheless makes for good
practice (Exercise 1.14). We give one sample:

Proof of (1.8). By our definition for complex addition and properties of additive
inverses in R,

(x , y ) + (−x ,−y ) = (x + (−x ), y + (−y )) = (0, 0) .

The definition of our multiplication implies the innocent looking statement

(0, 1) · (0, 1) = (−1, 0) . (1.15)



4 complex numbers

This identity together with the fact that

(a, 0) · (x , y ) = (ax , a y )

allows an alternative notation for complex numbers. The latter implies that we can
write

(x , y ) = (x , 0) + (0, y ) = (x , 0) · (1, 0) + (y, 0) · (0, 1) .

If we think —in the spirit of our remark about embedding R into C—of (x , 0) and
(y, 0) as the real numbers x and y , then this means that we can write any complex
number (x , y ) as a linear combination of (1, 0) and (0, 1), with the real coe�cients
x and y . Now (1, 0), in turn, can be thought of as the real number 1. So if we give
(0, 1) a special name, say i , then the complex number that we used to call (x , y ) can
be written as x · 1+ y · i or

x + i y .

Definition. The number x is called the real part and y the imaginary part1 of the
complex number x + i y , often denoted as Re(x + i y ) = x and Im(x + i y ) = y .

The identity (1.15) then reads

i 2 = −1 .

In fact, much more can now be said with the introduction of the square root of
−1. It is not just that (1.1) has a root, but every nonconstant polynomial has roots
in C:

Fundamental Theorem of Algebra (see Theorem 5.11). Every nonconstant polyno-
mial of degree d has d roots (counting multiplicity) in C.

The proof of this theorem requires some (important) machinery, so we defer its
proof and an extended discussion of it to Chapter 5.

We invite you to check that the definitions of our binary operations and Propo-
sition 1.1 are coherent with the usual real arithmetic rules if we think of complex
numbers as given in the form x + i y .

1The name has historical reasons: people thought of complex numbers as unreal, imagined.
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1.2 From Algebra to Geometry and Back

Although we just introduced a new way of writing complex numbers, let’s for a
moment return to the (x , y )-notation. It suggests that we can think of a complex
number as a two-dimensional real vector. When plotting these vectors in the plane
R

2, we will call the x -axis the real axis and the y -axis the imaginary axis. The addi-
tion that we defined for complex numbers resembles vector addition; see Figure 1.1.
The analogy stops at multiplication: there is no “usual” multiplication of two vectors
in R2 that gives another vector, and certainly not one that agrees with our definition
of the product of two complex numbers.

DD

kk

WW
z1

z2

z1 + z2

Figure 1.1: Addition of complex numbers.

Any vector in R2 is defined by its two coordinates. On the other hand, it is also
determined by its length and the angle it encloses with, say, the positive real axis;
let’s define these concepts thoroughly.

Definition. The absolute value (also called the modulus) of z = x + i y is

r = |z | :=
Æ

x 2 + y2 ,

and an argument of z = x + i y is a number φ ∈R such that

x = r cosφ and y = r sinφ .

A given complex number z = x + i y has infinitely many possible arguments. For
instance, the number 1 = 1+ 0i lies on the positive real axis, and so has argument 0,
but we could just as well say it has argument 2π, 4π, −2π, or 2πk for any integer k .
The number 0 = 0+ 0i has modulus 0, and every real number φ is an argument.
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Aside from the exceptional case of 0, for any complex number z , the arguments of
z all di�er by a multiple of 2π, just as we saw for the example z = 1.

The absolute value of the di�erence of two vectors has a nice geometric interpre-
tation:

Proposition 1.2. Let z1, z2 ∈C be two complex numbers, thought of as vectors in
R

2, and let d (z1, z2) denote the distance between (the endpoints of ) the two vectors
in R2 (see Figure 1.2). Then

d (z1, z2) = |z1 − z2| = |z2 − z1| .

Proof. Let z1 = x1 + i y1 and z2 = x2 + i y2. From geometry we know that

d (z1, z2) =
Æ

(x1 − x2)2 + (y1 − y2)2 .

This is the definition of |z1 − z2|. Since (x1 − x2)
2 = (x2 − x1)

2 and (y1 − y2)
2 =

(y2 − y1)
2, this is also equal to |z2 − z1|.

DD

kk

44
z1

z2

z1 − z2

Figure 1.2: Geometry behind the distance between two complex numbers.

That |z1 − z2| = |z2 − z1| simply says that the vector from z1 to z2 has the same
length as the vector from z2 to z1.

It is very useful to keep this geometric interpretation in mind when thinking
about the absolute value of the di�erence of two complex numbers.

One reason to introduce the absolute value and argument of a complex number
is that they allow us to give a geometric interpretation for the multiplication of two
complex numbers. Let’s say we have two complex numbers: x1 + i y1, with absolute
value r1 and argument φ1, and x2 + i y2, with absolute value r2 and argument
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φ2. This means we can write x1 + i y1 = (r1 cosφ1) + i (r1 sinφ1) and x2 + i y2 =
(r2 cosφ2) + i (r2 sinφ2). To compute the product, we make use of some classic
trigonometric identities:

(x1 + i y1)(x2 + i y2) = (r1 cosφ1 + i r1 sinφ1) (r2 cosφ2 + i r2 sinφ2)

= (r1 r2 cosφ1 cosφ2 − r1 r2 sinφ1 sinφ2)

+ i (r1 r2 cosφ1 sinφ2 + r1 r2 sinφ1 cosφ2)

= r1 r2
�

(cosφ1 cosφ2 − sinφ1 sinφ2) + i (cosφ1 sinφ2 + sinφ1 cosφ2)
�

= r1 r2
�

cos(φ1 +φ2) + i sin(φ1 +φ2)
�

.

So the absolute value of the product is r1 r2 and one of its arguments is φ1 + φ2.
Geometrically, we are multiplying the lengths of the two vectors representing our
two complex numbers and adding their angles measured with respect to the positive
real axis.2

FFff

xx

.....
........

..
...
.....
.......

.......
..............

...........................

....
.....
...
....

....
...

.....
.......

...............................................................

z1z2

z1z2

φ1

φ2

φ1 +φ2

Figure 1.3: Multiplication of complex numbers.

In view of the above calculation, it should come as no surprise that we will have
to deal with quantities of the form cosφ + i sinφ (where φ is some real number)
quite a bit. To save space, bytes, ink, etc., (and because “Mathematics is for lazy
people”3) we introduce a shortcut notation and define

e iφ := cosφ + i sinφ .

2You should convince yourself that there is no problem with the fact that there are many possible
arguments for complex numbers, as both cosine and sine are periodic functions with period 2π.

3Peter Hilton (Invited address, Hudson River Undergraduate Mathematics Conference 2000).
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Figure 1.4 shows three examples. At this point, this exponential notation is indeed

e 7πi
8

e− πi
2 = −i

e πi
4 = 1p

2
+ i 1p

2

Figure 1.4: Three sample complex numbers of the form e iφ .

purely a notation.4 We will later see in Chapter 3 that it has an intimate connection
to the complex exponential function. For now, we motivate this maybe strange
seeming definition by collecting some of its properties:

Proposition 1.3. For any φ ,φ1,φ2 ∈R,

(a) e iφ1 e iφ2 = e i (φ1+φ2)

(b) e i0 = 1

(c) 1
e iφ = e−iφ

(d) e i (φ+2π) = e iφ

(e) |e iφ | = 1

(f ) d
dφ e iφ = i e iφ .

You are encouraged to prove them (Exercise 1.16); again we give a sample.

Proof of (f ). By definition of e iφ ,

d
dφ

e iφ =
d
dφ
(cosφ + i sinφ ) = − sinφ + i cosφ = i (cosφ + i sinφ ) = i e iφ .

4In particular, while our notation “proves” Euler’s formula e2πi = 1, this simply follows from the facts
sin(2π) = 0 and cos(2π) = 1. The connection between the numbers π, i , 1, and the complex exponential
function (and thus the number e ) is somewhat deeper. We’ll explore this in Section 3.5.
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Proposition 1.3 implies that (e2πi m
n )n = 1 for any integers m and n > 0. Thus

numbers of the form e2πi q with q ∈Q play a pivotal role in solving equations of the
form z n = 1 —plenty of reason to give them a special name.

Definition. A root of unity is a number of the form e2πi m
n for some integers m and

n > 0. Equivalently (by Exercise 1.17), a root of unity is a complex number ζ such
that ζ n = 1 for some positive integer n. In this case, we call ζ an nth root of unity.
If n is the smallest positive integer with the property ζ n = 1 then ζ is a primitive
nth root of unity.

Example 1.4. The 4th roots of unity are ±1 and ±i = e± πi
2 . The latter two are

primitive 4th roots of unity.

With our new notation, the sentence the complex number x + i y has absolute
value r and argument φ now becomes the identity

x + i y = r e iφ .

The left-hand side is often called the rectangular form, the right-hand side the polar
form of this complex number.

We now have five di�erent ways of thinking about a complex number: the formal
definition, in rectangular form, in polar form, and geometrically, using Cartesian
coordinates or polar coordinates. Each of these five ways is useful in di�erent
situations, and translating between them is an essential ingredient in complex analysis.
The five ways and their corresponding notation are listed in Figure 1.5. This list is
not exhaustive; see, e.g., Exercise 1.21.

1.3 Geometric Properties

From the chain of basic inequalities −
p

x 2 + y2 ≤ −
p

x 2 ≤ x ≤
p

x 2 ≤
p

x 2 + y2

(or, alternatively, by arguing with basic geometric properties of triangles), we obtain
the inequalities

−|z | ≤ Re(z ) ≤ |z | and − |z | ≤ Im(z ) ≤ |z | . (1.16)

The square of the absolute value has the nice property

|x + i y |2 = x 2 + y2 = (x + i y )(x − i y ) .
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Formal
(x , y )

Algebraic:

Geometric:

rectangular exponential

cartesian polar

x + i y r e iθ

r

θ
x

y

zz

Figure 1.5: Five ways of thinking about a complex number.

This is one of many reasons to give the process of passing from x + i y to x − i y a
special name.

Definition. The number x − i y is the (complex) conjugate of x + i y . We denote
the conjugate by

x + i y := x − i y .

Geometrically, conjugating z means reflecting the vector corresponding to z
with respect to the real axis. The following collects some basic properties of the
conjugate.

Proposition 1.5. For any z , z1, z2 ∈C,

(a) z1 ± z2 = z1 ± z2

(b) z1 · z2 = z1 · z2

(c)
�

z1
z2

�

= z1
z2

(d) z = z

(e) |z | = |z |

(f ) |z |2 = z z

(g) Re(z ) = 1
2 (z + z )

(h) Im(z ) = 1
2i (z − z )

(i) e iφ = e−iφ .

The proofs of these properties are easy (Exercise 1.22); once more we give a sample.

Proof of (b). Let z1 = x1 + i y1 and z2 = x2 + i y2. Then

z1 · z2 = (x1x2 − y1 y2) + i (x1 y2 + x2 y1) = (x1x2 − y1 y2)− i (x1 y2 + x2 y1)

= (x1 − i y1)(x2 − i y2) = z1 · z2 .
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We note that (f ) yields a neat formula for the inverse of a nonzero complex
number, which is implicit already in (1.14):

z−1 =
1
z
=

z
|z |2

.

A famous geometric inequality (which holds, more generally, for vectors in Rn)
goes as follows.

Proposition 1.6 (Triangle inequality). For any z1, z2 ∈C we have |z1 + z2| ≤ |z1|+
|z2| .

By drawing a picture in the complex plane, you should be able to come up with a
geometric proof of the triangle inequality. Here we proceed algebraically:

Proof. We make extensive use of Proposition 1.5:

|z1 + z2|
2 = (z1 + z2) (z1 + z2) = (z1 + z2) (z1 + z2) = z1z1 + z1z2 + z2z1 + z2z2

= |z1|
2 + z1z2 + z1z2 + |z2|

2 = |z1|
2 + 2Re (z1z2) + |z2|

2

≤ |z1|
2 + 2 |z1z2|+ |z2|

2 = |z1|
2 + 2 |z1| |z2|+ |z2|

2

= |z1|
2 + 2 |z1| |z2|+ |z2|

2 = (|z1|+ |z2|)
2 ,

where the inequality follows from (1.16). Taking square roots on the left- and
right-hand side proves our claim.

For future reference we list several useful variants of the triangle inequality:

Corollary 1.7. For z1, z2, . . . , zn ∈C, we have the following relations:

(a) The triangle inequality: |±z1 ± z2| ≤ |z1|+ |z2| .

(b) The reverse triangle inequality: |±z1 ± z2| ≥
�

�|z1| − |z2|
�

� .

(c) The triangle inequality for sums:
�

�

�

�

�

n
∑

k=1
zk

�

�

�

�

�

≤
n
∑

k=1
|zk | .

Inequality (a) is just a rewrite of the original triangle inequality, using the fact
that |±z | = |z |, and (c) follows by induction. The proof of the reverse triangle
inequality (b) is left as Exercise 1.25.
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1.4 Elementary Topology of the Plane

In Section 1.2 we saw that the complex numbers C, which were initially defined
algebraically, can be identified with the points in the Euclidean plane R2. In this
section we collect some definitions and results concerning the topology of the plane.

x

y

C [2+ i , 2]

D[−2, 1
3 ] 11

Figure 1.6: Sample circle and disk.

In Proposition 1.2, we interpreted |z −w | as the distance between the complex
numbers z and w , viewed as points in the plane. So if we fix a complex number a
and a positive real number r , then all z ∈ C satisfying |z − a| = r form the set of
points at distance r from a; that is, this set is the circle with center a and radius r ,
which we denote by

C [a, r ] := {z ∈C : |z − a| = r } .

The inside of this circle is called the open disk with center a and radius r ; we use
the notation

D[a, r ] := {z ∈C : |z − a| < r } .

Note that D[a, r ] does not include the points on C [a, r ]. Figure 1.6 illustrates these
definitions.

Next we need some terminology for talking about subsets of C.

Definition. Suppose G is a subset of C.
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(a) A point a ∈G is an interior point of G if some open disk with center a is a
subset of G .

(b) A point b ∈ C is a boundary point of G if every open disk centered at b
contains a point in G and also a point that is not in G .

(c) A point c ∈C is an accumulation point of G if every open disk centered at c
contains a point of G di�erent from c .

(d) A point d ∈ G is an isolated point of G if some open disk centered at d
contains no point of G other than d .

The idea is that if you don’t move too far from an interior point of G then you
remain in G ; but at a boundary point you can make an arbitrarily small move and
get to a point inside G and you can also make an arbitrarily small move and get to a
point outside G .

Definition. A set is open if all its points are interior points. A set is closed if it
contains all its boundary points.

Example 1.8. For r > 0 and a ∈ C, the sets {z ∈C : |z − a| < r } = D[a, r ] and
{z ∈C : |z − a| > r } are open. The closed disk

D[a, r ] := {z ∈C : |z − a| ≤ r }

is an example of a closed set.

A given set might be neither open nor closed. The complex plane C and the
empty set ∅ are (the only sets that are) both open and closed.

Definition. The boundary ∂G of a set G is the set of all boundary points of G .
The interior of G is the set of all interior points of G . The closure of G is the set
G ∪ ∂G .

Example 1.9. The closure of the open disk D[a, r ] is D[a, r ]. The boundary of
D[a, r ] is the circle C [a, r ].

Definition. The set G is bounded if G ⊆ D[0, r ] for some r .

One notion that is somewhat subtle in the complex domain is the idea of
connectedness. Intuitively, a set is connected if it is “in one piece.” In R a set is
connected if and only if it is an interval, so there is little reason to discuss the matter.
However, in the plane there is a vast variety of connected subsets.
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x

y

Figure 1.7: The intervals [0, 1) and (1, 2] are separated.

Definition. Two sets X , Y ⊆C are separated if there are disjoint open sets A, B ⊂C
so that X ⊆ A and Y ⊆ B . A set G ⊆C is connected if it is impossible to find two
separated nonempty sets whose union is G . A region is a connected open set.

The idea of separation is that the two open sets A and B ensure that X and Y
cannot just “stick together.” It is usually easy to check that a set is not connected. On
the other hand, it is hard to use the above definition to show that a set is connected,
since we have to rule out any possible separation.

Example 1.10. The intervals X = [0, 1) and Y = (1, 2] on the real axis are separated:
There are infinitely many choices for A and B that work; one choice is A = D[0, 1]
and B = D[2,1], depicted in Figure 1.7. Hence X ∪ Y = [0,2] \ {1} is not
connected.

One type of connected set that we will use frequently is a path.

Definition. A path (or curve) in C is a continuous function γ : [a, b ]→C, where
[a, b ] is a closed interval in R. We may think of γ as a parametrization of the image
that is painted by the path and will often write this parametrization as γ(t ), a ≤ t ≤ b .
The path is smooth if γ is di�erentiable and the derivative γ ′ is continuous and
nonzero.5

5There is a subtlety here, because γ is defined on a closed interval. For γ : [a, b ]→C to be smooth,
we demand both that γ ′(t ) exists for all a < t < b , and that limt→a+ γ ′(t ) and limt→b− γ ′(t ) exist.
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This definition uses the calculus notions of continuity and di�erentiability; that
is, γ : [a, b ]→C being continuous means that for all t0 ∈ [a, b ]

lim
t→t0

γ(t ) = γ(t0) ,

and the derivative of γ at t0 is defined by

γ ′(t0) = lim
t→t0

γ(t )− γ(t0)
t − t0

.

x

y

11

γ1(t ) = −2+ 2 e i t , π
2 ≤ t ≤ 2π γ2(t ) =

¨

3+ i (t − 2) if 0 ≤ t ≤ 3
6− t + i

2 (t − 1) if 3 ≤ t ≤ 5

Figure 1.8: Two paths and their parametrizations; γ1 is smooth and γ2 is continuous
and piecewise smooth.

Figure 1.8 shows two examples. We remark that each path comes with an
orientation, i.e., a sense of direction. For example, the path γ1 in Figure 1.8 is
di�erent from

γ3(t ) = −2+ 2 e−i t , 0 ≤ t ≤ 3π
2 ,

even though both γ1 and γ3 yield the same picture: γ1 features a counter-clockwise
orientation, where as that of γ3 is clockwise.

It is a customary and practical abuse of notation to use the same letter for the path
and its parametrization. We emphasize that a path must have a parametrization, and
that the parametrization must be defined and continuous on a closed and bounded
interval [a, b ]. Since topologically we may identifyCwithR2, a path can be specified
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by giving two continuous real-valued functions of a real variable, x (t ) and y (t ), and
setting γ(t ) = x (t ) + i y (t ).

Definition. The path γ : [a, b ]→C is simple if γ(t ) is one-to-one, with the possible
exception that γ(a) = γ(b ) (in plain English: the path does not cross itself ). A path
γ : [a, b ]→C is closed if γ(a) = γ(b ).

Example 1.11. The unit circle C [0,1], parametrized, e.g., by γ(t ) = e i t , 0 ≤ t ≤
2π, is a simple closed path.

As seems intuitively clear, any path is connected; however, a proof of this fact
requires a bit more preparation in topology. The same goes for the following result,
which gives a useful property of open connected sets.

Theorem 1.12. If any two points in G ⊆C can be connected by a path in G , then
G is connected. Conversely, if G ⊆C is open and connected, then any two points
of G can be connected by a path in G ; in fact, we can connect any two points of G
by a chain of horizontal and vertical segments lying in G .

Here a chain of segments in G means the following: there are points z0, z1, . . . ,
zn so that zk and zk+1 are the endpoints of a horizontal or vertical segment in G , for
all k = 0, 1, . . . , n − 1. (It is not hard to parametrize such a chain, so it determines a
path.)

Example 1.13. Consider the open unit disk D[0,1]. Any two points in D[0,1]
can be connected by a chain of at most two segments in D[0,1], and so D[0,1]
is connected. Now let G = D[0,1] \ {0}; this is the punctured disk obtained by
removing the center from D[0,1]. Then G is open and it is connected, but now
you may need more than two segments to connect points. For example, you need
three segments to connect − 1

2 to 1
2 since we cannot go through 0.

We remark that the second part of Theorem 1.12 is not generally true if G is
not open. For example, circles are connected but there is no way to connect two
distinct points of a circle by a chain of segments that are subsets of the circle. A more
extreme example, discussed in topology texts, is the “topologist’s sine curve,” which
is a connected set S ⊂C that contains points that cannot be connected by a path of
any sort within S .
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Exercises

1.1. Let z = 1+ 2i and w = 2− i . Compute the following:

(a) z + 3w

(b) w − z

(c) z 3

(d) Re(w2 +w )

(e) z 2 + z + i

1.2. Find the real and imaginary parts of each of the following:

(a) z−a
z+a for any a ∈R

(b) 3+5i
7i+1

(c)
�

−1+i
p

3
2

�3 (d) i n for any n ∈ Z

1.3. Find the absolute value and conjugate of each of the following:

(a) −2+ i

(b) (2+ i )(4+ 3i )

(c) 3−ip
2+3i

(d) (1+ i )6

1.4. Write in polar form:

(a) 2i

(b) 1+ i

(c) −3+
p

3 i

(d) −i

(e) (2− i )2

(f ) |3− 4i |

(g)
p

5− i

(h)
�

1−ip
3

�4

1.5. Write in rectangular form:

(a)
p

2 e i 3π
4

(b) 34 e i π
2

(c) −e i250π

(d) 2 e4πi

1.6. Write in both polar and rectangular form:

(a) e ln(5)i (b) d
dφ eφ+iφ



18 complex numbers

1.7. Show that the quadratic formula works. That is, for a, b , c ∈ R with a 6= 0,
prove that the roots of the equation az 2 + b z + c = 0 are

−b ±
p

b2 − 4ac
2a

.

Here we define
p

b2 − 4ac = i
p
−b2 + 4ac if the discriminant b2 − 4ac is

negative.

1.8. Use the quadratic formula to solve the following equations.

(a) z 2 + 25 = 0

(b) 2z 2 + 2z + 5 = 0

(c) 5z 2 + 4z + 1 = 0

(d) z 2 − z = 1

(e) z 2 = 2z

1.9. Find all solutions of the equation z 2 + 2z + (1− i ) = 0.

1.10. Fix a ∈ C and b ∈ R. Show that the equation |z 2|+Re(az ) + b = 0 has a
solution if and only if |a2| ≥ 4b . When solutions exist, show the solution set is a
circle.

1.11. Find all solutions to the following equations:

(a) z 6 = 1

(b) z 4 = −16

(c) z 6 = −9

(d) z 6 − z 3 − 2 = 0

1.12. Show that |z | = 1 if and only if 1
z = z .

1.13. Show that

(a) z is a real number if and only if z = z ;

(b) z is either real or purely imaginary if and only if (z )2 = z 2.

1.14. Prove Proposition 1.1.

1.15. Show that if z1 z2 = 0 then z1 = 0 or z2 = 0.
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1.16. Prove Proposition 1.3.

1.17. Fix a positive integer n. Prove that the solutions to the equation z n = 1 are
precisely z = e2πi m

n where m ∈ Z. (Hint: To show that every solution of z n = 1 is
of this form, first prove that it must be of the form z = e2πi a

n for some a ∈R, then
write a = m + b for some integer m and some real number 0 ≤ b < 1, and then
argue that b has to be zero.)

1.18. Show that

z 5 − 1 = (z − 1)
�

z 2 + 2z cos π
5 + 1

� �

z 2 − 2z cos 2π
5 + 1

�

and deduce from this closed formulas for cos π
5 and cos 2π

5 .

1.19. Fix a positive integer n and a complex number w . Find all solutions to z n = w .
(Hint: Write w in terms of polar coordinates.)

1.20. Use Proposition 1.3 to derive the triple angle formulas:

(a) cos(3φ ) = cos3 φ − 3 cosφ sin2 φ

(b) sin(3φ ) = 3 cos2 φ sinφ − sin3 φ

1.21. Given x , y ∈R, define the matrix M (x , y ) :=
�

x −y
y x

�

. Show that

M (x , y ) +M (a, b ) = M (x + a, y + b )

and
M (x , y )M (a, b ) = M (xa − y b , x b + ya) .

(This means that the set {M (x , y ) : x , y ∈ R}, equipped with the usual addition
and multiplication of matrices, behaves exactly like C = {(x , y ) : x , y ∈R}.)

1.22. Prove Proposition 1.5.
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1.23. Sketch the following sets in the complex plane:

(a) {z ∈C : |z − 1+ i | = 2}

(b) {z ∈C : |z − 1+ i | ≤ 2}

(c) {z ∈C : Re(z + 2− 2i ) = 3}

(d) {z ∈C : |z − i |+ |z + i | = 3}

(e) {z ∈C : |z | = |z + 1|}

(f ) {z ∈C : |z − 1| = 2 |z + 1|}

(g)
�

z ∈C : Re(z 2) = 1
	

(h)
�

z ∈C : Im(z 2) = 1
	

1.24. Suppose p is a polynomial with real coe�cients. Prove that

(a) p(z ) = p (z ).

(b) p(z ) = 0 if and only if p (z ) = 0.

1.25. Prove the reverse triangle inequality (Proposition 1.7(b)) |z1 − z2| ≥ |z1|−|z2| .

1.26. Use the previous exercise to show that
�

�

�

�

1
z 2 − 1

�

�

�

�

≤ 1
3

for every z on the circle C [0, 2].

1.27. Sketch the sets defined by the following constraints and determine whether
they are open, closed, or neither; bounded; connected.

(a) |z + 3| < 2

(b) |Im(z )| < 1

(c) 0 < |z − 1| < 2

(d) |z − 1|+ |z + 1| = 2

(e) |z − 1|+ |z + 1| < 3

(f ) |z | ≥ Re(z ) + 1

1.28. What are the boundaries of the sets in the previous exercise?

1.29. Let G be the set of points z ∈C satisfying either z is real and −2 < z < −1,
or |z | < 1, or z = 1 or z = 2.

(a) Sketch the set G , being careful to indicate exactly the points that are in G .

(b) Determine the interior points of G .
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(c) Determine the boundary points of G .

(d) Determine the isolated points of G .

1.30. The set G in the previous exercise can be written in three di�erent ways as the
union of two disjoint nonempty separated subsets. Describe them, and in each case
say briefly why the subsets are separated.

1.31. Show that the union of two regions with nonempty intersection is itself a
region.

1.32. Show that if A ⊆ B and B is closed, then ∂ A ⊆ B . Similarly, if A ⊆ B and A is
open, show that A is contained in the interior of B .

1.33. Find a parametrization for each of the following paths:

(a) the circle C [1+ i , 1], oriented counter-clockwise

(b) the line segment from −1− i to 2i

(c) the top half of the circle C [0, 34], oriented clockwise

(d) the rectangle with vertices ±1± 2i , oriented counter-clockwise

(e) the ellipse {z ∈C : |z − 1|+ |z + 1| = 4}, oriented counter-clockwise

1.34. Draw the path parametrized by

γ(t ) = cos(t ) |cos(t )|+ i sin(t ) |sin(t )| , 0 ≤ t ≤ 2π .

1.35. Let G be the annulus determined by the inequalities 2 < |z | < 3. This is a
connected open set. Find the maximum number of horizontal and vertical segments
in G needed to connect two points of G .

Optional Lab

Open your favorite web browser and search for the complex function grapher for the
open-source software geogebra.
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1. Convert the following complex numbers into their polar representation, i.e.,
give the absolute value and the argument of the number.

34 = i = −π = 2+ 2i = −1
2
�p

3+ i
�

=

After you have finished computing these numbers, check your answers with
the program.

2. Convert the following complex numbers given in polar representation into
their rectangular representation.

2 e i0 = 3 e
πi
2 = 1

2 e iπ = e−
3πi

2 = 2 e
3πi

2 =

After you have finished computing these numbers, check your answers with
the program.

3. Pick your favorite five numbers from the ones that you’ve played around with
and put them in the tables below, in both rectangular and polar form. Apply
the functions listed to your numbers. Think about which representation is
more helpful in each instance.

rectangular
polar
z + 1

z + 2− i
2z
−z

z
2

i z
z
z 2

Re(z )
Im(z )
i Im(z )
|z |

1
z

4. Play with other examples until you get a feel for these functions.



Chapter 2

Di�erentiation

Mathematical study and research are very suggestive of mountaineering. Whymper
made several e�orts before he climbed the Matterhorn in the 1860’s and even then
it cost the life of four of his party. Now, however, any tourist can be hauled up for
a small cost, and perhaps does not appreciate the di�culty of the original ascent.
So in mathematics, it may be found hard to realise the great initial di�culty of
making a little step which now seems so natural and obvious, and it may not be
surprising if such a step has been found and lost again.
Louis Joel Mordell (1888–1972)

We will now start our study of complex functions. The fundamental concept on
which all of calculus is based is that of a limit—it allows us to develop the central
properties of continuity and di�erentiability of functions. Our goal in this chapter
is to do the same for complex functions.

2.1 Limits and Continuity

Definition. A (complex) function f is a map from a subset G ⊆ C to C; in this
situation we will write f : G → C and call G the domain of f . This means that
each element z ∈G gets mapped to exactly one complex number, called the image
of z and usually denoted by f (z ).

So far there is nothing that makes complex functions any more special than,
say, functions from Rm to Rn . In fact, we can construct many familiar looking
functions from the standard calculus repertoire, such as f (z ) = z (the identity
map), f (z ) = 2z + i , f (z ) = z 3, or f (z ) = 1

z . The former three could be defined
on all of C, whereas for the latter we have to exclude the origin z = 0 from the
domain. On the other hand, we could construct some functions that make use of a
certain representation of z , for example, f (x , y ) = x − 2i y , f (x , y ) = y2 − i x , or
f (r ,φ ) = 2r e i (φ+π).
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Next we define limits of a function. The philosophy of the following definition
is not restricted to complex functions, but for sake of simplicity we state it only for
those functions.

Definition. Suppose f : G →C and z0 is an accumulation point of G . If w0 is a
complex number such that for every ε > 0 we can find δ > 0 so that, for all z ∈G
satisfying 0 < |z − z0| < δ, we have | f (z )−w0| < ε, then w0 is the limit of f as z
approaches z0; in short,

lim
z→z0

f (z ) = w0 .

This definition is the same as is found in most calculus texts. The reason we
require that z0 is an accumulation point of the domain is just that we need to be
sure that there are points z of the domain that are arbitrarily close to z0. Just as in
the real case, our definition (i.e., the part that says 0 < |z − z0|) does not require that
z0 is in the domain of f and, if z0 is in the domain of f , the definition explicitly
ignores the value of f (z0).

Example 2.1. Let’s prove that lim
z→i

z 2 = −1.
Given ε > 0, we need to determine δ > 0 such that 0 < |z−i | < δ implies |z 2+1| < ε.
We rewrite

�

�

�z 2 + 1
�

�

� = |z − i | |z + i | < δ |z + i | .

If we choose δ, say, smaller than 1 then the factor |z + i | on the right can be bounded
by 3 (draw a picture!). This means that any δ <min{ ε

3 , 1} should do the trick: in
this case, 0 < |z − i | < δ implies

�

�

�z 2 + 1
�

�

� < 3δ < ε .

This was a proof written out in a way one might come up with it. Here’s a short,
neat version:

Given ε > 0, choose 0 < δ <min{ ε
3 , 1}. Then 0 < |z − i | < δ implies

|z + i | = |z − i + 2i | ≤ |z − i |+ |2i | < 3 , so
�

�

�z 2 − (−1)
�

�

� =
�

�

�z 2 + 1
�

�

� = |z − i | |z + i | < 3δ < ε .

This proves limz→i z 2 = −1.
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Just as in the real case, the limit w0 is unique if it exists (Exercise 2.3). It is often
useful to investigate limits by restricting the way the point z approaches z0. The
following result is a direct consequence of the definition.

Proposition 2.2. Suppose f : G →C and limz→z0
f (z ) = w0. Suppose eG ⊆G and

z0 is an accumulation point of eG . If ef is the restriction of f to eG then limz→z0
ef (z )

exists and has the value w0.

The definition of limit in the complex domain has to be treated with a little
more care than its real companion; this is illustrated by the following example.

Example 2.3. The limit of z
z as z → 0 does not exist.

To see this, we try to compute this limit as z → 0 on the real and on the imaginary
axis. In the first case, we can write z = x ∈R, and hence

lim
z→0

z
z
= lim

x→0

x
x
= lim

x→0

x
x
= 1 .

In the second case, we write z = i y where y ∈R, and then

lim
z→0

z
z
= lim

y→0

i y
i y
= lim

y→0

−i y
i y
= −1 .

So we get a di�erent “limit” depending on the direction from which we approach 0.
Proposition 2.2 then implies that the limit of z

z as z → 0 does not exist.

On the other hand, the following usual limit rules are valid for complex func-
tions; the proofs of these rules are everything but trivial and make for nice practice
(Exercise 2.4); as usual, we give a sample proof.

Proposition 2.4. Let f and g be complex functions with domain G , let z0 be an
accumulation point of G , and let c ∈ C. If limz→z0

f (z ) and limz→z0
g (z ) exist,

then

(a) lim
z→z0

( f (z ) + c g (z )) = lim
z→z0

f (z ) + c lim
z→z0

g (z )

(b) lim
z→z0

( f (z ) · g (z )) = lim
z→z0

f (z ) · lim
z→z0

g (z )

(c) lim
z→z0

f (z )
g (z )

=
limz→z0

f (z )

limz→z0
g (z )

where in the last identity we also require that limz→z0
g (z ) 6= 0.
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Proof of (a). Assume that c 6= 0 (otherwise there is nothing to prove), and let L =
limz→z0

f (z ) and M = limz→z0
g (z ). Then we know that, given ε > 0, we can find

δ1,δ2 > 0 such that

0 < |z − z0| < δ1 implies | f (z )− L| < ε
2

and
0 < |z − z0| < δ2 implies | g (z )−M | < ε

2|c |
.

Thus, choosing δ =min{δ1,δ2}, we infer that 0 < |z − z0| < δ implies

|( f (z ) + c g (z ))− (L+ c M )| ≤ | f (z )− L|+ |c | | g (z )−M | < ε .

Here we used the triangle inequality (Proposition 1.6). This proves that

lim
z→z0

( f (z ) + c g (z )) = L+ c M ,

which was our claim.

Because the definition of the limit is somewhat elaborate, the following funda-
mental definition looks almost trivial.

Definition. Suppose f : G →C. If z0 ∈G and either z0 is an isolated point of G
or

lim
z→z0

f (z ) = f (z0)

then f is continuous at z0. More generally, f is continuous on E ⊆ G if f is
continuous at every z ∈ E .

However, in almost all proofs using continuity it is necessary to interpret this in
terms of ε’s and δ’s. So here is an alternate definition:

Definition. Suppose f : G → C and z0 ∈ G . Then f is continuous at z0 if, for
every positive real number ε there is a positive real number δ so that

| f (z )− f (z0) | < ε for all z ∈G satisfying | z − z0 | < δ .

See Exercise 2.11 for a proof that these definitions are equivalent.
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Example 2.5. We already proved (in Example 2.1) that the function f : C→ C
given by f (z ) = z 2 is continuous at z = i . You’re invited (Exercise 2.8) to extend
our proof to show that, in fact, this function is continuous on C.

On the other hand, let g :C→C be given by

g (z ) :=







z
z if z 6= 0 ,

1 if z = 0 .

In Example 2.3 we proved that g is not continuous at z = 0. However, this is its
only point of discontinuity (Exercise 2.9).

Just as in the real case, we can “take the limit inside” a continuous function, by
considering composition of functions.

Definition. The image of the function g : G →C is the set { g (z ) : z ∈G} . If the
image of g is contained in the domain of another function f : H →C, we define
the composition f ◦ g : G →C through

( f ◦ g )(z ) := f ( g (z )) .

Proposition 2.6. Let g : G → C with image contained in H , and let f : H → C.
Suppose z0 is an accumulation point of G , limz→z0

g (z ) = w0 ∈ H , and f is
continuous at w0. Then limz→z0

f ( g (z )) = f (w0); in short,

lim
z→z0

f ( g (z )) = f
�

lim
z→z0

g (z )
�

.

Proof. Given ε > 0, we know there is an η > 0 such that

|w −w0| < η implies | f (w )− f (w0)| < ε .

For this η, we also know there is a δ > 0 such that

0 < |z − z0| < δ implies | g (z )−w0| < η .

Stringing these two implications together gives that

0 < |z − z0| < δ implies | f ( g (z ))− f (w0)| < ε .
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We have thus proved that limz→z0
f ( g (z )) = f (w0).

2.2 Di�erentiability and Holomorphicity

The fact that simple functions such as z
z do not have limits at certain points illustrates

something special about complex numbers that has no parallel in the reals —we can
express a function in a very compact way in one variable, yet it shows some peculiar
behavior in the limit. We will repeatedly notice this kind of behavior; one reason
is that when trying to compute a limit of a function f (z ) as, say, z → 0, we have
to allow z to approach the point 0 in any way. On the real line there are only two
directions to approach 0 —from the left or from the right (or some combination of
those two). In the complex plane, we have an additional dimension to play with.
This means that the statement A complex function has a limit . . . is in many senses
stronger than the statement A real function has a limit . . . This di�erence becomes
apparent most baldly when studying derivatives.

Definition. Suppose f : G →C is a complex function and z0 is an interior point
of G . The derivative of f at z0 is defined as

f ′(z0) := lim
z→z0

f (z )− f (z0)
z − z0

, (2.1)

provided this limit exists. In this case, f is called di�erentiable at z0. If f is di�er-
entiable for all points in an open disk centered at z0 then f is called holomorphic1

at z0. The function f is holomorphic on the open set E ⊆G if it is di�erentiable
(and hence holomorphic) at every point in E . Functions that are di�erentiable (and
hence holomorphic) in the whole complex plane C are called entire.

Example 2.7. The function f : C → C given by f (z ) = z 3 is entire, that is,
holomorphic in C: For any z0 ∈C,

lim
z→z0

f (z )− f (z0)
z − z0

= lim
z→z0

z 3 − z 3
0

z − z0
= lim

z→z0

(z 2 + z z0 + z 2
0 )(z − z0)

z − z0
= 3z 2

0 .

1Some sources use the term analytic instead of holomorphic. As we will see in Chapter 8, in our context,
these two terms are synonymous. Technically, though, these two terms have di�erent definitions. Since
we will be using the above definition, we will stick with using the term holomorphic instead of the term
analytic.
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The di�erence quotient limit (2.1) can be rewritten as

f ′(z0) = lim
h→0

f (z0 + h)− f (z0)
h

.

This equivalent definition is sometimes easier to handle. Note that h need not be a
real number but can rather approach zero from anywhere in the complex plane.

The notions of di�erentiability and holomorphicity are not interchangeable:

Example 2.8. The function f :C→C given by f (z ) = (z )2 is di�erentiable at 0
and nowhere else; in particular, f is not holomorphic at 0: Let’s write z = z0+ r e iφ .
Then

z 2 − z0
2

z − z0
=

�

z0 + r e iφ
�2 − z0

2

z0 + r e iφ − z0
=
(z0 + r e−iφ )2 − z0

2

r e iφ

=
z0

2 + 2 z0 r e−iφ + r 2e−2iφ − z0
2

r e iφ
=

2 z0 r e−iφ + r 2e−2iφ

r e iφ

= 2 z0 e−2iφ + r e−3iφ .

If z0 6= 0 then taking the limit of f (z ) as z → z0 thus means taking the limit of
2 z0 e−2iφ + r e−3iφ as r → 0, which gives 2 z0 e−2iφ , a number that depends on φ ,
i.e., on the direction that z approaches z0. Hence this limit does not exist.

On the other hand, if z0 = 0 then the right-hand side above equals r e−3iφ =
|z | e−3iφ . Hence

lim
z→0

�

�

�

�

�

z 2

z

�

�

�

�

�

= lim
z→0

�

�

�|z | e−3iφ
�

�

� = lim
z→0
|z | = 0 ,

which implies, by Exercise 2.5, that

lim
z→z0

z 2 − z0
2

z − z0
= lim

z→0

z 2

z
= 0 .

Example 2.9. The function f :C→C given by f (z ) = z is nowhere di�erentiable:

lim
z→z0

z − z0

z − z0
= lim

z→z0

z − z0

z − z0
= lim

z→0

z
z

,

which does not exist, as discussed in Example 2.3.
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The basic properties for derivatives are similar to those we know from real
calculus. In fact, the following rules follow mostly from properties of the limit.

Proposition 2.10. Suppose f and g are di�erentiable at z ∈C and h is di�erentiable
at g (z ). Then

(a)
�

f (z ) + c g (z )
�′ = f ′(z ) + c g ′(z ) for any c ∈C

(b)
�

f (z ) g (z )
�′ = f ′(z ) g (z ) + f (z ) g ′(z )

(c)
�

f (z )
g (z )

�′
=

f ′(z ) g (z )− f (z ) g ′(z )
g (z )2

provided that g (z )2 6= 0

(d)
�

z n
�′ = n z n−1 for any nonzero integer n

(e) g is continuous at z

(f )
�

h( g (z ))
�′ = h ′( g (z )) g ′(z ) .

Proof of (b).

�

f (z ) g (z )
�′ = lim

h→0

f (z + h) g (z + h)− f (z ) g (z )
h

= lim
h→0

f (z + h) ( g (z + h)− g (z )) + ( f (z + h)− f (z )) g (z )
h

= lim
h→0

f (z + h)
g (z + h)− g (z )

h
+ lim

h→0

f (z + h)− f (z )
h

g (z )

= f (z ) g ′(z ) + f ′(z ) g (z ) .

Note that we have used the definition of the derivative and Proposition 2.4((a)) &
((b)) (the addition and multiplication rules for limits).

A prominent application of the di�erentiation rules is the composition of a
complex function f (z ) with a path γ(t ). The proof of the following result gives a
preview.

Proposition 2.11. Suppose f is holomorphic at a ∈C with f ′(a) 6= 0 and suppose
γ1 and γ2 are two smooth paths that pass through a, making an angle of φ with each
other. Then f transforms γ1 and γ2 into smooth paths which meet at f (a), and the
transformed paths make an angle of φ with each other.

In words, a holomorphic function with nonzero derivative preserves angles.
Functions that preserve angles in this way are called conformal.
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Proof. Let γ1(t ) and γ2(t ) be parametrizations of the two paths such that γ1(0) =
γ2(0) = a. Then γ ′1(0) (considered as a vector) is the tangent vector of γ1 at the point
a, and γ ′2(0) is the tangent vector of γ2 at a. Moving to the image of γ1 and γ2 under
f , the tangent vector of f (γ1) at the point f (a) is

d
dt

f (γ1(t ))
�

�

�

�

t=0
= f ′(γ1(0))γ

′
1(0) = f ′(a)γ ′1(0) ,

and similarly, the tangent vector of f (γ2) at the point f (a) is f ′(a)γ ′2(0). This
means that the action of f multiplies the two tangent vectors γ ′1(0) and γ ′2(0) by the
same nonzero complex number f ′(a), and so the two tangent vectors got dilated
by | f ′(a)| (which does not a�ect their direction) and rotated by the same angle (an
argument of f ′(a)).

We end this section with yet another di�erentiation rule, that for inverse func-
tions. As in the real case, this rule is only defined for functions that are bijections.

Definition. A function f : G → H is one-to-one if for every image w ∈ H there
is a unique z ∈ G such that f (z ) = w . The function is onto if every w ∈ H has
a preimage z ∈ G (that is, there exists z ∈ G such that f (z ) = w). A bijection
is a function that is both one-to-one and onto. If f : G → H is a bijection then
g : H → G is the inverse of f if f ( g (z )) = z for all z ∈ H ; in other words, the
composition f ◦ g is the identity function on H .

Proposition 2.12. Suppose G , H ⊆ C are open sets, f : G → H is a bijection,
g : H →G is the inverse function of f , and z0 ∈ H . If f is di�erentiable at g (z0)
with f ′( g (z0)) 6= 0 and g is continuous at z0, then g is di�erentiable at z0 with

g ′(z0) =
1

f ′ ( g (z0))
.

Proof. Since f ( g (z )) = z for all z ∈ H ,

g ′(z0) = lim
z→z0

g (z )− g (z0)
z − z0

= lim
z→z0

g (z )− g (z0)
f ( g (z ))− f ( g (z0))

= lim
z→z0

1
f ( g (z ))− f ( g (z0))

g (z )− g (z0)

.
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Now define w0 = g (z0) and set

φ (w ) :=











f (w )− f (w0)
w −w0

if w 6= w0

f ′(w0) if w = w0 .

This is continuous at w0 and limz→z0
g (z ) = w0 by continuity of g , so we can apply

Proposition 2.6:

g ′(z0) = lim
z→z0

1
φ ( g (z ))

=
1

φ
�

lim
z→z0

g (z )
� =

1
f ′(w0)

=
1

f ′( g (z0)
.

2.3 The Cauchy–Riemann Equations

When considering a real-valued function f :R2→R of two variables, there is no
notion of the derivative of a function. For such a function, we instead only have
partial derivatives ∂ f

∂ x (x0, y0) and ∂ f
∂ y (x0, y0) (and also directional derivatives) which

depend on the way in which we approach a point (x0, y0) ∈ R2. For a complex-
valued function f (z ), we now have a new concept of the derivative f ′(z0), which by
definition cannot depend on the way in which we approach a point z0 = (x0, y0) ∈C.
It is logical, then, that there should be a relationship between the complex derivative
f ′(z0) and the partial derivatives

∂ f
∂ x
(z0) := lim

x→x0

f (x , y0)− f (x0, y0)
x − x0

and
∂ f
∂ y
(z0) := lim

y→y0

f (x0, y )− f (x0, y0)
y − y0

(so this definition is exactly as in the real-valued case). This relationship between
the complex derivative and partial derivatives is very strong, and it is a powerful
computational tool. It is described by the Cauchy–Riemann equations, named after
Augustin Louis Cauchy (1789–1857) and Georg Friedrich Bernhard Riemann
(1826–1866), even though the equations appeared already in the works of Jean le
Rond d’Alembert (1717–1783) and Leonhard Euler (1707–1783).
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Theorem 2.13. (a) Suppose f is di�erentiable at z0 = x0 + i y0. Then the partial
derivatives of f exist and satisfy

∂ f
∂ x
(z0) = −i

∂ f
∂ y
(z0) . (2.2)

(b) Suppose f is a complex function such that the partial derivatives ∂ f
∂ x and ∂ f

∂ y exist
in an open disk centered at z0 and are continuous at z0. If these partial derivatives
satisfy (2.2) then f is di�erentiable at z0.

In both cases (a) and (b), f ′ is given by

f ′(z0) =
∂ f
∂ x
(z0) .

Before proving Theorem 2.13, we note several comments and give two appli-
cations. It is traditional, and often convenient, to write the function f in terms of
its real and imaginary parts. That is, we write f (z ) = f (x , y ) = u(x , y ) + i v (x , y )
where u is the real part of f and v is the imaginary part. Then, using the usual
shorthand fx =

∂ f
∂ x and fy =

∂ f
∂ y ,

fx = ux + i vx and − i fy = −i (uy + i vy ) = vy − i uy .

With this terminology we can rewrite (2.2) as the pair of equations

ux (x0, y0) = vy (x0, y0)
uy (x0, y0) = −vx (x0, y0) .

(2.3)

As stated, parts (a) and (b) in Theorem 2.13 are not quite converse statements.
However, we will show in Corollary 5.5 that if f is holomorphic at z0 = x0 + i y0

then u and v have continuous partials (of any order) at z0. That is, in Chapter 5
we will see that f = u + i v is holomorphic in an open set G if and only if u and v
have continuous partials that satisfy (2.3) in G .

If u and v satisfy (2.3) and their second partials are also continuous, then

ux x (x0, y0) = vy x (x0, y0) = vx y (x0, y0) = −uy y (x0, y0) , (2.4)

that is,
ux x (x0, y0) + uy y (x0, y0) = 0
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(and an analogous identity for v). Functions with continuous second partials satis-
fying this partial di�erential equation on a region G ⊂ C (though not necessarily
(2.3)) are called harmonic on G ; we will study such functions in Chapter 6. Again,
as we will see later, if f is holomorphic in an open set G then the partials of any
order of u and v exist; hence we will show that the real and imaginary parts of a
function that is holomorphic in an open set are harmonic on that set.

Example 2.14. We revisit Example 2.7 and again consider f :C→C given by

f (z ) = z 3 = (x + i y )3 =
�

x 3 − 3x y2�+ i
�

3x 2 y − y3� .

Thus

fx (z ) = 3x 2 − 3y2 + 6i x y and fy (z ) = −6x y + 3i x 2 − 3i y2

are continuous on C and satisfy fx = −i fy . Thus by Theorem 2.13(b), f (z ) = z 3 is
entire.

Example 2.15. Revisiting Example 2.8 (you saw that coming, didn’t you?), we
consider f :C→C given by

f (z ) = (z )2 = (x − i y )2 = x 2 − y2 − 2i x y .

Now
fx (z ) = 2x − 2i y and fy (z ) = −2y − 2i x ,

which satisfy fx = −i fy only when z = 0. (The contrapositive of ) Theorem 2.13(a)
thus implies that f (z ) = (z )2 is not di�erentiable on C \ {0}.

Proof of Theorem 2.13. (a) If f is di�erentiable at z0 = (x0, y0) then

f ′(z0) = lim
∆z→0

f (z0 +∆z )− f (z0)
∆z

.

As we know by now, we must get the same result if we restrict ∆z to be on the real
axis and if we restrict it to be on the imaginary axis. In the first case, ∆z = ∆x and

f ′(z0) = lim
∆x→0

f (z0 +∆x )− f (z0)
∆x

= lim
∆x→0

f (x0 +∆x , y0)− f (x0, y0)
∆x

=
∂ f
∂ x
(x0, y0) .
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In the second case, ∆z = i ∆y and

f ′(z0) = lim
i ∆y→0

f (z0 + i∆y )− f (z0)
i ∆y

= lim
∆y→0

1
i

f (x0, y0 +∆y )− f (x0, y0)
∆y

= −i
∂ f
∂ y
(x0, y0) .

Thus we have shown that f ′(z0) = fx (z0) = −i fy (z0).

(b) Suppose the Cauchy–Riemann equation (2.2) holds and the partial derivatives
fx and fy are continuous in an open disk centered at z0. Our goal is to prove that
f ′(z0) = fx (z0). By (2.2),

fx (z0) =
∆x + i ∆y

∆z
fx (z0) =

∆x
∆z

fx (z0) +
∆y
∆z

i fx (z0) =
∆x
∆z

fx (z0) +
∆y
∆z

fy (z0) .

On the other hand, we can rewrite the di�erence quotient for f ′(z0) as

f (z0 +∆z )− f (z0)
∆z

=
f (z0 +∆z )− f (z0 +∆x ) + f (z0 +∆x )− f (z0)

∆z

=
f (z0 +∆x + i∆y )− f (z0 +∆x )

∆z
+

f (z0 +∆x )− f (z0)
∆z

.

Thus

lim
∆z→0

f (z0 +∆z )− f (z0)
∆z

− fx (z0)

= lim
∆z→0

∆y
∆z

�

f (z0 +∆x + i∆y )− f (z0 +∆x )
∆y

− fy (z0)
�

+ lim
∆z→0

∆x
∆z

�

f (z0 +∆x )− f (z0)
∆x

− fx (z0)
�

. (2.5)

We claim that both limits on the right-hand side are 0, so we have achieved our set
goal. The fractions ∆x

∆z and ∆y
∆z are bounded in absolute value by 1, so we just need

to see that the limits of the expressions in parentheses are 0. The second term on the
right-hand side of (2.5) has a limit of 0 since, by definition,

fx (z0) = lim
∆x→0

f (z0 +∆x )− f (z0)
∆x

and taking the limit here as ∆z → 0 is the same as taking the limit as ∆x → 0.



36 differentiation

We cannot do something equivalent for the first term in (2.5), since now both ∆x
and ∆y are involved, and both change as ∆z → 0. Instead we apply the Mean-Value
Theorem A.2 for real functions,2 to the real and imaginary parts u(z ) and v (z ) of
f (z ). Theorem A.2 gives real numbers 0 < a, b < 1 such that

u(x0 +∆x , y0 +∆y )− u(x0 +∆x , y0)
∆y

= uy (x0 +∆x , y0 + a ∆y )

v (x0 +∆x , y0 +∆y )− v (x0 +∆x , y0)
∆y

= vy (x0 +∆x , y0 + b ∆y ) .

Thus

f (z0 +∆x + i ∆y )− f (z0 +∆x )
∆y

− fy (z0)

=
�

u(x0 +∆x , y0 +∆y )− u(x0 +∆x , y0)
∆y

− uy (z0)
�

+ i
�

v (x0 +∆x , y0 +∆y )− v (x0 +∆x , y0)
∆y

− vy (z0)
�

=
�

uy (x0 +∆x , y0 + a ∆y )− uy (x0, y0)
�

+ i
�

vy (x0 +∆x , y0 + b ∆y )− vy (x0, y0)
�

. (2.6)

Because uy and vy are continuous at (x0, y0),

lim
∆z→0

uy (x0 +∆x , y0 + a ∆y ) = uy (x0, y0)

and
lim

∆z→0
vy (x0 +∆x , y0 + b ∆y ) = vy (x0, y0) ,

and so (2.6) goes to 0 as ∆z → 0, which we set out to prove.

2.4 Constant Functions

As a sample application of the definition of the derivative of a complex function, we
consider functions that have a derivative of 0. In a typical calculus course, one of the
first applications of the Mean-Value Theorem for real-valued functions (Theorem

2We collect several theorems from calculus, such as the Mean-Value Theorem for real-valued functions,
in the Appendix.
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A.2) is to show that if a function has zero derivative everywhere on an interval then
it must be constant.

Proposition 2.16. If I is an interval and f : I →R is a real-valued function with
f ′(x ) defined and equal to 0 for all x ∈ I , then there is a constant c ∈R such that
f (x ) = c for all x ∈ I .

Proof. The Mean-Value Theorem A.2 says that for any x , y ∈ I ,

f (y )− f (x ) = f ′
�

x + a(y − x )
�

(y − x )

for some 0 < a < 1. Now f ′(x + a(y − x )) = 0, so the above equation yields
f (y ) = f (x ). Since this is true for any x , y ∈ I , the function f must be constant
on I .

We do not (yet) have a complex version of the Mean-Value Theorem, and so we
will use a di�erent argument to prove that a complex function whose derivative is
always 0 must be constant.

Our proof of Proposition 2.16 required two key features of the function f , both
of which are somewhat obviously necessary. The first is that f be di�erentiable
everywhere in its domain. In fact, if f is not di�erentiable everywhere, we can con-
struct functions that have zero derivative almost everywhere but that have infinitely
many values in their image.

The second key feature is that the interval I is connected. It is certainly important
for the domain to be connected in both the real and complex cases. For instance, if
we define the function f : {x + i y ∈C : x 6= 0}→C through

f (z ) :=







1 if Re z > 0,

2 if Re z < 0,

then f ′(z ) = 0 for all z in the domain of f , but f is not constant. This may seem
like a silly example, but it illustrates a pitfall to proving a function is constant that
we must be careful of. Recall that a region of C is an open connected subset.

Theorem 2.17. If G ⊆C is a region and f : G →C is a complex-valued function
with f ′(z ) defined and equal to 0 for all z ∈G , then f is constant.

Proof. We will first show that f is constant along horizontal segments and along
vertical segments in G .
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Suppose that H is a horizontal line segment in G . Thus there is some number
y0 ∈ R such that the imaginary part of any z ∈ H is Im(z ) = y0. Now consider
the real part u(z ) of the function f (z ), for z ∈ H . Since Im(z ) = y0 is constant
on H , we can consider u(z ) = u(x , y0) to be just a function of x , the real part of
z = x + i y0. By assumption, f ′(z ) = 0, so for z ∈ H we have ux (z ) = Re( f ′(z )) = 0.
Thus, by Proposition 2.16, u(z ) is constant on H .

We can argue the same way to see that the imaginary part v (z ) of f (z ) is constant
on H , since vx (z ) = Im( f ′(z )) = 0 on H . Since both the real and imaginary parts
of f (z ) are constant on H , the function f (z ) itself is constant on H .

This same argument works for vertical segments, interchanging the roles of the
real and imaginary parts. We have thus proved that f is constant along horizontal
segments and along vertical segments in G . Now if x and y are two points in G
that can be connected by a path composed of horizontal and vertical segments, we
conclude that f (x ) = f (y ). But any two points of a region may be connected by
finitely many such segments by Theorem 1.12, so f has the same value at any two
points of G , thus proving the theorem.

There are a number of surprising applications of Theorem 2.17; see, e.g., Exer-
cises 2.20 and 2.21.

Exercises

2.1. Use the definition of limit to show for any zo ∈C that limz→z0
(az+b ) = az0+b .

2.2. Evaluate the following limits or explain why they don’t exist.

(a) lim
z→i

i z 3−1
z+i (b) lim

z→1−i
(x + i (2x + y ))

2.3. Prove that, if a limit exists, then it is unique.

2.4. Prove Proposition 2.4.

2.5. Let f : G → C and suppose z0 is an accumulation point of G . Show that
limz→z0

f (z ) = 0 if and only if limz→z0
| f (z )| = 0.
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2.6. Proposition 2.2 is useful for showing that limits do not exist, but it is not at all
useful for showing that a limit does exist. For example, define

f (z ) =
x 2 y

x 4 + y2
where z = x + i y 6= 0 .

Show that the limits of f at 0 along all straight lines through the origin exist and
are equal, but lim

z→0
f (z ) does not exist. (Hint: Consider the limit along the parabola

y = x 2.)

2.7. Suppose that f (z ) = u(x , y ) + i v (x , y ) and z0 = x0 + i y0. Prove that

lim
z→z0

f (z ) = u0 + i v0

if and only if

lim
(x ,y )→(x0,y0)

u(x , y ) = u0 and lim
(x ,y )→(x0,y0)

u(x , y ) = v0 .

2.8. Show that the function f :C→C given by f (z ) = z 2 is continuous on C.

2.9. Show that the function g :C→C given by

g (z ) =







z
z if z 6= 0 ,

1 if z = 0

is continuous on C \ {0}.

2.10. Determine where each of the following functions f :C→C is continuous:

(a) f (z ) =







0 if z = 0 or |z | is irrational,
1
q if |z | = p

q ∈Q \ {0} (written in lowest terms).

(b) f (z ) =







0 if z = 0,

sinφ if z = r e iφ 6= 0.
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2.11. Show that the two definitions of continuity in Section 2.1 are equivalent.
Consider separately the cases where z0 is an accumulation point of G and where z0

is an isolated point of G .

2.12. Consider the function f : C \ {0} → C given by f (z ) = 1
z . Apply the

definition of the derivative to give a direct proof that f ′(z ) = − 1
z 2 .

2.13. Prove Proposition 2.6.

2.14. Prove Proposition 2.10.

2.15. Find the derivative of the function T (z ) := az+b
c z+d , where a, b , c , d ∈ C with

ad − b c 6= 0. When is T ′(z ) = 0?

2.16. Prove that if f (z ) is given by a polynomial in z then f is entire. What can
you say if f (z ) is given by a polynomial in x = Re z and y = Im z ?

2.17. Prove or find a counterexample: If u and v are real valued and continuous,
then f (z ) = u(x , y ) + i v (x , y ) is continuous; if u and v are (real) di�erentiable
then f is (complex) di�erentiable.

2.18. Where are the following functions di�erentiable? Where are they holomorphic?
Determine their derivatives at points where they are di�erentiable.

(a) f (z ) = e−x e−i y

(b) f (z ) = 2x + i x y2

(c) f (z ) = x 2 + i y2

(d) f (z ) = e x e−i y

(e) f (z ) = cos x cosh y−i sin x sinh y

(f ) f (z ) = Im z

(g) f (z ) = |z |2 = x 2 + y2

(h) f (z ) = z Im z

(i) f (z ) = i x+1
y

(j) f (z ) = 4(Re z )(Im z )− i (z )2

(k) f (z ) = 2x y − i (x + y )2

(l) f (z ) = z 2 − z 2
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2.19. Define f (z ) = 0 if Re(z ) · Im(z ) = 0, and f (z ) = 1 if Re(z ) · Im(z ) 6= 0.
Show that f satisfies the Cauchy–Riemann equation (2.2) at z = 0, yet f is not
di�erentiable at z = 0. Why doesn’t this contradict Theorem 2.13(b)?

2.20. Prove: If f is holomorphic in the region G ⊆C and always real valued, then
f is constant in G . (Hint: Use the Cauchy–Riemann equations (2.3) to show that
f ′ = 0.)

2.21. Prove: If f (z ) and f (z ) are both holomorphic in the region G ⊆C then f (z )
is constant in G .

2.22. Suppose f is entire and can be written as f (z ) = u(x ) + i v (y ), that is, the
real part of f depends only on x = Re(z ) and the imaginary part of f depends only
on y = Im(z ). Prove that f (z ) = az + b for some a ∈R and b ∈C.

2.23. Suppose f is entire, with real and imaginary parts u and v satisfying

u(x , y ) v (x , y ) = 3

for all z = x + i y . Show that f is constant.

2.24. Prove that the Cauchy–Riemann equations take on the following form in
polar coordinates:

∂ u
∂ r
=

1
r

∂v
∂φ

and
1
r

∂ u
∂φ
= −∂v

∂ r
.

2.25. For each of the following functions u, find a function v such that u + i v is
holomorphic in some region. Maximize that region.

(a) u(x , y ) = x 2 − y2

(b) u(x , y ) = cosh(y ) sin(x )

(c) u(x , y ) = 2x 2 + x + 1− 2y2

(d) u(x , y ) = x
x 2+y2

2.26. Is u(x , y ) = x
x 2+y2 harmonic on C? What about u(x , y ) = x 2

x 2+y2 ?
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2.27. Consider the general real homogeneous quadratic function u(x , y ) = ax 2 +
b x y + c y2 , where a, b and c are real constants.

(a) Show that u is harmonic if and only if a = −c .

(b) If u is harmonic then show that it is the real part of a function of the form
f (z ) = Az 2 for some A ∈C. Give a formula for A in terms of a, b and c .

2.28. Re-prove Proposition 2.10 by using the formula for f ′ given in Theorem 2.13.

2.29. Prove that, If G ⊆C is a region and f : G →C is a complex-valued function
with f ′′(z ) defined and equal to 0 for all z ∈G , then f (z ) = az + b for some a, b ∈
C. (Hint: Use Theorem 2.17 to show that f ′(z ) = a, and then use Theorem 2.17
again for the function f (z )− az .)



Chapter 3

Examples of Functions

To many, mathematics is a collection of theorems. For me, mathematics is a collection
of examples; a theorem is a statement about a collection of examples and the purpose
of proving theorems is to classify and explain the examples...
John B. Conway

In this chapter we develop a toolkit of complex functions. Our ingredients are familiar
from calculus: linear functions, exponentials and logarithms, and trigonometric
functions. Yet, when we move these functions into the complex world, they take
on—at times drastically di�erent—new features.

3.1 Möbius Transformations

The first class of functions that we will discuss in some detail are built from linear
polynomials.

Definition. A linear fractional transformation is a function of the form

f (z ) =
az + b
c z + d

where a, b , c , d ∈C. If ad − b c 6= 0 then f is called a Möbius1 transformation.

Exercise 2.16 said that any polynomial in z is an entire function, and so the
linear fractional transformation f (z ) = az+b

c z+d is holomorphic in C \ {− d
c }, unless

c = 0 (in which case f is entire). If c 6= 0 then az+b
c z+d =

a
c implies ad − b c = 0, which

means that a Möbius transformation f (z ) = az+b
c z+d will never take on the value a

c .
Our first proposition in this chapter says that with these small observations about
the domain and image of a Möbius transformation, we obtain a class of bijections,
which are quite special among complex functions.

1Named after August Ferdinand Möbius (1790–1868).
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Proposition 3.1. Let a, b , c , d ∈C with c 6= 0. Then f :C\{− d
c }→C\{

a
c } given

by f (z ) = az+b
c z+d has the inverse function f −1 :C \ { a

c }→C \ {−
d
c } given by

f −1(z ) =
d z − b
−c z + a

.

We remark that the same formula for f −1(z ) works when c = 0, except that in this
case both domain and image of f are C; see Exercise 3.2. In either case, we note
that the inverse of a Möbius transformation is another Möbius transformation.

Example 3.2. Consider the linear fractional transformation f (z ) = z−1
i z+i . This is a

Möbius transformation (check the condition!) with domain C \ {−1} whose inverse
can be computed via

z − 1
i z + i

= w ⇐⇒ z =
i w + 1
−i w + 1

,

so that f −1(z ) = i z+1
−i z+1 , with domain C \ {−i}.

Proof of Proposition 3.1. We first prove that f is one-to-one. If f (z1) = f (z2), that
is,

az1 + b
c z1 + d

=
az2 + b
c z2 + d

,

then (az1 + b )(c z2 + d ) = (az2 + b )(c z1 + d ), which can be rearranged to

(ad − b c )(z1 − z2) = 0 .

Since ad − b c 6= 0 this implies that z1 = z2. This shows that f is one-to-one.
Exercise 3.1 verifies that the Möbius transformation g (z ) = d z−b

−c z+a is the inverse
of f , and by what we have just proved, g is also one-to-one. But this implies that
f :C \ {− d

c }→C \ {
a
c } is onto.

We remark that Möbius transformations provide an immediate application of
Proposition 2.11, as the derivative of f (z ) = az+b

c z+d is

f ′(z ) =
a(c z + d )− c (az + b )

(c z + d )2
=

ad − b c
(c z + d )2

and thus never zero. Proposition 2.11 implies that Möbius transformations are
conformal, that is, they preserve angles.
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Möbius transformations have even more fascinating geometric properties. En
route to an example of such, we introduce some terminology. Special cases of Möbius
transformations are translations f (z ) = z + b , dilations f (z ) = az , and inversion
f (z ) = 1

z . The next result says that if we understand those three special Möbius
transformations, we understand them all.

Proposition 3.3. Suppose f (z ) = az+b
c z+d is a linear fractional transformation. If c = 0

then
f (z ) =

a
d

z +
b
d

,

and if c 6= 0 then

f (z ) =
b c − ad

c 2

1
z + d

c

+
a
c

.

In particular, every linear fractional transformation is a composition of translations,
dilations, and inversions.

Proof. Simplify.

Theorem 3.4. Möbius transformations map circles and lines into circles and lines.

Example 3.5. Continuing Example 3.2, consider again f (z ) = z−1
i z+i . For φ ∈R,

f (e iφ ) =
e iφ − 1
i e iφ + i

=
(e iφ − 1) (e−iφ + 1)

i |e iφ + 1|2

=
e iφ − e−iφ

i |e iφ + 1|2
=

2Im (e iφ )
|e iφ + 1|2

=
2 sinφ

|e iφ + 1|2
,

which is a real number. Thus Theorem 3.4 implies that f maps the unit circle to
the real line.

Proof of Theorem 3.4. Translations and dilations certainly map circles and lines into
circles and lines, so by Proposition 3.3, we only have to prove the statement of the
theorem for the inversion f (z ) = 1

z .
The equation for a circle centered at x0+i y0 with radius r is (x−x0)

2+(y− y0)
2 =

r 2, which we can transform to

α(x 2 + y2) + βx + γ y + δ = 0 (3.1)
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for some real numbers α, β, γ , and δ that satisfy β2 + γ2 > 4αδ (Exercise 3.3). The
form (3.1) is more convenient for us, because it includes the possibility that the
equation describes a line (precisely when α = 0).

Suppose z = x + i y satisfies (3.1); we need to prove that u + i v := 1
z satisfies a

similar equation. Since

u + i v =
x − i y
x 2 + y2

,

we can rewrite (3.1) as

0 = α+ β
x

x 2 + y2
+ γ

y
x 2 + y2

+
δ

x 2 + y2

= α+ βu − γv + δ(u2 + v2) . (3.2)

But this equation, in conjunction with Exercise 3.3, says that u + i v lies on a circle
or line.

3.2 Infinity and the Cross Ratio

In the context of Möbius transformations, it is useful to introduce a formal way of
saying that a function f “blows up” in absolute value, and this gives rise to a notion
of infinity.

Definition. Suppose f : G →C.

(a) limz→z0
f (z ) =∞ means that for every M > 0 we can find δ > 0 so that, for

all z ∈G satisfying 0 < |z − z0| < δ, we have | f (z )| >M .

(b) limz→∞ f (z ) = L means that for every ε > 0 we can find N > 0 so that, for
all z ∈G satisfying |z | >N , we have | f (z )− L| < ε.

(c) limz→∞ f (z ) =∞ means that for every M > 0 we can find N > 0 so that,
for all z ∈G satisfying |z | >N , we have | f (z )| >M .

In the first definition we require that z0 be an accumulation point of G while in the
second and third we require that∞ be an “extended accumulation point” of G , in
the sense that for every B > 0 there is some z ∈G with |z | > B .

As in Section 2.1, the limit, in any of these senses, is unique if it exists.
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Example 3.6. We claim that limz→0
1
z 2 =∞: Given M > 0, let δ := 1p

M
. Then

0 < |z | < δ implies

| f (z )| =
�

�

�

�

1
z 2

�

�

�

�

>
1
δ2
= M .

Example 3.7. Let f (z ) = az+b
c z+d be a Möbius transformation with c 6= 0. Then

limz→∞ f (z ) = a
c .

To simplify the notation, introduce the constant L := |ad − b c |. Given ε > 0,
let N := L

|c |2ε +
�

�

�

d
c

�

�

�. Then |z | > N implies, with the reverse triangle inequality
(Corollary 1.7((b))), that

|c z + d | ≥
�

�|c ||z | − |d |
�

� ≥ |c ||z | − |d | > L
|c |ε

and so
�

�

�

�

f (z )− a
c

�

�

�

�

=

�

�

�

�

�

c (az + b )− a(c z + d )
c (c z + d )

�

�

�

�

�

=
L

|c | |c z + d |
< ε .

We stress that ∞ is not a number in C, just as ±∞ are not numbers in R.
However, we can extend C by adding on∞, if we are careful. We do so by realizing
that we are always talking about a limit when handling∞. It turns out (Exercise 3.11)
that the usual limit rules behave well when we mix complex numbers and∞. For
example, if limz→z0

f (z ) =∞ and limz→z0
g (z ) = a is finite then the usual limit

of sum = sum of limits rule still holds and gives limz→z0
( f (z ) + g (z )) =∞. The

following definition captures the philosophy of this paragraph.

Definition. The extended complex plane is the set Ĉ := C∪ {∞}, together with
the following algebraic properties: For any a ∈C,

(a) ∞+ a = a +∞ =∞

(b) if a 6= 0 then∞· a = a ·∞ =∞

(c) ∞·∞ =∞

(d) a
∞ = 0

(e) if a 6= 0 then a
0 =∞ .

The extended complex plane is also called the Riemann sphere or the complex
projective line, denoted CP1.

If a calculation involving∞ is not covered by the rules above then we must
investigate the limit more carefully. For example, it may seem strange that∞+∞
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is not defined, but if we take the limit of z + (−z ) = 0 as z →∞ we will get 0, even
though the individual limits of z and −z are both∞.

Now we reconsider Möbius transformations with∞ in mind. For example,
f (z ) = 1

z is now defined for z = 0 and z =∞, with f (0) =∞ and f (∞) = 0,
and so we might argue the proper domain for f (z ) is actually Ĉ. Let’s consider
the other basic types of Möbius transformations. A translation f (z ) = z + b is
now defined for z =∞, with f (∞) =∞ + b =∞, and a dilation f (z ) = az
(with a 6= 0) is also defined for z =∞, with f (∞) = a · ∞ =∞. Since every
Möbius transformation can be expressed as a composition of translations, dilations
and inversions (Proposition 3.3), we see that every Möbius transformation may be
interpreted as a transformation of Ĉ onto Ĉ. This general case is summarized in the
following extension of Proposition 3.1.

Corollary 3.8. Suppose ad − b c 6= 0 and c 6= 0, and consider f : Ĉ→ Ĉ defined
through

f (z ) :=















az+b
c z+d if z ∈C \

�

− d
c

	

,

∞ if z = − d
c ,

a
c if z =∞ .

Then f is a bijection.

This corollary also holds for c = 0 if we then define f (∞) =∞.

Example 3.9. Continuing Examples 3.2 and 3.5, consider once more the Möbius
transformation f (z ) = z−1

i z+i . With the definitions f (−1) =∞ and f (∞) = −i , we
can extend f to a function Ĉ→ Ĉ.

With∞ on our mind we can also add some insight to Theorem 3.4. We recall
that in Example 3.5, we proved that f (z ) = z−1

i z+i maps the unit circle to the real line.
Essentially the same proof shows that, more generally, any circle passing through −1
gets mapped to a line (see Exercise 3.4). The original domain of f was C \ {−1},
so the point z = −1 must be excluded from these circles. However, by thinking
of f as function from Ĉ to Ĉ, we can put z = −1 back into the picture, and so f
transforms circles that pass through −1 to straight lines plus∞. If we remember that
∞ corresponds to being arbitrarily far away from any point in C, we can visualize
a line plus∞ as a circle passing through∞. If we make this a definition, then
Theorem 3.4 can be expressed as: any Möbius transformation of Ĉ transforms circles to
circles.
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We can take this remark a step further, based on the idea that three distinct
points in Ĉ determine a unique circle passing through them: If the three points are
in C and nonlinear, this fact comes straight from Euclidean geometry; if the three
points are on a straight line or if one of the points is∞, then the circle is a straight
line plus∞.

Example 3.10. The Möbius transformation f : Ĉ→ Ĉ given by f (z ) = z−1
i z+i maps

1 7→ 0 , i 7→ 1 , and − 1 7→∞ .

The points 1, i , and−1 uniquely determine the unit circle and the points 0, 1, and∞
uniquely determine the real line, viewed as a circle in Ĉ. Thus Corollary 3.8 implies
that f maps the unit circle to R, which we already concluded in Example 3.5.

Conversely, if we know where three distinct points in Ĉ are transformed by a
Möbius transformation then we should be able to figure out everything about the
transformation. There is a computational device that makes this easier to see.

Definition. If z , z1, z2, and z3 are any four points in Ĉ with z1, z2, and z3 distinct,
then their cross ratio is defined as

[z , z1, z2, z3] :=
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

.

This includes the implicit definitions [z3, z1, z2, z3] =∞ and, if one of z , z1, z2, or
z3 is∞, then the two terms containing∞ are canceled; e.g., [z ,∞, z2, z3] =

z2−z3
z−z3

.

Example 3.11. Our running example f (z ) = z−1
i z+i can be written as f (z ) =

[z , 1, i ,−1].

Proposition 3.12. The function f : Ĉ→ Ĉ defined by f (z ) = [z , z1, z2, z3] is a
Möbius transformation that satisfies

f (z1) = 0 , f (z2) = 1 , f (z3) =∞ .

Moreover, if g is any Möbius transformation with g (z1) = 0, g (z2) = 1, and
g (z3) =∞, then f and g are identical.

Proof. Most of this follows from our definition of∞, but we need to prove the
uniqueness statement. By Proposition 3.1, the inverse f −1 is a Möbius transfor-
mation and, by Exercise 3.10, the composition h := g ◦ f −1 is again a Möbius
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transformation. Note that h(0) = g ( f −1(0)) = g (z1) = 0 and, similarly, h(1) = 1
and h(∞) =∞. If we write h(z ) = az+b

c z+d then

0 = h(0) =
b
d

=⇒ b = 0

∞ = h(∞) = a
c

=⇒ c = 0

1 = h(1) =
a + b
c + d

=
a + 0
0+ d

=
a
d

=⇒ a = d

and so
h(z ) =

az + b
c z + d

=
az + 0
0+ d

=
a
d

z = z ,

the identity function. But since h = g ◦ f −1, this means that f and g are identical.

So if we want to map three given points of Ĉ to 0, 1 and ∞ by a Möbius
transformation, then the cross ratio gives us the only way to do it. What if we have
three points z1, z2 and z3 and we want to map them to three other points w1, w2

and w3?

Corollary 3.13. Suppose z1, z2 and z3 are distinct points in Ĉ and w1, w2 and w3

are distinct points in Ĉ. Then there is a unique Möbius transformation h satisfying
h(z1) = w1, h(z2) = w2, and h(z3) = w3.

Proof. Let h = g −1 ◦ f where f (z ) = [z , z1, z2, z3] and g (w) = [w, w1, w2, w3].
Uniqueness follows as in the proof of Proposition 3.12.

This theorem gives an explicit way to determine h from the points z j and w j but,
in practice, it is often easier to determine h directly from the conditions f (z j ) = w j

(by solving for a, b , c and d ).

3.3 Stereographic Projection

The addition of∞ to the complex plane C gives the plane a useful structure. This
structure is revealed by a famous function called stereographic projection, which gives
us a way of visualizing the extended complex plane—that is, with the point at
infinity —in R3, as the unit sphere. It also provides a way of seeing that a line in the
extended complex plane really is a circle, and of visualizing Möbius functions.
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To begin, we think of C as the (x , y )-plane in R3, that is, C = {(x , y, 0) ∈R3}.
To describe stereographic projection, we will be less concerned with actual complex
numbers x + i y and more concerned with their coordinates. Consider the unit
sphere

S
2 :=

�

(x , y, z ) ∈R3 : x 2 + y2 + z 2 = 1
	

.

The sphere and the complex plane intersect in the set {(x , y, 0) : x 2 + y2 = 1},
which corresponds to the equator on the sphere and the unit circle on the complex
plane, as depicted in Figure 3.1. Let N := (0,0,1), the north pole of S2, and let
S := (0, 0,−1), the south pole.

.......
.....
....
...
....
....
....
...
....
....
....
...
.....

......
.....

....
.......

...........
...........................................

Figure 3.1: Setting up stereographic projection.

Definition. The stereographic projection of S2 to Ĉ from N is the map φ : S2→ Ĉ
defined as follows. For any point P ∈ S2 \ {N }, as the z -coordinate of P is strictly
less than 1, the line through N and P intersects C in exactly one point Q . Define
φ (P ) :=Q . We also declare that φ (N ) :=∞.

Proposition 3.14. The map φ is given by

φ (x , y, z ) =







� x
1−z , y

1−z , 0
�

if z 6= 1 ,

∞ if z = 1 .
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It is bijective, with inverse map

φ−1(p, q , 0) =
�

2 p
p2 + q2 + 1

,
2q

p2 + q2 + 1
,

p2 + q2 − 1
p2 + q2 + 1

�

and φ−1(∞) = (0, 0, 1).

Proof. Given P = (x , y, z ) ∈ S2 \ {N }, the straight line through N and P is
parametrized by

r (t ) = N + t (P −N ) = (0, 0, 1)+ t [(x , y, z )− (0, 0, 1)] = (t x , t y, 1+ t (z −1))

where t ∈R. When r (t ) hits C, the third coordinate is 0, so it must be that t = 1
1−z .

Plugging this value of t into the formula for r yields φ as stated.
To see the formula for the inverse map φ−1, we begin with a point Q = (p, q , 0) ∈

C and solve for a point P = (x , y, z ) ∈ S2 so that φ (P ) =Q . The point P satisfies
the equation x 2 + y2 + z 2 = 1. The equation φ (P ) = Q tells us that x

1−z = p
and y

1−z = q . Thus, we solve three equations for three unknowns. The latter two
equations yield

p2 + q2 =
x 2 + y2

(1− z )2
=

1− z 2

(1− z )2
=

1+ z
1− z

.

Solving p2 + q2 = 1+z
1−z for z and then plugging this into the identities x = p(1− z )

and y = q (1− z ) proves the desired formula. It is easy to check that φ ◦φ−1 and
φ−1 ◦φ are both the identity map; see Exercise 3.25.

Theorem 3.15. The stereographic projectionφ takes the set of circles in S2 bijectively
to the set of circles in Ĉ, where for a circle γ ⊂ S2 we have∞∈ φ (γ) (that is, φ (γ)
is a line in C) if and only if N ∈ γ .

Proof. A circle in S2 is the intersection of S2 with some plane H . If (x0, y0, z0) is a
normal vector to H , then there is a unique real number k so that H is given by

H =
�

(x , y, z ) ∈R3 : (x , y, z ) · (x0, y0, z0) = k
	

=
�

(x , y, z ) ∈R3 : x x0 + y y0 + z z0 = k
	

.
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By possibly changing k , we may assume that (x0, y0, z0) ∈ S2. We may also assume
that 0 ≤ k ≤ 1, since if k < 0 we can replace (x0, y0, z0) with (−x0,−y0,−z0), and if
k > 1 then H ∩ S2 = ∅.

Consider the circle of intersection H ∩S2. A point (p, q , 0) in the complex plane
lies on the image of this circle under φ if and only if φ−1(p, q , 0) satisfies the defining
equation for H . Using the equations from Proposition 3.14 for φ−1(p, q , 0), we see
that

(z0 − k )p2 + (2x0)p + (z0 − k )q2 + (2y0)q = z0 + k .

If z0 − k = 0, this is a straight line in the (p, q )-plane. Moreover, every line in
the (p, q )-plane can be obtained in this way. Note that z0 = k if and only if N ∈ H ,
which is if and only if the image under φ is a straight line.

If z0 − k 6= 0, then completing the square yields

�

p +
x0

z0 − k

�2

+
�

q +
y0

z0 − k

�2

=
1− k2

(z0 − k )2
.

Depending on whether the right hand side of this equation is positive, 0, or negative,
this is the equation of a circle, point, or the empty set in the (p, q )-plane, respectively.
These three cases happen when k < 1, k = 1, and k > 1, respectively. Only the
first case corresponds to a circle in S2. Exercise 3.28 verifies that every circle in the
(p, q )-plane arises in this manner.

We can now think of the extended complex plane as a sphere in R3, the afore-
mentioned Riemann sphere.

It is particularly nice to think about the basic Möbius transformations via their
e�ect on the Riemann sphere. We will describe inversion. It is worth thinking about,
though beyond the scope of this book, how other Möbius functions behave. For
instance, a rotation f (z ) = e iθ z , composed with φ−1, can be seen to be a rotation of
S

2. We encourage you to verify this and consider the harder problems of visualizing
a real dilation, f (z ) = r z , or a translation, f (z ) = z + b . We give the hint that
a real dilation is in some sense dual to a rotation, in that each moves points along
perpendicular sets of circles. Translations can also be visualized via how they move
points along sets of circles.

We now use stereographic projection to take another look at f (z ) = 1
z . We want

to know what this function does to the sphere S2. We will take a point (x , y, z ) ∈ S2,
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project it to the plane by the stereographic projection φ , apply f to the point that
results, and then pull this point back to S2 by φ−1.

We know φ (x , y, z ) = ( x
1−z , y

1−z , 0)which we now regard as the complex number

p + i q =
x

1− z
+ i

y
1− z

.

We know from a previous calculation that p2 + q2 = 1+z
1−z , which gives x 2 + y2 =

(1+ z )(1− z ). Thus

f
� x

1− z
+ i

y
1− z

�

=
1− z
x + i y

=
(1− z )(x − i y )

x 2 + y2
=

x
1+ z

− i
y

1+ z
.

Rather than plug this result into the formulas for φ−1, we can just ask what triple
of numbers will be mapped to this particular pair using the formulas φ (x , y, z ) =
( x

1−z , y
1−z , 0). The answer is (x ,−y,−z ).

Thus we have shown that the e�ect of f (z ) = 1
z on S2 is to take (x , y, z ) to

(x ,−y,−z ). This is a rotation around the x -axis by 180 degrees.
We now have a second argument that f (z ) = 1

z takes circles and lines to circles
and lines. A circle or line in C is taken to a circle on S2 by φ−1. Then f (z ) = 1

z

rotates the sphere which certainly takes circles to circles. Now φ takes circles back
to circles and lines. We can also say that the circles that go to lines under f (z ) = 1

z

are the circles through 0, because 0 is mapped to (0,0,−1) under φ−1, and so a
circle through 0 in C goes to a circle through the south pole in S2. Now 180-degree
rotation about the x -axis takes the south pole to the north pole, and our circle is
now passing through N . But we know that φ will take this circle to a line in C.

We end by mentioning that there is, in fact, a way of putting the complex metric
on S2. It is certainly not the (finite) distance function induced by R3. Indeed, the
origin in the complex plane corresponds to the south pole of S2. We have to be able
to get arbitrarily far away from the origin in C, so the complex distance function
has to increase greatly with the z coordinate. The closer points are to the north pole
N (corresponding to∞ in Ĉ), the larger their distance to the origin, and to each
other! In this light, a ‘line’ in the Riemann sphere S2 corresponds to a circle in S2

through N . In the regular sphere, the circle has finite length, but as a line on the
Riemann sphere with the complex metric, it has infinite length.
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3.4 Exponential and Trigonometric Functions

To define the complex exponential function, we once more borrow concepts from
calculus, namely the real exponential function2 and the real sine and cosine, and we
finally make sense of the notation e i t = cos t + i sin t .

Definition. The (complex) exponential function is exp : C→ C, defined for z =
x + i y as

exp(z ) := e x (cos y + i sin y ) = e x e i y .

This definition seems a bit arbitrary. Our first justification is that all exponential
rules that we are used to from real numbers carry over to the complex case. They
mainly follow from Proposition 1.3 and are collected in the following.

Proposition 3.16. For all z , z1, z2 ∈C,

(a) exp (z1) exp (z2) = exp (z1 + z2)

(b) 1
exp(z ) = exp (−z )

(c) exp (z + 2πi ) = exp (z )

(d) |exp (z )| = exp (Re z )

(e) exp(z ) 6= 0

(f ) d
d z exp (z ) = exp (z ) .

Identity (c) is very special and has no counterpart for the real exponential function.
It says that the complex exponential function is periodic with period 2πi . This has
many interesting consequences; one that may not seem too pleasant at first sight is
the fact that the complex exponential function is not one-to-one.

Identity (f ) is not only remarkable, but we invite you to meditate on its proof
below; it gives a strong indication that our definition of exp is reasonable. We also
note that (f ) implies that exp is entire.

We leave the proof of Proposition 3.16 as Exercise 3.34 but give one sample.

Proof of (f ). The partial derivatives of f (z ) = exp(z ) are

∂ f
∂ x
= e x (cos y + i sin y ) and

∂ f
∂ y
= e x (− sin y + i cos y ) .

2How to define the real exponential function is a nontrivial question. Our preferred way to do this is
through a power series: e x =

∑

k≥0
1
k ! x k . In light of this definition, you might think we should have

simply defined the complex exponential function through a complex power series. In fact, this is possible
(and an elegant definition); however, one of the promises of this book is to introduce complex power
series as late as possible. We agree with those readers who think that we are cheating at this point, as we
borrow the concept of a (real) power series to define the real exponential function.
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They are continuous in C and satisfy the Cauchy–Riemann equation (2.2):

∂ f
∂ x
(z ) = −i

∂ f
∂ y
(z )

for all z ∈C. Thus Theorem 2.13 says that f (z ) = exp(z ) is entire with derivative

f ′(z ) =
∂ f
∂ x
(z ) = exp(z ) .

We should make sure that the complex exponential function specializes to the
real exponential function for real arguments: indeed, if z = x ∈R then

exp(x ) = e x (cos0+ i sin0) = e x .

The trigonometric functions —sine, cosine, tangent, cotangent, etc. —also have
complex analogues; however, they do not play the same prominent role as in the
real case. In fact, we can define them as merely being special combinations of the
exponential function.

Definition. The (complex) sine and cosine are defined as

sin z := 1
2i (exp(i z )− exp(−i z )) and cos z := 1

2 (exp(i z ) + exp(−i z )) ,

respectively. The tangent and cotangent are defined as

tan z :=
sin z
cos z

= −i
exp(2i z )− 1
exp(2i z ) + 1

and
cot z :=

cos z
sin z

= i
exp(2i z ) + 1
exp(2i z )− 1

,

respectively.

Note that to write tangent and cotangent in terms of the exponential function,
we used the fact that exp(z ) exp(−z ) = exp(0) = 1. Because exp is entire, so are sin
and cos.
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Figure 3.2: Image properties of the exponential function.

As with the exponential function, we should make sure that we’re not redefining
the real sine and cosine: if z = x ∈R then

sin z = 1
2i (exp(i x )− exp(−i x ))

= 1
2i (cos x + i sin x − cos(−x )− i sin(−x )) = sin x .
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A similar calculation holds for the cosine. Not too surprisingly, the following
properties follow mostly from Proposition 3.16.

Proposition 3.17. For all z , z1, z2 ∈C,

sin(−z ) = − sin z cos(−z ) = cos z

sin(z + 2π) = sin z cos(z + 2π) = cos z

tan(z + π) = tan z cot(z + π) = cot z

sin(z + π
2 ) = cos z cos(z + π

2 ) = − sin z

sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2

cos (z1 + z2) = cos z1 cos z2 − sin z1 sin z2

cos2 z + sin2 z = 1 cos2 z − sin2 z = cos(2z )
d
dz

sin z = cos z
d
dz

cos z = − sin z .

Finally, one word of caution: unlike in the real case, the complex sine and cosine
are not bounded—consider, for example, sin(i y ) as y →±∞.

We end this section with a remark on hyperbolic trig functions. The hyperbolic
sine, cosine, tangent, and cotangent are defined as in the real case:

Definition.

sinh z = 1
2 (exp(z )− exp(−z )) cosh z = 1

2 (exp(z ) + exp(−z ))

tanh z =
sinh z
cosh z

=
exp(2z )− 1
exp(2z ) + 1

coth z =
cosh z
sinh z

=
exp(2z ) + 1
exp(2z )− 1

.

As such, they are yet more special combinations of the exponential function.
They still satisfy the identities you already know, e.g.,

d
dz

sinh z = cosh z and
d
dz

cosh z = sinh z .

Moreover, they are related to the trigonometric functions via

sinh(i z ) = i sin z and cosh(i z ) = cos z .
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3.5 Logarithms and Complex Exponentials

The complex logarithm is the first function we’ll encounter that is of a somewhat
tricky nature. It is motivated as an inverse to the exponential function, that is, we’re
looking for a functionLog such that

exp(Log(z )) = z = Log(exp z ) . (3.3)

But because exp is not one-to-one, this is too much to hope for. In fact, given a
functionLog that satisfies the first equation in (3.3), the function f (z ) =Log(z )+
2πi does as well, and so there cannot be an inverse of exp (which would have to
be unique). On the other hand, exp becomes one-to-one if we restrict its domain,
so there is hope for a logarithm if we’re careful about its construction and about its
domain.

Definition. Given a region G , any continuous functionLog : G →C that satisfies
exp(Log z ) = z is a branch of the logarithm (on G ).

To make sure this definition is not vacuous, let’s write, as usual, z = r e iφ , and
suppose thatLog z = u(z ) + i v (z ). Then for the first equation in (3.3) to hold, we
need

exp(Log z ) = e u e i v = r e iφ = z ,

that is, e u = r and e i v = e iφ . The latter equation is equivalent to v = φ + 2πk for
some k ∈ Z, and denoting the natural logarithm of the positive real number x by
ln(x ), the former equation is equivalent to u = ln |z |. A reasonable definition of
a logarithm functionLog would hence beLog z = ln |z |+ iArg z whereArg z
gives the argument for the complex number z according to some convention —here
is an example:

Definition. Let Arg z denote the unique argument of z 6= 0 that lies in (−π,π]
(the principal argument of z ). Then the principal logarithm is the function Log :
C \ {0}→C defined through

Log(z ) := ln |z |+ i Arg(z ) .
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Example 3.18. Here are a few evaluations of Log to illustrate this function:

Log(2) = ln(2) + i Arg(2) = ln(2)

Log(i ) = ln(1) + i Arg(i ) =
πi
2

Log(−3) = ln(3) + i Arg(−3) = ln(3) + πi

Log(1− i ) = ln(
p

2) + i Arg(1− i ) =
1
2

ln(2)− πi
4

.

The principal logarithm is not continuous on the negative part of the real line,
and so Log is a branch of the logarithm on C\R≤0. Any branch of the logarithm on
a region G can be similarly extended to a function defined on G \{0}. Furthermore,
the evaluation of any branch of the logarithm at a specific z0 can di�er from Log(z0)
only by a multiple of 2πi ; the reason for this is once more the periodicity of the
exponential function.

So what about the second equation in (3.3), namely,Log(exp z ) = z ? Let’s try
the principal logarithm: if z = x + i y then

Log(exp z ) = ln |e x e i y |+ i Arg(e x e i y ) = ln e x + i Arg(e i y ) = x + i Arg(e i y ) .

The right-hand side is equal to z = x + i y if and only if y ∈ (−π,π]. Something
similar will happen with any other branchLog of the logarithm —there will always
be many z ’s for whichLog(exp z ) 6= z .

A warning sign pointing in a similar direction concerns the much-cherished real
logarithm rule ln(x y ) = ln(x ) + ln(y ); it has no analogue in C. For example,

Log(i ) + Log(i − 1) = i π
2 + ln

p
2+ 3πi

4 = 1
2 ln2+ 5πi

4

but
Log(i (i − 1)) = Log(−1− i ) = 1

2 ln2− 3πi
4 .

The problem is that we need to come up with an argument convention to define a
logarithm and then stick to this convention. There is quite a bit of subtlety here;
e.g., the multi-valued map

arg z := all possible arguments of z
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gives rise to a multi-valued logarithm via

log z := ln |z |+ i arg z .

Neither arg nor log is a function, yet exp(log z ) = z . We invite you to check this
thoroughly; in particular, you should note how the periodicity of the exponential
function takes care of the multi-valuedness of log.

To end our discussion of complex logarithms on a happy note, we prove that
any branch of the logarithm has the same derivative; one just has to be cautious with
regions of holomorphicity.

Proposition 3.19. IfLog is a branch of the logarithm on G thenLog is di�eren-
tiable on G with

d
dz
Log(z ) =

1
z

.

Proof. The idea is to apply Proposition 2.12 to exp and Log, but we need to be
careful about the domains of these functions. Let H := {Log(z ) : z ∈G}, the image
ofLog. We apply Proposition 2.12 with f : H →G given by f (z ) = exp(z ) and
g : G → H given by g (z ) =Log(z ); note that g is continuous, and Exercise 3.48
checks that f and g are inverses of each other. Thus Proposition 2.12 gives

Log′(z ) =
1

exp′(Log z )
=

1
exp(Log z )

=
1
z

.

We finish this section by defining complex exponentials.

Definition. Given a, b ∈C with a 6= 0, the principal value of ab is defined as

ab := exp(b Log(a)) .

Naturally, we can just as well define ab through a di�erent branch of the log-
arithm; our convention is that we use the principal value unless otherwise stated.
Exercise 3.51 explores what happens when we use the multi-valued log in the defini-
tion of ab .

One last remark: it now makes sense to talk about the function f (z ) = e z , where
e is Euler’s3 number and can be defined, for example, as e = limn→∞

�

1+ 1
n

�n . In
calculus we can prove the equivalence of the real exponential function (as given, for

3Named after Leonard Euler (1707–1783). Continuing our footnote on p. 8, we have now honestly
established Euler’s formula e2πi = 1.
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example, through a power series) and the function f (x ) = e x . With our definition
of a z , we can now make a similar remark about the complex exponential function.
Because e is a positive real number and hence Arg e = 0,

e z = exp(z Log(e )) = exp (z (ln |e |+ i Arg(e ))) = exp (z ln(e )) = exp (z ) .

A word of caution: this only works out this nicely because we have carefully defined
ab for complex numbers. Using a di�erent branch of logarithm in the definition of
ab can easily lead to e z 6= exp(z ).

Exercises

3.1. Show that if f (z ) = az+b
c z+d is a Möbius transformation then f −1(z ) = d z−b

−c z+a .

3.2. Complete the picture painted by Proposition 3.1 by considering Möbius trans-
formations with c = 0. That is, show that f : C→ C given by f (z ) = az+b

d is a
bijection, with f −1(z ) given by the formula in Proposition 3.1.

3.3. Show that (3.1) is the equation for a circle or line if and only if β2 + γ2 > 4αδ.
Conclude that x + i y is a solution to (3.1) if and only if u + i v is a solution to (3.2).

3.4. Extend Example 3.5 by showing that f (z ) = z−1
i z+i maps any circle passing

through −1 to a line.

3.5. Prove that any Möbius transformation di�erent from the identity map can have
at most two fixed points. (A fixed point of a function f is a number z such that
f (z ) = z .)

3.6. Prove Proposition 3.3.

3.7. Show that the Möbius transformation f (z ) = 1+z
1−z maps the unit circle (minus

the point z = 1) onto the imaginary axis.

3.8. Suppose that f is holomorphic in the region G and f (G ) is a subset of the unit
circle. Show that f is constant.
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3.9. Fix a ∈C with |a| < 1 and consider

fa(z ) :=
z − a

1− az
.

(a) Show that fa(z ) is a Möbius transformation.

(b) Show that f −1
a (z ) = f−a(z ).

(c) Prove that fa(z ) maps the unit disk D[0, 1] to itself in a bijective fashion.

3.10. Suppose

A =
�

a b
c d

�

is a 2× 2 matrix of complex numbers whose determinant ad − b c is nonzero. Then
we can define a corresponding Möbius transformation on Ĉ by TA(z ) =

az+b
c z+d .

Show that TA ◦ TB = TA·B , where ◦ denotes composition and · denotes matrix
multiplication.

3.11. Show that our definition of Ĉ honors the “finite” limit rules in Proposition 2.4,
by proving the following, where a ∈C:

(a) If limz→z0
f (z ) =∞ and limz→z0

g (z ) = a then limz→z0
( f (z )+ g (z )) =∞ .

(b) If limz→z0
f (z ) =∞ and limz→z0

g (z ) = a 6= 0 then limz→z0
( f (z ) · g (z )) =

∞ .

(c) If limz→z0
f (z ) = limz→z0

g (z ) =∞ then limz→z0
( f (z ) · g (z )) =∞ .

(d) If limz→z0
f (z ) =∞ and limz→z0

g (z ) = a then limz→z0

g (z )
f (z ) = 0 .

(e) If limz→z0
f (z ) = 0 and limz→z0

g (z ) = a 6= 0 then limz→z0

g (z )
f (z ) =∞ .

3.12. Fix c0, c1, . . . , cd−1 ∈C. Prove that

lim
z→∞

1+
cd−1

z
+

cd−2

z 2
+ · · ·+

c0

z d
= 1 .



64 examples of functions

3.13. Let f (z ) = 2z
z+2 . Draw two graphs, one showing the following six sets in the

z -plane and the other showing their images in the w-plane. Label the sets. (You
should only need to calculate the images of 0, ±2, ±(1+ i ), and∞; remember that
Möbius transformations preserve angles.)

(a) the x -axis plus∞

(b) the y -axis plus∞

(c) the line x = y plus∞

(d) the circle with radius 2 centered at 0

(e) the circle with radius 1 centered at 1

(f ) the circle with radius 1 centered at −1

3.14. Find Möbius transformations satisfying each of the following. Write your
answers in standard form, as az+b

c z+d .

(a) 1→ 0, 2→ 1, 3→∞

(b) 1→ 0, 1+ i → 1, 2→∞

(c) 0→ i , 1→ 1, ∞→−i .

3.15. Using the cross ratio, with di�erent choices of zk , find two di�erent Möbius
transformations that transform C [1+ i , 1] onto the real axis plus∞. In each case,
find the image of the center of the circle.

3.16. Let γ be the unit circle. Find a Möbius transformation that transforms γ onto
γ and transforms 0 to 1

2 .

3.17. Describe the image of the region under the transformation:

(a) The disk |z | < 1 under w = i z−i
z+1 .

(b) The quadrant x > 0, y > 0 under w = z−i
z+i .

(c) The strip 0 < x < 1 under w = z
z−1 .
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3.18. Find a Möbius transformation that maps the unit disk to {x + i y ∈C : x + y >
0}.

3.19. The Jacobian of a transformation u = u(x , y ), v = v (x , y ) is the determinant
of the matrix





∂ u
∂ x

∂ u
∂ y

∂v
∂ x

∂v
∂ y



 .

Show that if f = u + i v is holomorphic then the Jacobian equals | f ′(z )|2.

3.20. Find the fixed points in Ĉ of f (z ) = z 2−1
2z+1 .

3.21. Find each Möbius transformation f :

(a) f maps 0→ 1, 1→∞,∞→ 0.

(b) f maps 1→ 1, −1→ i , −i →−1.

(c) f maps the x -axis to y = x , the y -axis to y = −x , and the unit circle to itself.

3.22.

(a) Find a Möbius transformation that maps the unit circle to {x + i y ∈ C :
x + y = 0}.

(b) Find two Möbius transformations that map the unit disk

{z ∈C : |z | < 1} to
{x + i y ∈C : x + y > 0} and

{x + i y ∈C : x + y < 0} ,

respectively.

3.23. Given a ∈ R \ {0}, show that the image of the line y = a under inversion is
the circle with center −i

2a and radius 1
2a .

3.24. Suppose z1, z2 and z3 are distinct points in Ĉ. Show that z is on the circle
passing through z1, z2 and z3 if and only if [z , z1, z2, z3] is real or∞.
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3.25. Prove that the stereographic projection of Proposition 3.14 is a bijection by
verifying that φ ◦φ−1 and φ−1 ◦φ are the identity map.

3.26. Find the image of the following points under the stereographic projection φ :
(0, 0,−1), (0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 1, 0).

3.27. Consider the plane H determined by x + y − z = 0. What is a unit normal
vector to H ? Compute the image of H ∩ S2 under the stereographic projection φ .

3.28. Prove that every circle in the extended complex plane Ĉ is the image of some
circle in S2 under the stereographic projection φ .

3.29. Describe the e�ect of the basic Möbius transformations rotation, real dilation,
and translation on the Riemann sphere. (Hint: For the first two, consider all circles
in S2 centered on the N S axis, and all circles through both N and S . For translation,
consider two families of circles through N , orthogonal to and perpendicular to the
translation.)

3.30. Prove that sin(z ) = sin(z ) and cos(z ) = cos(z ).

3.31. Let z = x + i y and show that

(a) sin z = sin x cosh y + i cos x sinh y .

(b) cos z = cos x cosh y − i sin x sinh y .

3.32. Prove that the zeros of sin z are all real valued. Conclude that they are precisely
the integer multiples of π.

3.33. Describe the images of the following sets under the exponential function
exp(z ):

(a) the line segment defined by z = i y, 0 ≤ y ≤ 2π

(b) the line segment defined by z = 1+ i y, 0 ≤ y ≤ 2π

(c) the rectangle {z = x + i y ∈C : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2π} .



logarithms and complex exponentials 67

3.34. Prove Proposition 3.16.

3.35. Prove Proposition 3.17.

3.36. Let z = x + i y and show that

(a) |sin z |2 = sin2 x + sinh2 y = cosh2 y − cos2 x

(b) |cos z |2 = cos2 x + sinh2 y = cosh2 y − sin2 x

(c) If cos x = 0 then

|cot z |2 =
cosh2 y − 1

cosh2 y
≤ 1 .

(d) If |y | ≥ 1 then

|cot z |2 ≤
sinh2 y + 1

sinh2 y
= 1+

1
sinh2 y

≤ 1+
1

sinh2 1
≤ 2 .

3.37. Show that tan(i z ) = i tanh(z ).

3.38. Draw a picture of the images of vertical lines under the sine function. Do the
same for the tangent function.

3.39. Determine the image of the strip {z ∈ C : − π
2 < Re z < π

2 } under the sine
function. (Hint: Exercise 3.31 makes it easy to convert parametric equations for
horizontal or vertical lines to parametric equations for their images. Note that
the equations x = A sin t and y = B cos t represent an ellipse and the equations
x = A cosh t and y = B sinh t represent a hyperbola. Start by finding the images of
the boundary lines of the strip, and then find the images of a few horizontal segments
and vertical lines in the strip.)

3.40. Find the principal values of

(a) Log(2i )

(b) (−1)i

(c) Log(−1+ i ) .
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3.41. Convert the following expressions to the form x + i y . (Reason carefully.)

(a) e iπ

(b) eπ

(c) i i

(d) e sin(i )

(e) exp(Log(3+ 4i ))

(f ) (1+ i ) 1
2

(g)
p

3 (1− i )

(h)
�

i+1p
2

�4
.

3.42. Is arg(z ) = − arg(z ) true for the multiple-valued argument? What about
Arg(z ) = −Arg(z ) for the principal branch?

3.43. For the multiple-valued logarithm, is there a di�erence between the set of all
values of log(z 2) and the set of all values of 2 log z ? (Hint: Try some fixed numbers
for z .)

3.44. For each of the following functions, determine all complex numbers for which
the function is holomorphic. If you run into a logarithm, use the principal value
unless otherwise stated.

(a) z 2

(b) sin z
z 3+1

(c) Log(z − 2i + 1) whereLog(z ) = ln |z |+ iArg(z ) with 0 ≤Arg(z ) < 2π

(d) exp(z )

(e) (z − 3)i

(f ) i z−3 .

3.45. Find all solutions to the following equations:

(a) Log(z ) = πi
2

(b) Log(z ) = 3πi
2

(c) exp(z ) = πi

(d) sin(z ) = cosh(4)

(e) cos(z ) = 0

(f ) sinh(z ) = 0

(g) exp(i z ) = exp(i z )

(h) z 1
2 = 1+ i .
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3.46. Find the image of the annulus 1 < |z | < e under the principal value of the
logarithm.

3.47. Use Exercise 2.24 to give an alternative proof that Log is holomorphic in
C \R≤0 .

3.48. LetLog be a branch of the logarithm on G , and let H := {Log(z ) : z ∈G},
the image of Log. Show that Log : G → H is a bijection whose inverse map is
f (z ) : H →G given by f (z ) = exp(z ) (i.e., f is the exponential function restricted
to H ).

3.49. Show that |a z | = aRe z if a is a positive real constant.

3.50. Fix c ∈C \ {0}. Find the derivative of f (z ) = z c .

3.51. Prove that exp(b log a) is single valued if and only if b is an integer. (Note that
this means that complex exponentials do not clash with monomials z n , no matter
which branch of the logarithm is used.) What can you say if b is rational?

3.52. Describe the image under exp of the line with equation y = x . To do this you
should find an equation (at least parametrically) for the image (you can start with
the parametric form x = t , y = t ), plot it reasonably carefully, and explain what
happens in the limits as t →∞ and t →−∞.

3.53. For this problem, f (z ) = z 2.

(a) Show that the image under f of a circle centered at the origin is a circle
centered at the origin.

(b) Show that the image under f of a ray starting at the origin is a ray starting at
the origin.

(c) Let T be the figure formed by the horizontal segment from 0 to 2, the circular
arc from 2 to 2i , and then the vertical segment from 2i to 0. Draw T and
f (T ).

(d) Is the right angle at the origin in part (c) preserved? Is something wrong here?

(Hint: Use polar coordinates.)
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3.54. As in the previous problem, let f (z ) = z 2. Let Q be the square with vertices at
0, 2, 2+2i and 2i . Draw f (Q ) and identify the types of image curves corresponding
to the segments from 2 to 2+ 2i and from 2+ 2i to 2i . They are not parts of either
straight lines or circles. (Hint: You can write the vertical segment parametrically as
z (t ) = 2+ i t . Eliminate the parameter in u + i v = f (z (t )) to get a (u, v ) equation
for the image curve.) Exercises 3.53 and 3.54 are related to the cover picture of this
book.



Chapter 4

Integration

If things are nice there is probably a good reason why they are nice: and if you do
not know at least one reason for this good fortune, then you still have work to do.
Richard Askey

We are now ready to start integrating complex functions—and we will not stop
doing so for the remainder of this book: it turns out that complex integration is
much richer than real integration (in one variable). The initial reason for this is that
we have an extra dimension to play with: the calculus integral

∫ b
a f (x ) dx has a fixed

integration path, from a to b along the real line. For complex functions, there are
many di�erent ways to go from a to b ...

4.1 Definition and Basic Properties

At first sight, complex integration is not really di�erent from real integration. Let
a, b ∈R and let g : [a, b ]→C be continuous. Then we define

∫ b

a
g (t ) dt :=

∫ b

a
Re g (t ) dt + i

∫ b

a
Im g (t ) dt . (4.1)

This definition is analogous to that of integration of a parametric curve in R2. For
a function that takes complex numbers as arguments, we typically integrate over
a path γ (in place of a real interval). If you meditate about the substitution rule
for real integrals (Theorem A.6), the following definition, which is based on (4.1),
should come as no surprise.

Definition. Suppose γ is a smooth path parametrized by γ(t ), a ≤ t ≤ b , and f is
a complex function which is continuous on γ . Then we define the integral of f on
γ as

∫

γ
f =

∫

γ
f (z ) dz :=

∫ b

a
f (γ(t ))γ ′(t ) dt .
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This definition immediately extends to paths that are piecewise smooth: Sup-
pose γ is parametrized by γ(t ), a ≤ t ≤ b , which is smooth on the intervals
[a, c1], [c1, c2], . . . , [cn−1, cn], [cn , b ].1 Then, assuming again that f is continuous on
γ , we define

∫

γ
f :=

∫ c1

a
f (γ(t ))γ ′(t ) dt +

∫ c2

c1

f (γ(t ))γ ′(t ) dt + · · · +
∫ b

cn

f (γ(t ))γ ′(t ) dt .

Example 4.1. To see this definition in action, we compute the integral of the function
f :C→C given by f (z ) = z 2 over several paths from 0 to 1+ i .

(a) Let γ be the line segment from 0 to 1+ i . A parametrization of this path is
γ(t ) = t + i t , 0 ≤ t ≤ 1. Here γ ′(t ) = 1+ i and f (γ(t )) = (t − i t )2, and so

∫

γ
f =

∫ 1

0
(t − i t )2 (1+ i ) dt = 2(1− i )

∫ 1

0
t 2 dt =

2
3
(1− i ) .

(b) Let γ be the arc of the parabola y = x 2 from 0 to 1+ i . A parametrization of
this path is γ(t ) = t + i t 2, 0 ≤ t ≤ 1. Now we have γ ′(t ) = 1+ 2i t and

f (γ(t )) =
�

t − i t 2�2 = t 2 − t 4 − 2i t 3 ,

whence
∫

γ
f =

∫ 1

0
(t 2−t 4−2i t 3) (1+ 2i t ) dt =

∫ 1

0
(t 2+3t 4−2i t 5) dt =

14
15
− i

3
.

(c) Let γ be the union of the two line segments γ1 from 0 to 1 and γ2 from 1 to
1+ i . Parametrizations are γ1(t ) = t , 0 ≤ t ≤ 1, and γ2(t ) = 1+ i t , 0 ≤ t ≤ 1.
Hence
∫

γ
f =

∫

γ1

f +
∫

γ2

f =
∫ 1

0
t 2 dt +

∫ 1

0
(1− i t )2 i dt

=
1
3
+ i

∫ 1

0
(1− 2i t − t 2) dt =

1
3
+ i

�

1− 2i
1
2
− 1

3

�

=
4
3
+

2
3

i .

1Our footnote on p. 14 about the subtlety of the definition of a smooth path applies also here, at the
subdivision points ci . Note that we do not require that the left and right derivatives match at these points.
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It is apparent but nevertheless noteworthy that these integrals evaluate to di�erent
results; in particular—unlike in calculus—a complex integral does not simply
depend on the endpoints of the path of integration.

On the other hand, the complex integral has some standard properties, most of
which follow from their real siblings in a straightforward way. Our first observation
is that the actual choice of parametrization of γ does not matter. More precisely, if
γ(t ), a ≤ t ≤ b and σ(t ), c ≤ t ≤ d are parametrizations of a curve then we say
that σ is a reparametrization of γ if there is an increasing piecewise smooth map of
[c , d ] onto [a, b ] that takes γ to σ, in the sense that σ = γ ◦ τ.

Proposition 4.2. If γ(t ), a ≤ t ≤ b is a piecewise smooth parametrization of a
curve and σ(t ), c ≤ t ≤ d is a reparametrization of γ then

∫ d

c
f (σ(t ))σ′(t ) dt =

∫ b

a
f (γ(t ))γ ′(t ) dt .

Example 4.3. To appreciate this statement, consider the two parametrizations

γ(t ) = e i t , 0 ≤ t ≤ 2π , and σ(t ) = e 2πi sin(t ), 0 ≤ t ≤ π
2 ,

of the unit circle. Then we could write
∫

γ f in the two ways

∫

γ
f = i

∫ 2π

0
f
�

e i t � e i t dt

and
∫

γ
f = 2πi

∫ π
2

0
f
�

e2πi sin(t )
�

e2πi sin(t ) cos(t ) dt .

A quick substitution shows that the two integrals on the respective right-hand sides
are indeed equal.

Proposition 4.2 says that a similar equality will hold for any integral and any
parametrization. Its proof is left as Exercise 4.9, which also shows that the following
definition is unchanged under reparametrization.

Definition. The length of a smooth path γ is

length(γ) :=
∫ b

a

�

�

�γ ′(t )
�

�

� dt
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for any parametrization γ(t ), a ≤ t ≤ b . Naturally, the length of a piecewise smooth
path is the sum of the lengths of its smooth components.

Example 4.4. Let γ be the line segment from 0 to 1+ i , which can be parametrized
by γ(t ) = t + i t for 0 ≤ t ≤ 1. Then γ ′(t ) = 1+ i and so

length(γ) =
∫ 1

0
|1+ i | dt =

∫ 1

0

p
2 dt =

p
2 .

Example 4.5. Let γ be the unit circle, which can be parametrized by γ(t ) = e i t for
0 ≤ t ≤ 2π. Then γ ′(t ) = i e i t and

length(γ) =
∫ 2π

0
|i e i t | dt =

∫ 2π

0
dt = 2π .

Now we observe some basic facts about how the line integral behaves with
respect to function addition, scalar multiplication, inverse parametrization, and path
concatenation; we also give an upper bound for the absolute value of an integral,
which we will make use of time and again.

Proposition 4.6. Suppose γ is a piecewise smooth path, f and g are complex
functions which are continuous on γ , and c ∈C.

(a)
∫

γ
( f + c g ) =

∫

γ
f + c

∫

γ
g .

(b) If γ is parametrized by γ(t ), a ≤ t ≤ b , we define the path −γ by −γ(t ) :=
γ(a + b − t ), a ≤ t ≤ b . Then

∫

−γ
f = −

∫

γ
f .

(c) If γ1 and γ2 are piecewise smooth paths so that γ2 starts where γ1 ends, we
define the path γ1γ2 by following γ1 to its end and then continuing on γ2 to
its end. Then

∫

γ1γ2

f =
∫

γ1

f +
∫

γ2

f .

(d)
�

�

�

�

�

∫

γ
f

�

�

�

�

�

≤ max
z∈γ
| f (z )| · length(γ) .

The path −γ defined in (b) is the path that we obtain by traveling through γ in the
opposite direction.
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Proof. (a) follows directly from the definition of the integral and Theorem A.4, the
analogous theorem from calculus.

(b) follows with the real change of variables s = a + b − t :

∫

−γ
f =

∫ b

a
f (γ(a + b − t )) (γ(a + b − t ))′ dt

= −
∫ b

a
f (γ(a + b − t ))γ ′(a + b − t ) dt

=
∫ a

b
f (γ(s ))γ ′(s ) ds = −

∫ b

a
f (γ(s ))γ ′(s ) ds = −

∫

γ
f .

(c) We need a suitable parametrization γ(t ) for γ1γ2. If γ1 has domain [a1, b1] and
γ2 has domain [a2, b2] then we can use

γ(t ) :=







γ1(t ) if a1 ≤ t ≤ b1 ,

γ2(t − b1 + a2) if b1 ≤ t ≤ b1 + b2 − a2 ,

with domain [a1, b1 + b2 − a2]. Now we break the integral over γ1γ2 into two pieces
and apply the change of variables s = t − b1 + a2:

∫

γ1γ2

f =
∫ b1+b2−a2

a1

f (γ(t ))γ ′(t ) dt

=
∫ b1

a1

f (γ(t ))γ ′(t ) dt +
∫ b1+b2−a2

b1

f (γ(t ))γ ′(t ) dt

=
∫

γ1

f +
∫

γ2

f .

The last step follows since γ restricted to [a1, b1] is γ1 and γ restricted to [b1, b1 +
b2 − a2] is a reparametrization of γ2.
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(d) Let φ =
�

Arg
∫

γ f
�

. Then
∫

γ f =
�

�

�

∫

γ f
�

�

� e iφ and thus, since
�

�

�

∫

γ f
�

�

� ∈R,

�

�

�

�

�

∫

γ
f

�

�

�

�

�

= e−iφ
∫

γ
f = Re

�

e−iφ
∫ b

a
f (γ(t ))γ ′(t ) dt

�

=
∫ b

a
Re
�

f (γ(t ))e−iφγ ′(t )
�

dt

≤
∫ b

a

�

�

� f (γ(t ))e−iφγ ′(t )
�

�

� dt =
∫ b

a
| f (γ(t ))|

�

�

�γ ′(t )
�

�

� dt

≤ max
a≤t≤b

| f (γ(t ))|
∫ b

a

�

�

�γ ′(t )
�

�

� dt = max
z∈γ
| f (z )| · length(γ) .

Here we have used Theorem A.5 for both inequalities.

Example 4.7. In Exercise 4.4, you are invited to show

∫

γ

dz
z −w

= 2πi ,

where γ is any circle centered at w ∈C, oriented counter-clockwise. Thus Propo-
sition 4.6(b) says that the analogous integral over a clockwise circle equals −2πi .
Incidentally, the same example shows that the inequality in Proposition 4.6(d) is
sharp: if γ has radius r , then

2π =

�

�

�

�

�

∫

γ

dz
z −w

�

�

�

�

�

≤ max
z∈γ

�

�

�

�

1
z −w

�

�

�

�

length(γ) =
1
r
· 2π r .

4.2 Antiderivatives

The central result about integration of a real function is the Fundamental Theorem
of Calculus (Theorem A.3), and our next goal is to discuss complex versions of this
theorem. The Fundamental Theorem of Calculus makes a number of important
claims: that continuous functions are integrable, their antiderivatives are continuous
and di�erentiable, and that antiderivatives provide easy ways to compute values of
definite integrals. The di�erence between the real case and the complex case is that
in the latter, we need to think about integrals over arbitrary paths in C.

Definition. If F is holomorphic in the region G ⊆ C and F ′(z ) = f (z ) for all
z ∈G , then F is an antiderivative of f on G , also known as a primitive of f on G .
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Example 4.8. We have already seen that F (z ) = z 2 is entire and has derivative
f (z ) = 2z . Thus, F is an antiderivative of f on any region G ⊆C. The same goes
for F (z ) = z 2 + c , where c ∈C is any constant.

Example 4.9. Since

d
dz

� 1
2i
(exp(i z )− exp(−i z ))

�

=
1
2
(exp(i z ) + exp(−i z )) ,

F (z ) = sin z is an antiderivative of f (z ) = cos z on C.

Example 4.10. The function F (z ) = Log(z ) is an antiderivative of f (z ) = 1
z on

C \R≤0. Note that f is holomorphic in the larger region C \ {0}; however, we will
see in Example 4.14 that f cannot have an antiderivative on that region.

Here is the complex analogue of Theorem A.3(b).

Theorem 4.11. Suppose G ⊆C is a region and γ ⊂G is a piecewise smooth path
with parametrization γ(t ), a ≤ t ≤ b . If f is continuous on G and F is any
antiderivative of f on G then

∫

γ
f = F (γ(b ))− F (γ(a)) .

Proof. This follows immediately from the definition of a complex integral and
Theorem A.3(b), since d

d t F (γ(t )) = f (γ(t ))γ ′(t ):

∫

γ
f =

∫ b

a
f (γ(t ))γ ′(t ) dt = F (γ(b ))− F (γ(a)) .

Example 4.12. Since F (z ) = 1
2 z 2 is an antiderivative of f (z ) = z in C,

∫

γ
f =

1
2
(1+ i )2 − 1

2
02 = i

for each of the three paths in Example 4.1.

There are several interesting consequences of Theorem 4.11. For starters, if γ is
closed (that is, γ(a) = γ(b )) we e�ortlessly obtain the following.
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Corollary 4.13. Suppose G ⊆C is open, γ ⊂G is a piecewise smooth closed path,
and f is continuous on G and has an antiderivative on G . Then

∫

γ
f = 0 .

This corollary is immediately useful as a test for existence of antiderivatives:

Example 4.14. The function f :C\{0}→C given by f (z ) = 1
z satisfies

∫

γ f = 2πi
for the unit circle γ ⊂ C \ {0}, by Exercise 4.4. Since this integral is nonzero, f
cannot have an antiderivative in C \ {0}.

We now turn to the complex analogue of Theorem A.3(a).

Theorem 4.15. Suppose G ⊆ C is a region and z0 ∈ G . Let f : G → C be a
continuous function such that

∫

γ f = 0 for any closed piecewise smooth path γ ⊂G .
Then the function F : G →C defined by

F (z ) :=
∫

γz

f ,

where γz is any piecewise smooth path in G from z0 to z , is an antiderivative for f
on G .

Proof. There are two statements that we have to prove: first, that our definition of
F is sound —that is, the integral defining F does not depend on which path we take
from z0 to z —and second, that F ′(z ) = f (z ) for all z ∈G .

Suppose G ⊆ C is a region, z0 ∈ G , and f : G → C is a continuous function
such that

∫

γ f = 0 for any closed piecewise smooth path γ ⊂G . Then
∫

σ f evaluates
to the same number for any piecewise smooth path σ ⊂G from z0 to z ∈G , because
any two such paths σ1 and σ2 can be concatenated to a closed path first tracing
through σ1 and then through σ2 backwards, which by assumption yields a zero
integral:

∫

σ1

f −
∫

σ2

f =
∫

σ1−σ2

f = 0 .

This means that
F (z ) :=

∫

γz

f
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is well defined. By the same argument,

F (z + h)− F (z ) =
∫

γz+h

f −
∫

γz

f =
∫

γ
f

for any path γ ⊂G from z to z + h . The constant function 1 has the antiderivative
z on C, and so

∫

γ 1 = h , by Theorem 4.11. Thus

F (z + h)− F (z )
h

− f (z ) =
1
h

∫

γ
f (w ) dw −

f (z )
h

∫

γ
dw

=
1
h

∫

γ
( f (w )− f (z )) dw .

If |h | is su�ciently small then the line segment λ from z to z + h will be contained
in G , and so, by applying the assumptions of our theorem for the third time,

F (z + h)− F (z )
h

− f (z ) =
1
h

∫

γ
( f (w )− f (z )) dw

=
1
h

∫

λ
( f (w )− f (z )) dw . (4.2)

We will show that the right-hand side goes to zero as h→ 0, which will conclude
the theorem. Given ε > 0, we can choose δ > 0 such that

|w − z | < δ =⇒ | f (w )− f (z )| < ε

because f is continuous at z . (We also choose δ small enough so that (4.2) holds.)
Thus if |h | < δ, we can estimate with Proposition 4.6(d)

�

�

�

�

1
h

∫

λ
( f (w )− f (z )) dw

�

�

�

�

≤ 1
|h |

max
w∈λ
| f (w )− f (z )| length(λ)

= max
w∈λ
| f (w )− f (z )| < ε .

There are several variations of Theorem 4.15, as we can play with the assumptions
about paths in the statement of the theorem. We give one such variation, namely,
for polygonal paths, i.e., paths that are composed as unions of line segments. You
should convince yourself that the proof of the following result is identical to that of
Theorem 4.15.
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Corollary 4.16. Suppose G ⊆ C is a region and z0 ∈ G . Let f : G → C be a
continuous function such that

∫

γ f = 0 for any closed polygonal path γ ⊂G . Then
the function F : G →C defined by

F (z ) :=
∫

γz

f ,

where γz is any polygonal path in G from z0 to z , is an antiderivative for f on G .

If you compare our proof of Theorem 4.15 to its analogue in R, you will see
similarities, as well as some complications due to the fact that we now have to
operate in the plane as opposed to the real line. Still, so far we have essentially been
“doing calculus” when computing integrals. We will now take a radical departure
from this philosophy by studying complex integrals that stay invariant under certain
transformations of the paths we are integrating over.

4.3 Cauchy’s Theorem

The central theorem of complex analysis is based on the following concept.

Definition. Suppose γ0 and γ1 are closed paths in the region G ⊆C, parametrized
by γ0(t ), 0 ≤ t ≤ 1, and γ1(t ), 0 ≤ t ≤ 1, respectively. Then γ0 is G -homotopic to
γ1 if there exists a continuous function h : [0, 1]2→G such that, for all s , t ∈ [0, 1],

h(t , 0) = γ0(t ) ,

h(t , 1) = γ1(t ) , (4.3)

h(0, s ) = h(1, s ) .

We use the notation γ1 ∼G γ2 to mean γ1 is G -homotopic to γ2.

The function h(t , s ) is called a homotopy. For each fixed s , a homotopy h(t , s )
is a path parametrized by t , and as s goes from 0 to 1, these paths continuously
transform from γ0 to γ1. The last condition in (4.3) simply says that each of these
paths is also closed.

Example 4.17. Figure 4.1 attempts to illustrate that the unit circle is (C \ {0})-
homotopic to the square with vertices ±3± 3i . Indeed, you should check (Exer-
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cise 4.20) that

h(t , s ) := (1− s )e2πi t + 3s ×











































1+ 8i t if 0 ≤ t ≤ 1
8 ,

2− 8t + i if 1
8 ≤ t ≤ 3

8 ,

−1+ 4i (1− 2t ) if 3
8 ≤ t ≤ 5

8 ,

8t − 6− i if 5
8 ≤ t ≤ 7

8 ,

1+ 8i (t − 1) if 7
8 ≤ t ≤ 1

(4.4)

gives a homotopy. Note that h(t , s ) 6= 0 for any 0 ≤ t , s ≤ 1 (hence “(C \ {0})-
homotopic”).

Figure 4.1: This square and circle are (C \ {0})-homotopic.

Exercise 4.23 shows that ∼G is an equivalence relation on the set of closed
paths in G . The definition of homotopy applies to parametrizations of curves; but
Exercise 4.24, together with transitivity of ∼G , shows that homotopy is invariant
under reparametrizations.

Theorem 4.18 (Cauchy’s Theorem). Suppose G ⊆C is a region, f is holomorphic
in G , γ0 and γ1 are piecewise smooth paths in G , and γ0 ∼G γ1. Then

∫

γ0

f =
∫

γ1

f .

As a historical aside, it is assumed that Johann Carl Friedrich Gauß (1777–1855)
knew a version of this theorem in 1811 but published it only in 1831. Cauchy (of
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Cauchy–Riemann equations fame) published his version in 1825, Karl Theodor
Wilhelm Weierstraß (1815–1897) his in 1842. Theorem 4.18 is often called the
Cauchy–Goursat Theorem, since Cauchy assumed that the derivative of f was con-
tinuous, a condition that was first removed by Edouard Jean-Baptiste Goursat
(1858–1936).

Before discussing the proof of Theorem 4.18, we give a basic, yet prototypical
application of it:

Example 4.19. We claim that

∫

γ

dz
z
= 2πi (4.5)

where γ is the square in Figure 4.1, oriented counter-clockwise. We could, of course,
compute this integral by hand, but it is easier to apply Cauchy’s Theorem 4.18 to
the function f (z ) = 1

z , which is holomorphic in G =C \ {0}. We showed in (4.4)
that γ is G -homotopic to the unit circle. Exercise 4.4 says that integrating f over
the unit circle gives 2πi and so Cauchy’s Theorem 4.18 implies (4.5).

Proof of Theorem 4.18. The full proof of Cauchy’s Theorem is beyond the scope of
this book. However, there are several proofs under more restrictive hypotheses than
Theorem 4.18. We shall present a proof under the following extra assumptions:

• The derivative f ′ is continuous in G .

• The homotopy h from γ0 to γ1 has piecewise, continuous second derivatives.

Technically, this is the assumption on h :

h(t , s ) =































h1(t , s ) if 0 ≤ t ≤ t1 ,

h2(t , s ) if t1 ≤ t ≤ t2 ,
...

hn(t , s ) if tn−1 ≤ t ≤ 1 ,

where each h j (t , s ) has continuous second partials2. (Example 4.17 gives one in-
stance.) Now we turn to the proof under these extra assumptions.

2As we have seen with other “piecewise” definitions, the behavior of h at the subdivision lines t = ti
needs to be understood in terms of limits.
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For 0 ≤ s ≤ 1, let γs be the path parametrized by h(t , s ), 0 ≤ t ≤ 1. Consider
the function I : [0, 1]→C given by

I (s ) :=
∫

γs

f ,

so that I (0) =
∫

γ0
f and I (1) =

∫

γ1
f . We will show that I is constant; in particular,

I (0) = I (1), which proves the theorem. By Leibniz’s rule (Theorem A.9),

d
ds

I (s ) =
d
ds

∫ 1

0
f (h(t , s ))

∂ h
∂ t

dt =
∫ 1

0

∂
∂ s

�

f (h(t , s ))
∂ h
∂ t

�

dt

=
∫ 1

0

�

f ′ (h(t , s ))
∂ h
∂ s

∂ h
∂ t
+ f (h(t , s ))

∂2h
∂ s ∂ t

�

dt

=
∫ 1

0

�

f ′ (h(t , s ))
∂ h
∂ t

∂ h
∂ s
+ f (h(t , s ))

∂2h
∂ t ∂ s

�

dt

=
∫ 1

0

∂
∂ t

�

f (h(t , s ))
∂ h
∂ s

�

dt .

Note that we used Theorem A.7 to switch the order of the second partials in the
penultimate step—here is where we need our assumption that h has continuous
second partials. Also, we needed continuity of f ′ in order to apply Leibniz’s rule. If
h is piecewise defined, we split up the integral accordingly.

Finally, by the Fundamental Theorem of Calculus (Theorem A.3), applied
separately to the real and imaginary parts of the above integrand,

d
ds

I (s ) =
∫ 1

0

∂
∂ t

�

f (h(t , s ))
∂ h
∂ s

�

dt

= f (h(1, s ))
∂ h
∂ s
(1, s )− f (h(0, s ))

∂ h
∂ s
(0, s ) = 0 ,

where the last step follows from h(0, s ) = h(1, s ) for all s .

Definition. Let G ⊆ C be a region. If the closed path γ is G -homotopic to a
point (that is, a constant path) then γ is G -contractible, and we write γ ∼G 0. (See
Figure 4.2 for an example.)

The fact that an integral over a point is zero has the following immediate conse-
quence.
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Figure 4.2: This ellipse is (C \R)-contractible.

Corollary 4.20. Suppose G ⊆C is a region, f is holomorphic in G , γ is piecewise
smooth, and γ ∼G 0. Then

∫

γ
f = 0 .

This corollary is worth meditating over. For example, you should compare it
with Corollary 4.13: both results give a zero integral, yet they make truly opposite
assumptions (one about the existence of an antiderivative, the other about the
existence of a derivative).

Naturally, Corollary 4.20 gives many evaluations of integrals, such as this:

Example 4.21. Since Log is holomorphic in G =C\R≤0 and the ellipse γ in Figure
4.2 is G -contractible, Corollary 4.20 gives

∫

γ
Log(z ) dz = 0 .

Exercise 4.25(a) says that any closed path is C-contractible, which yields the
following special case of Corollary 4.20.

Corollary 4.22. If f is entire and γ is any piecewise smooth closed path, then

∫

γ
f = 0 .

The theorems and corollaries in this section are useful not just for showing that
certain integrals are zero:
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Example 4.23. We’d like to compute

∫

γ

dz
z 2 − 2z

where γ is the unit circle, oriented counter-clockwise. (Try computing it from first
principles.) We use a partial fractions expansion to write

∫

γ

dz
z 2 − 2z

=
1
2

∫

γ

dz
z − 2

− 1
2

∫

γ

dz
z

.

The first integral on the right-hand side is zero by Corollary 4.20 applied to the
function f (z ) = 1

z−2 (note that f is holomorphic in C \ {2} and γ is (C \ {2})-
contractible). The second integral is 2πi by Exercise 4.4, and so

∫

γ

dz
z 2 − 2z

= −πi .

Sometimes Corollary 4.20 itself is known as Cauchy’s Theorem. See Exercise 4.26
for a related formulation of Corollary 4.20, with a proof based on Green’s Theorem.

4.4 Cauchy’s Integral Formula

We recall our notations

C [a, r ] = {z ∈C : |z − a| = r }

D[a, r ] = {z ∈C : |z − a| < r }

D[a, r ] = {z ∈C : |z − a| ≤ r }

for the circle, open disk, and closed disk, respectively, with center a ∈C and radius
r > 0. Unless stated otherwise, we orient C [a, r ] counter-clockwise.

Theorem 4.24. If f is holomorphic in an open set containing D[w, R] then

f (w ) =
1

2πi

∫

C [w,R]

f (z )
z −w

dz .

This is Cauchy’s Integral Formula for the case that the integration path is a circle;
we will prove the general statement at the end of this chapter. However, already this
special case is worth meditating over: the data on the right-hand side of Theorem 4.24
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is entirely given by the values that f (z ) takes on for z on the circle C [w, R]. Thus
Cauchy’s Integral Formula says that this data determines f (w ). This has the flavor
of mean-value theorems, which the following corollary makes even more apparent.

Corollary 4.25. If f = u + i v is holomorphic in an open set containing D[w, R]
then

f (w ) =
1

2π

∫ 2π

0
f
�

w + R e i t � dt ,

u(w ) =
1

2π

∫ 2π

0
u
�

w + R e i t � dt

and

v (w ) =
1

2π

∫ 2π

0
v
�

w + R e i t � dt .

Proofs of Theorem 4.24 and Corollary 4.25. By assumption, f is holomorphic in an
open set G that contains D[w, R], and so f (z )

z−w is holomorphic in H := G \ {w}.
For any 0 < r < R ,

C [w, r ] ∼H C [w, R] ,

and so Cauchy’s Theorem 4.18 and Exercise 4.4 give
�

�

�

�

�

∫

C [w,R]

f (z )
z −w

dz − 2πi f (w )

�

�

�

�

�

=

�

�

�

�

�

∫

C [w,r ]

f (z )
z −w

dz − f (w )
∫

C [w,r ]

dz
z −w

�

�

�

�

�

=

�

�

�

�

�

∫

C [w,r ]

f (z )− f (w )
z −w

dz

�

�

�

�

�

≤ max
z∈C [w,r ]

�

�

�

�

f (z )− f (w )
z −w

�

�

�

�

length (C [w, r ]) (4.6)

= max
z∈C [w,r ]

| f (z )− f (w )|
r

2π r

= 2π max
z∈C [w,r ]

| f (z )− f (w )| .

Here the inequality comes from Proposition 4.6(d).
Now let ε > 0. Because f is continuous at w , there exists δ > 0 such that

|z −w | < δ implies
| f (z )− f (w )| < ε

2π
.
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In particular, this will hold for z ∈ C [w, δ
2 ], and so (4.6) implies, with r = δ

2 ,

�

�

�

�

�

∫

C [w,R]

f (z )
z −w

dz − 2πi f (w )

�

�

�

�

�

< ε .

Since we can choose ε as small as we’d like, the left-hand side must be zero, which
proves Theorem 4.24.

Corollary 4.25 now follows by definition of the complex integral:

f (w ) =
1

2πi

∫ 2π

0

f (w + R e i t )
w + R e i t −w

i R e i t dt =
1

2π

∫ 2π

0
f
�

w + R e i t � dt ,

which splits into real and imaginary parts as

u(w ) + i v (w ) =
1

2π

∫ 2π

0
u
�

w + R e i t � dt + i
1

2π

∫ 2π

0
v
�

w + R e i t � dt .

Theorem 4.24 can be used to compute integrals of a certain nature.

Example 4.26. We’d like to determine

∫

C [i ,1]

dz
z 2 + 1

.

The function f (z ) = 1
z+i is holomorphic in C\{−i}, which contains D[i , 1]. Thus

we can apply Theorem 4.24:

∫

C [i ,1]

dz
z 2 + 1

=
∫

C [i ,1]

1
z+i

z − i
dz = 2πi f (i ) = 2πi

1
2i
= π .

Now we would like to extend Theorem 4.24 by replacing C [w, R] with any
simple closed piecewise smooth path γ around w . Intuitively, Cauchy’s Theorem 4.18
should supply such an extension: assuming that f is holomorphic in a region G
that includes γ and its inside, we can find a small R such that D[w, R] ⊆ G , and
since f (z )

z−w is holomorphic in H :=G \ {w} and γ ∼H C [w, R], Theorems 4.18 and
4.24 yield

f (w ) =
1

2πi

∫

γ

f (z )
z −w

dz .
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This all smells like good co�ee, except ... we might be just dreaming. The argument
may be intuitively clear, but intuition doesn’t prove anything. We’ll look at it carefully,
fill in the gaps, and then we’ll see what we have proved.

First, we need a notion of the inside of a simple closed path. The fact that
any such path γ divides the complex plane into two connected open sets of γ
(the bounded one of which we call the inside or interior of γ) is one of the first
substantial theorems ever proved in topology, the Jordan Curve Theorem, due to
Camille Jordan (1838–1922).3 In this book we shall assume the validity of the
Jordan Curve Theorem.

Second, we need to specify the orientation of γ , since if the formula gives f (w )
for one orientation then it will give − f (w ) for the other orientation.

Definition. A piecewise smooth simple closed path γ is positively oriented if it is
parametrized so that its inside is on the left as our parametrization traverses γ . An
example is a counter-clockwise oriented circle.

Third, if γ is positively oriented and D[w, R] is a closed disk inside γ then we
need a homotopy from γ to the counterclockwise circle C [w, R] that stays inside γ
and away from D[w, R]. This is provided directly by another substantial theorem of
topology, the Annulus Theorem, although there are other methods. Again, in this
book we shall assume the existence of this homotopy.

These results of topology seem intuitively obvious but are surprisingly di�cult to
prove. If you’d like to see a proof, we recommend that you take a course in topology.

There is still a subtle problem with our proof. We assumed that γ is in G , but
we also need the interior of γ to be contained in G , since we need to apply Cauchy’s
Theorem to the homotopy between γ and C [w, R]. We could just add this as an
assumption to our theorem, but the following formulation will be more convenient
later.

Theorem 4.27 (Cauchy’s Integral Formula). Suppose f is holomorphic in the region
G and γ is a positively oriented, simple, closed, piecewise smooth path, such that w
is inside γ and γ ∼G 0. Then

f (w ) =
1

2πi

∫

γ

f (z )
z −w

dz .

3This is the Jordan of Jordan normal form fame, but not the one of Gauß–Jordan elimination.
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So all that we need to finish the proof of Theorem 4.27 is one more fact from
topology. But we can prove this one:

Proposition 4.28. Suppose γ is a simple, closed, piecewise smooth path in the
region G . Then G contains the interior of γ if and only if γ ∼G 0.

Proof. One direction is easy: If G contains the interior of γ and D[w, R] is any
closed disk in the interior of γ then there is a G -homotopy from γ to C [w, R], and
C [w, R] ∼G 0.

In the other direction we argue by contradiction: Assume γ ∼G 0 but G does
not contain the interior of γ . So we can find a point w in the interior of γ which is
not in G .

Define g (z ) = 1
z−w for z 6= w . Now g is holomorphic on G and γ ∼G 0, so

Corollary 4.20 applies, and we have
∫

γ g (z ) dz = 0. On the other hand, choose
R > 0 so that D[w, R] is inside γ . There is a homotopy inC\{w } from γ to C [w, R],
so Cauchy’s Theorem 4.18, plus Exercise 4.4, shows that

∫

γ g (z ) dz = 2πi .
This contradiction finishes the proof.

Notice that, instead of using topology to prove a theorem about holomorphic
functions, we just used holomorphic functions to prove a theorem about topology.

Example 4.29. Continuing Example 4.26, Theorem 4.27 says that

∫

γ

dz
z 2 + 1

= π

for any positively oriented, simple, closed, piecewise smooth path γ that contains i
on its inside and that is (C \ {−i})-contractible.

Example 4.30. To compute

∫

C [0,3]

exp(z )
z 2 − 2z

dz

we use the partial fractions expansion from Example 4.23:

∫

C [0,3]

exp(z )
z 2 − 2z

dz =
1
2

∫

C [0,3]

exp(z )
z − 2

dz − 1
2

∫

C [0,3]

exp(z )
z

dz .
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For the two integrals on the right-hand side, we can use Theorem 4.24 with the
function f (z ) = exp(z ), which is entire, and so (note that both 2 and 0 are inside γ)

∫

C [0,3]

exp(z )
z 2 − 2z

dz =
1
2

2πi · exp(2)− 1
2

2πi · exp(0) = πi
�

e2 − 1
�

.

Exercises

4.1. Find the length of the following paths:

(a) γ(t ) = 3t + i , −1 ≤ t ≤ 1

(b) γ(t ) = i + e iπ t , 0 ≤ t ≤ 1

(c) γ(t ) = i sin(t ), −π ≤ t ≤ π

(d) γ(t ) = t − i e−i t , 0 ≤ t ≤ 2π

Draw pictures of each path and convince yourself that the lengths you computed
are sensible. (The last path is a cycloid, the trace of a fixed point on a wheel as it
makes one rotation.)

4.2. Compute the lengths of the paths from Exercise 1.33:

(a) the circle C [1+ i , 1]

(b) the line segment from −1− i to 2i

(c) the top half of the circle C [0, 34]

(d) the rectangle with vertices ±1± 2i

4.3. Integrate the function f (z ) = z over the three paths given in Example 4.1.

4.4. Compute
∫

γ
d z
z where γ is the unit circle, oriented counterclockwise. More

generally, show that for any w ∈C and r > 0,

∫

C [w,r ]

dz
z −w

= 2πi .

4.5. Integrate the following functions over the circle C [0, 2]:

(a) f (z ) = z + z

(b) f (z ) = z 2 − 2z + 3

(c) f (z ) = 1
z 4

(d) f (z ) = x y
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4.6. Evaluate the integrals
∫

γ x dz ,
∫

γ y dz ,
∫

γ z dz and
∫

γ z dz along each of the
following paths. (Hint: You can get the second two integrals after you calculate the
first two by writing z and z as x ± i y .)

(a) γ is the line segment from 0 to 1− i

(b) γ = C [0, 1]

(c) γ = C [a, r ] for some a ∈C

4.7. Evaluate
∫

γ exp(3z ) dz for each of the following paths:

(a) γ is the line segment from 1 to i

(b) γ = C [0, 3]

(c) γ is the arc of the parabola y = x 2 from x = 0 to x = 1

4.8. Compute
∫

γ f for the following functions f and paths γ :

(a) f (z ) = z 2 and γ(t ) = t + i t 2, 0 ≤ t ≤ 1.

(b) f (z ) = z and γ is the semicircle from 1 through i to −1.

(c) f (z ) = exp(z ) and γ is the line segment from 0 to a point z0.

(d) f (z ) = |z |2 and γ is the line segment from 2 to 3+ i .

(e) f (z ) = z + 1
z and γ is parametrized by γ(t ), 0 ≤ t ≤ 1, and satisfies Imγ(t ) >

0, γ(0) = −4+ i , and γ(1) = 6+ 2i .

(f ) f (z ) = sin(z ) and γ is some piecewise smooth path from i to π.

4.9. Prove Proposition 4.2 and the fact that the length of γ does not change under
reparametrization. (Hint: Assume γ , σ, and τ are smooth. Start with the definition
of
∫

σ f , apply the chain rule to σ = γ ◦ τ, and then use the change of variables
formula, Theorem A.6.)
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4.10. Prove the following integration by parts statement: Let f and g be holomorphic
in G , and suppose γ ⊂G is a piecewise smooth path from γ(a) to γ(b ). Then

∫

γ
f g ′ = f (γ(b )) g (γ(b ))− f (γ(a)) g (γ(a))−

∫

γ
f ′ g .

4.11. Let I (k ) := 1
2π

∫ 2π
0 e i k t dt .

(a) Show that I (0) = 1.

(b) Show that I (k ) = 0 if k is a nonzero integer.

(c) What is I ( 12 )?

4.12. Compute
∫

C [0,2] z
1
2 dz .

4.13. Show that
∫

γ z n dz = 0 for any closed piecewise smooth γ and any integer
n 6= −1. (If n is negative, assume that γ does not pass through the origin, since
otherwise the integral is not defined.)

4.14. Exercise 4.13 excluded n = −1 for a good reason: Exercise 4.4 gives a coun-
terexample. Generalizing these, if m is any integer, find a closed path γ so that
∫

γ z−1 dz = 2mπi .

4.15. Taking the previous two exercises one step further, fix z0 ∈ C and let γ be a
simple, closed, positively oriented, piecewise smooth path such that z0 is inside γ .
Show that, for any integer n,

∫

γ
(z − z0)

n dz =







2πi if n = −1 ,

0 otherwise.

4.16. Prove that
∫

γ z exp(z 2) dz = 0 for any closed path γ .

4.17. Show that F (z ) = i
2 Log(z + i )− i

2 Log(z − i ) is an antiderivative of 1
1+z 2 for

Re(z ) > 0. Is F (z ) equal to arctan z ?
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4.18. Compute the following integrals, where γ is the line segment from 4 to 4i .

(a)
∫

γ

z + 1
z

dz

(b)
∫

γ

dz
z 2 + z

(c)
∫

γ
z−

1
2 dz

(d)
∫

γ
sin2(z ) dz

4.19. Compute the following integrals. (Hint: One of these integrals is considerably
easier than the other.)

(a)
∫

γ1

z i dz where γ1(t ) = e i t , − π
2 ≤ t ≤ π

2 .

(b)
∫

γ2

z i dz where γ2(t ) = e i t , π
2 ≤ t ≤ 3π

2 .

4.20. Show that (4.4) gives a homotopy between the unit circle and the square with
vertices ±3± 3i .

4.21. Use Exercise 1.34 give a homotopy that is an alternative to (4.4) and does not
need a piecewise definition.

4.22. Suppose a ∈ C and γ0 and γ1 are two counterclockwise circles so that a is
inside both of them. Give a homotopy that proves γ0 ∼C\{a} γ1.

4.23. Prove that ∼G is an equivalence relation.

4.24. Suppose that γ is a closed path in a region G , parametrized by γ(t ), t ∈ [0, 1],
and τ is a continuous increasing function from [0, 1] onto [0, 1]. Show that γ is G -
homotopic to the reparametrized path γ◦τ. (Hint: Make use of τs (t ) = s τ(t )+(1−s )t
for 0 ≤ s ≤ 1.)

4.25.

(a) Prove that any closed path is C-contractible.

(b) Prove that any two closed paths are C-homotopic.
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4.26. This exercise gives an alternative proof of Corollary 4.20 via Green’s Theo-
rem A.10. Suppose G ⊆C is a region, f is holomorphic in G , f ′ is continuous, γ
is a simple piecewise smooth closed curve, and γ ∼G 0. Explain that we may write

∫

γ
f (z ) dz =

∫

γ
(u + i v )(dx + i d y ) =

∫

γ
u dx − v d y + i

∫

γ
v dx + u d y

and show that these integrals vanish, by using Green’s Theorem A.10 together with
Proposition 4.28, and then the Cauchy–Riemann equations (2.2).

4.27. Fix a ∈C. Compute

I (r ) :=
∫

C [0,r ]

dz
z − a

.

You should get di�erent answers for r < |a| and r > |a|. (Hint: In one case γr is
contractible in C \ {a}. In the other you can combine Exercises 4.4 and 4.22.)

4.28. Suppose p(z ) is a polynomial in z and γ is a closed piecewise smooth path in
C. Show that

∫

γ p = 0 .

4.29. Show that
∫

C [0,2]

dz
z 3 + 1

= 0

by arguing that this integral does not change if we replace C [0,2] by C [0, r ] for
any r > 1, then use Proposition 4.6(d) to obtain an upper bound for |

∫

C [0,r ]
d z

z 3+1 |
that goes to 0 as r →∞.

4.30. Compute the real integral

∫ 2π

0

dφ
2+ sinφ

by writing the sine function in terms of the exponential function and making the
substitution z = e iφ to turn the real integral into a complex integral.
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4.31. Prove that for 0 < r < 1,

1
2π

∫ 2π

0

1− r 2

1− 2r cos(φ ) + r 2
dφ = 1 .

(The function Pr (φ ) :=
1−r 2

1−2r cos(φ )+r 2 is the Poisson kernel4 and plays an important
role in the world of harmonic functions, as we will see in Exercise 6.13.)

4.32. Suppose f and g are holomorphic in the region G and γ is a simple piecewise
smooth G -contractible path. Prove that if f (z ) = g (z ) for all z ∈ γ , then f (z ) =
g (z ) for all z inside γ .

4.33. Show that Corollary 4.20, for simple paths, is also a corollary of Theorem 4.27.

4.34. Compute

I (r ) :=
∫

C [−2i ,r ]

dz
z 2 + 1

for r 6= 1, 3.

4.35. Find
∫

C [0,r ]

dz
z 2 − 2z − 8

for r = 1, r = 3 and r = 5. (Hint: Compute a partial-fractions expansion of the
integrand.)

4.36. Use the Cauchy Integral Formula (Theorem 4.24) to evaluate the integral in
Exercise 4.35 when r = 3.

4.37. Compute the following integrals.

(a)
∫

C [−1,2]

z 2

4− z 2
dz

(b)
∫

C [0,1]

sin z
z

dz

(c)
∫

C [0,2]

exp(z )
z (z − 3)

dz

(d)
∫

C [0,4]

exp(z )
z (z − 3)

dz

4Named after Siméon Denis Poisson (1781–1840).
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4.38. Let f (z ) = 1
z 2−1 and define the two paths γ = C [1,1] oriented counter-

clockwise and σ = C [−1,1] oriented clockwise. Show that
∫

γ f =
∫

σ f even
though γ 6∼G σ where G =C \ {±1}, the region of holomorphicity of f .

4.39. This exercise gives an alternative proof of Cauchy’s Integral Formula (Theo-
rem 4.27) that does not depend on Cauchy’s Theorem (Theorem 4.18). Suppose the
region G is convex; this means that, whenever z and w are in G , the line segment
between them is also in G . Suppose f is holomorphic in G , f ′ is continuous, and γ
is a positively oriented, simple, closed, piecewise smooth path, such that w is inside
γ and γ ∼G 0.

(a) Consider the function g : [0, 1]→C given by

g (t ) :=
∫

γ

f (w + t (z −w ))
z −w

dz .

Show that g ′ = 0. (Hint: Use Theorem A.9 (Leibniz’s rule) and then find an
antiderivative for ∂ f

∂ t (w + t (z −w )).)

(b) Prove Theorem 4.27 by evaluating g (0) and g (1).

(c) Why did we assume G is convex?



Chapter 5

Consequences of Cauchy’s Theorem

Everybody knows that mathematics is about miracles, only mathematicians have a
name for them: theorems.
Roger Howe

Cauchy’s Theorem and Integral Formula (Theorems 4.18 and 4.27), which we now
have at our fingertips, are not just beautiful results but also incredibly practical. In a
quite concrete sense, the rest of this book will reap the fruits that these two theorems
provide us with. This chapter starts with a few highlights.

5.1 Variations of a Theme

We now derive formulas for f ′ and f ′′ which resemble Cauchy’s Integral Formula
(Theorem 4.27).

Theorem 5.1. Suppose f is holomorphic in the region G and γ is a positively
oriented, simple, closed, piecewise smooth, G -contractible path. If w is inside γ
then

f ′(w ) =
1

2πi

∫

γ

f (z )
(z −w )2

dz .

Moreover, f ′′(w ) exists, and

f ′′(w ) =
1
πi

∫

γ

f (z )
(z −w )3

dz .

Proof. The idea of our proof is very similar to that of Cauchy’s Integral Formula
(Theorems 4.24 and 4.27). We will study the following di�erence quotient, which
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we rewrite using Theorem 4.27.

f (w +∆w )− f (w )
∆w

=
1

∆w

�

1
2πi

∫

γ

f (z )
z − (w +∆w )

dz − 1
2πi

∫

γ

f (z )
z −w

dz
�

=
1

2πi

∫

γ

f (z )
(z −w −∆w )(z −w )

dz .

Theorem 5.1 will follow if we can show that the following expression gets arbitrarily
small as ∆w → 0:

f (w +∆w )− f (w )
∆w

− 1
2πi

∫

γ

f (z )
(z −w )2

dz

=
1

2πi

∫

γ

�

f (z )
(z −w −∆w )(z −w )

−
f (z )
(z −w )2

�

dz

=
∆w
2πi

∫

γ

f (z )
(z −w −∆w )(z −w )2

dz . (5.1)

This can be made arbitrarily small if we can show that the integral on the right-hand
side stays bounded as ∆w → 0. In fact, by Proposition 4.6(d), it su�ces to show that
the integrand stays bounded as ∆w → 0 (because γ and hence length(γ) are fixed).

Let M := maxz∈γ | f (z )| (whose existence is guaranteed by Theorem A.1).
Choose δ > 0 such that D[w,δ] ∩ γ = ∅; that is, |z −w | ≥ δ for all z on γ .
By the reverse triangle inequality (Corollary 1.7(b)), for all z ∈ γ ,

�

�

�

�

�

f (z )
(z −w −∆w )(z −w )2

�

�

�

�

�

≤
| f (z )|

(|z −w | − |∆w |)|z −w |2
≤ M
(δ − |∆w |)δ2

,

which certainly stays bounded as ∆w → 0. This proves (5.1) and thus the Cauchy
Integral Formula for f ′.

The proof of the formula for f ′′ is very similar and will be left to Exercise 5.2.

Theorem 5.1 suggests that there are similar formulas for the higher derivatives
of f . This is in fact true, and theoretically we could obtain them one by one with
the methods of the proof of Theorem 5.1. However, once we start studying power
series for holomorphic functions, we will obtain such a result much more easily;
so we save the derivation of integral formulas for higher derivatives of f for later
(Corollary 8.11).
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Theorem 5.1 has several important consequences. For starters, it can be used to
compute certain integrals.

Example 5.2.

∫

C [0,1]

sin(z )
z 2

dz = 2πi
d
dz

sin(z )
�

�

�

�

z=0
= 2πi cos(0) = 2πi .

γ1

γ2

0 1

Figure 5.1: The integration paths in Example 5.3.

Example 5.3. To compute the integral

∫

C [0,2]

dz
z 2(z − 1)

,

we could employ a partial fractions expansion similar to the one in Example 4.23,
or moving the integration path similar to the one in Exercise 4.29. To exhibit an
alternative, we split up the integration path as illustrated in Figure 5.1: we introduce
an additional path that separates 0 and 1. If we integrate on these two new closed
paths (γ1 and γ2) counterclockwise, the two contributions along the new path will
cancel each other. The e�ect is that we transformed an integral for which two
singularities were inside the integration path into a sum of two integrals, each of
which has only one singularity inside the integration path; these new integrals we
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know how to deal with, using Theorems 4.24 and 5.1:

∫

C [0,2]

dz
z 2(z − 1)

=
∫

γ1

dz
z 2(z − 1)

+
∫

γ2

dz
z 2(z − 1)

=
∫

γ1

1
z−1

z 2
dz +

∫

γ2

1
z 2

z − 1
dz

= 2πi
d
dz

1
z − 1

�

�

�

�

z=0
+ 2πi

1
12
= 2πi

�

− 1
(−1)2

�

+ 2πi

= 0 .

Example 5.4.

∫

C [0,1]

cos(z )
z 3

dz = πi
d 2

dz 2
cos(z )

�

�

�

�

�

z=0

= πi (− cos(0)) = −πi .

Theorem 5.1 has another powerful consequence: just from knowing that f is
holomorphic in G , we know of the existence of f ′′, that is, f ′ is also holomorphic in
G . Repeating this argument for f ′, then for f ′′, f ′′′, etc., shows that all derivatives
f (n) exist and are holomorphic. We can translate this into the language of partial
derivatives, since the Cauchy–Riemann equations (Theorem 2.13) show that any
sequence of n partial di�erentiations of f results in a constant times f (n).

So we have the following statement, which has no analogue whatsoever in the
reals (see, e.g., Exercise 5.6).

Corollary 5.5. If f is di�erentiable in a region G then f is infinitely di�erentiable
in G , and all partials of f with respect to x and y exist and are continuous.

5.2 Antiderivatives Again

Theorem 4.15 gave us an antiderivative for a function that has zero integrals over
closed paths in a given region. Now that we have Corollary 5.5, meditating just a
bit more over Theorem 4.15 gives a converse of sorts to Corollary 4.20.

Corollary 5.6 (Morera’s1 Theorem). Suppose f is continuous in the region G and

∫

γ
f = 0

for all piecewise smooth closed paths γ ⊂G . Then f is holomorphic in G .

1Named after Giancinto Morera (1856–1907).
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Proof. Theorem 4.15 yields an antiderivative F for f in G . Because F is holomor-
phic in G , Corollary 5.5 implies that f is also holomorphic in G .

Just like there are several variations of Theorem 4.15, we have variations of
Corollary 5.6. For example, by Corollary 4.16, we can replace the condition for all
piecewise smooth closed paths γ ⊂G in the statement of Corollary 5.6 by the condition
for all closed polygonal paths γ ⊂ G (which, in fact, gives a stronger version of this
result).

A special case of Theorem 4.15 applies to regions in which every closed path is
contractible.

Definition. A region G ⊆C is simply connected if γ ∼G 0 for every closed path γ
in G .

Loosely speaking, a region is simply connected if it has no holes.

Example 5.7. Any disk D[a, r ] is simply connected, as is C \R≤0. (You should
draw a few closed paths inC\R≤0 to convince yourself that they are all contractible.)
The region C \ {0} is not simply connected as, e.g., the unit circle is not (C \ {0})-
contractible.

If f is holomorphic in a simply-connected region then Corollary 4.20 implies
that f satisfies the conditions of Theorem 4.15, whence we conclude:

Corollary 5.8. Every holomorphic function on a simply-connected region G ⊆C
has an antiderivative on G .

Note that this corollary gives no indication of how to compute an antiderivative.
For example, it says that the (entire) function f :C→C given by f (z ) = exp(z 2)
has an antiderivative F in C; it is an entirely di�erent matter to derive a formula
for F .

Corollary 5.8 also illustrates the role played by two of the regions in Example 5.7,
in connection with the function f (z ) = 1

z . This function has no antiderivative on
C \ {0}, as we proved in Example 4.14. Consequently (as one can see much more
easily), C \ {0} is not simply connected. However, the function f (z ) = 1

z does
have an antiderivative on the simply-connected region C \R≤0 (namely, Log(z )),
illustrating one instance implied by Corollary 5.8.

Finally, Corollary 5.8 implies that, if we have two paths in a simply-connected
region with the same endpoints, we can concatenate them —changing direction on
one—to form a closed path, which proves:
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Corollary 5.9. If f is holomorphic in a simply-connected region G then
∫

γ f is
independent of the piecewise smooth path γ ⊂G between γ(a) and γ(b ).

When an integral depends only on the endpoints of the path, the integral is
called path independent. Example 4.1 shows that this situation is quite special; it
also says that the function z 2 does not have an antiderivative in, for example, the
region {z ∈C : |z | < 2}. (Actually, the function z 2 does not have an antiderivative
in any nonempty region—see Exercise 5.7.)

5.3 Taking Cauchy’s Formulas to the Limit

Many beautiful applications of Cauchy’s Integral Formulas (such as Theorems 4.27
and 5.1) arise from considerations of the limiting behavior of the integral as the path
gets arbitrarily large. The first and most famous application concerns the roots of
polynomials. As a preparation we prove the following inequality, which is generally
quite useful. It says that for |z | large enough, a polynomial p(z ) of degree d looks
almost like a constant times z d .

Proposition 5.10. Suppose p(z ) is a polynomial of degree d with leading coe�cient
ad . Then there is a real number R such that

1
2 |ad | |z |

d ≤ |p(z )| ≤ 2 |ad | |z |
d

for all z satisfying |z | ≥ R .

Proof. Since p(z ) has degree d , its leading coe�cient ad is not zero, and we can
factor out ad z d :

|p(z )| =
�

�

�ad z d + ad−1z d−1 + ad−2z d−2 + · · ·+ a1z + a0

�

�

�

= |ad | |z |
d

�

�

�

�

�

1+
ad−1

ad z
+

ad−2

ad z 2
+ · · ·+

a1

ad z d−1
+

a0

ad z d

�

�

�

�

�

.

Then the sum inside the last factor has limit 1 as z →∞ (by Exercise 3.12), and so
its modulus is between 1

2 and 2 as long as |z | is large enough.

Theorem 5.11 (Fundamental Theorem of Algebra2). Every nonconstant polynomial
has a root in C.

2The Fundamental Theorem of Algebra was first proved by Gauß (in his doctoral dissertation in 1799,
which had a flaw —later, he provided three rigorous proofs), although its statement had been assumed to
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Proof. Suppose (by way of contradiction) that p does not have any roots, that is,
p(z ) 6= 0 for all z ∈ C. Then 1

p(z ) is entire, and so Cauchy’s Integral Formula
(Theorem 4.24) gives

1
p(0)

=
1

2πi

∫

C [0,R]

1
p(z )

z
dz ,

for any R > 0. Let d be the degree of p(z ) and ad its leading coe�cient. Propositions
4.6(d) and 5.10 allow us to estimate, for su�ciently large R ,

�

�

�

�

�

1
p(0)

�

�

�

�

�

=
1

2π

�

�

�

�

�

∫

C [0,R]

dz
z p(z )

�

�

�

�

�

≤ 1
2π

max
z∈C [0,R]

�

�

�

�

�

1
z p(z )

�

�

�

�

�

2πR ≤ 2
|ad |R d

.

The left-hand side is independent of R , while the right-hand side can be made
arbitrarily small (by choosing R su�ciently large), and so we conclude that 1

p(0) = 0,
which is impossible.

Theorem 5.11 implies that any polynomial p can be factored into linear terms
of the form z − a where a is a root of p , as we can apply the corollary, after getting a
root a, to p(z )

z−a (which is again a polynomial by the division algorithm), etc. (see also
Exercise 5.11).

A compact reformulation of the Fundamental Theorem of Algebra (Theo-
rem 5.11) is to say that C is algebraically closed. In contrast, R is not algebraically
closed.

Example 5.12. The polynomial p(x ) = 2x 4 + 5x 2 + 3 no roots in R. The Funda-
mental Theorem of Algebra (Theorem 5.11) states that p must have a root (in fact,
four roots) in C:

p(x ) =
�

x 2 + 1
� �

2x 2 + 3
�

= (x + i ) (x − i )
�p

2 x +
p

3 i
� �p

2 x −
p

3 i
�

Another powerful consequence of Theorem 5.1 is the following result, which
again has no counterpart in real analysis (consider, for example, the real sine function).

be correct long before Gauß’s time. It is amusing that such an important algebraic result can be proved
purely analytically. There are proofs of the Fundamental Theorem of Algebra that do not use complex
analysis. On the other hand, all proofs use some analysis (such as the Intermediate Value Theorem). The
Fundamental Theorem of Algebra refers to algebra in the sense that it existed in 1799, not to modern
algebra. Thus one might say that the Fundamental Theorem of Algebra is neither fundamental to algebra
nor even a theorem of algebra. The proof we give here is due to Anton R. Schep and appeared in the
American Mathematical Monthly (January 2009).



104 consequences of cauchy’s theorem

Corollary 5.13 (Liouville’s3 Theorem). Any bounded entire function is constant.

Proof. Suppose | f (z )| ≤M for all z ∈C. Given any w ∈C, we apply Theorem 5.1
with the circle C [w, R]; note that we can choose any R > 0 because f is entire. By
Proposition 4.6(d),

�

�

� f ′(w )
�

�

� =

�

�

�

�

�

1
2πi

∫

C [w,R]

f (z )
(z −w )2

dz

�

�

�

�

�

≤ 1
2π

max
z∈C [w,R]

�

�

�

�

�

f (z )
(z −w )2

�

�

�

�

�

2πR

=
maxz∈C [w,R] | f (z )|

R
≤ M

R
.

The right-hand side can be made arbitrarily small, as we are allowed to choose R
as large as we want. This implies that f ′ = 0, and hence, by Theorem 2.17, f is
constant.

As an example of the usefulness of Liouville’s theorem (Corollary 5.13), we give
another proof of the Fundamental Theorem of Algebra, close to Gauß’s original
proof.

Second proof of Theorem 5.11 (Fundamental Theorem of Algebra). Suppose (by way
of contradiction), that p does not have any roots, that is, p(z ) 6= 0 for all z ∈C. Thus
the function f (z ) = 1

p(z ) is entire. But f → 0 as |z | → ∞, by Proposition 5.10;
consequently, by Exercise 5.10, f is bounded. Now we apply Corollary 5.13 to
deduce that f is constant. Hence p is constant, which contradicts our assumptions.

As one more example of the theme of getting results from Cauchy’s Integral
Formulas by taking the limit as a path “goes to infinity,” we compute an improper
integral.

Example 5.14. We will compute the (real) integral

∫ ∞

−∞

dx
x 2 + 1

= π .

Let σR be the counterclockwise semicircle formed by the segment [−R , R] of the
real axis from −R to R , followed by the circular arc γR of radius R in the upper half
plane from R to −R , where R > 1; see Figure 5.2.

3This theorem is for historical reasons erroneously attributed to Joseph Liouville (1809–1882). It
was published earlier by Cauchy; in fact, Gauß may well have known about it before Cauchy.
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−R R

γR

Figure 5.2: The integration paths in Example 5.14.

We computed the integral over σR already in Example 4.29:

∫

σR

dz
z 2 + 1

= π .

This holds for any R > 1, and so we can take the limit as R →∞. By Proposi-
tion 4.6(d) and the reverse triangle inequality (Corollary 1.7(b)),

�

�

�

�

�

∫

γR

dz
z 2 + 1

�

�

�

�

�

≤ max
z∈γR

�

�

�

�

1
z 2 + 1

�

�

�

�

πR ≤ max
z∈γR

�

1
|z |2 − 1

�

πR =
πR

R2 − 1

which goes to 0 as R →∞. Thus

π = lim
R→∞

∫

σR

dz
z 2 + 1

= lim
R→∞

∫

[−R ,R]

dz
z 2 + 1

+ lim
R→∞

∫

γR

dz
z 2 + 1

=
∫ ∞

−∞

dx
x 2 + 1

.

Of course this integral can be evaluated almost as easily using standard formulas
from calculus. However, just slight modifications of this example lead to improper
integrals that are beyond the scope of basic calculus; see Exercises 5.18 and 5.19.
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Exercises

5.1. Compute the following integrals, where � is the boundary of the square with
vertices at ±4± 4i , positively oriented:

(a)
∫

�

exp(z 2)
z 3

dz

(b)
∫

�

exp(3z )
(z − πi )2

dz

(c)
∫

�

sin(2z )
(z − π)2

dz

(d)
∫

�

exp(z ) cos(z )
(z − π)3

dz

5.2. Prove the formula for f ′′ in Theorem 5.1.
Hint: Modify the proof of the integral formula for f ′(w ) as follows:

(a) Write a di�erence quotient for f ′′(w), and use the formula for f ′(w) in
Theorem 5.1 to convert this di�erence quotient into an integral of f (z )
divided by some polynomial.

(b) Subtract the desired integral formula for f ′′(w) from your integral for the
di�erence quotient, and simplify to get the analogue of (5.1).

(c) Find a bound as in the proof of Theorem 5.1 for the integrand, and conclude
that the limit of the di�erence quotient is the desired integral formula.

5.3. Integrate the following functions over the circle C [0, 3]:

(a) Log(z − 4i )

(b)
1

z − 1
2

(c)
1

z 2 − 4

(d)
exp z

z 3

(e)
� cos z

z

�2

(f ) i z−3

(g)
sin z
(z 2 + 1

2 )2

(h)
1

(z + 4)(z 2 + 1)

(i)
exp(2z )

(z − 1)2(z − 2)

5.4. Compute
∫

C [0,2]

exp z
(z −w )2

dz where w is any fixed complex number with |w | 6=

2.



taking cauchy’s formulas to the limit 107

5.5. Define f : D[0, 1]→C through

f (z ) :=
∫

[0,1]

dw
1−w z

(the integration path is from 0 to 1 along the real line). Prove that f is holomorphic
in the unit disk D[0, 1].

5.6. To appreciate Corollary 5.5, show that the function f :R→R given by

f (x ) :=







x 2 sin( 1x ) if x 6= 0 ,

0 if x = 0

is di�erentiable in R, yet f ′ is not even continuous (much less di�erentiable) at 0.

5.7. Prove that f (z ) = z 2 does not have an antiderivative in any nonempty region.

5.8. Show that exp(sin z ) has an antiderivative on C. (What is it?)

5.9. Find a region on which f (z ) = exp( 1z ) has an antiderivative. (Your region
should be as large as you can make it. How does this compare with the real function
f (x ) = e 1

x ?)

5.10. Suppose f is continuous on C and limz→∞ f (z ) is finite. Show that f is
bounded. (Hint: If limz→∞ f (z ) = L, use the definition of the limit at infinity
to show that there is R > 0 so that | f (z )− L| < 1 if |z | > R . Now argue that
| f (z )| < |L|+ 1 for |z | > R . Use an argument from calculus to show that | f (z )| is
bounded for |z | ≤ R .)

5.11. Let p be a polynomial of degree n > 0. Prove that there exist complex numbers
c , z1, z2, . . . , zk and positive integers j1, . . . , jk such that

p(z ) = c (z − z1)
j1 (z − z2)

j2 · · · (z − zk )
jk ,

where j1 + · · ·+ jk = n.
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5.12. Show that a polynomial of odd degree with real coe�cients must have a real
zero. (Hint: Use Exercise 1.24.)

5.13. Suppose f is entire and | f (z )| ≤
p

|z | for all z ∈C. Prove that f is identically
0. (Hint: Show first that f is constant.)

5.14. Suppose f is entire and there exists M > 0 such that | f (z )| ≥M for all z ∈C.
Prove that f is constant.

5.15. Suppose f is entire with bounded real part, i.e., writing f (z ) = u(z ) + i v (z ),
there exists M > 0 such that |u(z )| ≤ M for all z ∈ C. Prove that f is constant.
(Hint: Consider the function exp( f (z )).)

5.16. Suppose f is entire and there exist constants a and b such that | f (z )| ≤ a|z |+b
for all z ∈ C. Prove that f is a polynomial of degree at most 1. (Hint: Use
Theorem 5.1 and Exercise 2.29.)

5.17. Suppose f : D[0, 1]→ D[0, 1] is holomorphic. Prove that for |z | < 1,

�

�

� f ′(z )
�

�

� ≤
1

1− |z |
.

5.18. Compute
∫ ∞

−∞

dx
x 4 + 1

.

5.19. In this problem f (z ) = exp(i z )
z 2+1 and R > 1. Modify our computations in

Example 5.14 as follows.

(a) Show that
∫

σR
f = π

e where σR is again (as in Figure 5.2) the counterclockwise
semicircle formed by the segment [−R , R] on the real axis, followed by the
circular arc γR of radius R in the upper half plane from R to −R .

(b) Show that |exp(i z )| ≤ 1 for z in the upper half plane, and conclude that
| f (z )| ≤ 2

|z |2
for su�ciently large |z |.

(c) Show that limR→∞
∫

γR
f = 0 and hence limR→∞

∫

[−R ,R] f = π
e .
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(d) Conclude, by just considering the real part, that

∫ ∞

−∞

cos(x )
x 2 + 1

dx =
π
e

.

5.20. Compute
∫ ∞

−∞

cos(x )
x 4 + 1

dx .

5.21. This exercise outlines how to extend some of the results of this chapter to the
Riemann sphere as defined in Section 3.2. Suppose G ⊆C is a region that contains
0, let f be a continuous function on G , and let γ ⊂G \ {0} be a piecewise smooth
path in G avoiding the origin, parametrized as γ(t ), a ≤ t ≤ b .

(a) Show that
∫

γ
f (z ) dz =

∫

σ
f
� 1

z

� 1
z 2

dz

where σ(t ) := 1
γ(t ) , a ≤ t ≤ b .

Now suppose limz→0 f
� 1

z

� 1
z 2 = L is finite. Let H :=

� 1
z : z ∈G \ {0}

	

and define
the function g : H ∪ {0}→C by

g (z ) :=







f
� 1

z

� 1
z 2 if z ∈ H ,

L if z = 0.

Thus g is continuous on H ∪ {0} and (a) gives the identity

∫

γ
f =

∫

σ
g .

In particular, we can transfer certain properties between these two integrals. For
example, if

∫

σ g is path independent, so is
∫

γ f . Here is but one application:

(a) Show that
∫

γ z n dz is path independent for any integer n 6= −1.

(b) Conclude (once more) that
∫

γ z n dz = 0 for any integer n 6= −1.



Chapter 6

Harmonic Functions

The shortest route between two truths in the real domain passes through the complex
domain.
Jacques Hadamard (1865–1963)

We will now spend a short while on certain functions defined on subsets of the
complex plane that are real valued, namely those functions that are harmonic in
some region. The main motivation for studying harmonic functions is that the
partial di�erential equation they satisfy is very common in the physical sciences.
Their definition briefly showed its face in Chapter 2, but we study them only now in
more detail, since we have more machinery at our disposal. This machinery comes
from complex-valued functions, which are, nevertheless, intimately connected to
harmonic functions.

6.1 Definition and Basic Properties

Recall from Section 2.3 the definition of a harmonic function:

Definition. Let G ⊆ C be a region. A function u : G → R is harmonic in G if it
has continuous second partials in G and satisfies the Laplace1 equation

ux x + uy y = 0 .

Example 6.1. The function u(x , y ) = x y is harmonic inC since ux x +uy y = 0+0 =
0.

Example 6.2. The function u(x , y ) = e x cos(y ) is harmonic in C because

ux x + uy y = e x cos(y )− e x cos(y ) = 0 .

1Named after Pierre-Simon Laplace (1749–1827).
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There are (at least) two reasons why harmonic functions are part of the study of
complex analysis, and they can be found in the next two theorems.

Proposition 6.3. Suppose f = u + i v is holomorphic in the region G . Then u and
v are harmonic in G .

Proof. First, by Corollary 5.5, u and v have continuous second partials. By Theo-
rem 2.13, u and v satisfy the Cauchy–Riemann equations (2.3)

ux = vy and uy = −vx

in G . Hence we can repeat our argumentation in (2.4),

ux x + uy y = (ux )x +
�

uy

�

y
=
�

vy

�

x
+ (−vx )y = vy x − vx y = 0 .

Note that in the last step we used the fact that v has continuous second partials. The
proof that v satisfies the Laplace equation is practically identical.

Proposition 6.3 gives us an e�ective way to show that certain functions are
harmonic in G by way of constructing an accompanying holomorphic function
on G .

Example 6.4. Revisiting Example 6.1, we can see that u(x , y ) = x y is harmonic in
C also by noticing that

f (z ) = 1
2 z 2 = 1

2

�

x 2 − y2�+ i x y

is entire and Im( f ) = u.

Example 6.5. A second reason that the function u(x , y ) = e x cos(y ) from Exam-
ple 6.2 is harmonic in C is that

f (z ) = exp(z ) = e x cos(y ) + i e x sin(y )

is entire and Re( f ) = u.

Proposition 6.3 practically shouts for a converse. There are, however, functions
that are harmonic in a region G but not the real part (say) of a holomorphic function
in G (Exercise 6.5). We do obtain a converse of Proposition 6.3 if we restrict ourselves
to simply-connected regions.
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Theorem 6.6. Suppose u is harmonic on a simply-connected region G . Then there
exists a harmonic function v in G such that f = u + i v is holomorphic in G .

The function v is called a harmonic conjugate of u.

Proof. We will explicitly construct a holomorphic function f (and thus v = Im f ).
First, let

g := ux − i uy .

The plan is to prove that g is holomorphic, and then to construct an antiderivative
of g , which will be almost the function f that we’re after. To prove that g is
holomorphic, we use Theorem 2.13: first because u is harmonic, Re g = ux and
Im g = −uy have continuous partials. Moreover, again because u is harmonic, Re g
and Im g satisfy the Cauchy–Riemann equations (2.3):

(Re g )x = ux x = −uy y = (Im g )y

and
(Re g )y = ux y = uy x = − (Im g )x .

Theorem 2.13 implies that g is holomorphic in G , and so we can use Corollary 5.8
to obtain an antiderivative h of g on G (here is where we use the fact that G is simply
connected). Now we decompose h into its real and imaginary parts as h = a + i b .
Then, again using Theorem 2.13,

g = h ′ = ax + i bx = ax − i ay .

(The second equation follows from the Cauchy–Riemann equations (2.3).) But the
real part of g is ux , so we obtain ux = ax and thus u(x , y ) = a(x , y ) + c (y ) for some
function c that depends only on y . On the other hand, comparing the imaginary
parts of g and h ′ yields −uy = −ay and so u(x , y ) = a(x , y )+ c (x ) where c depends
only on x . Hence c has to be constant, and u(x , y ) = a(x , y ) + c . But then

f (z ) := h(z ) + c

is a function holomorphic in G whose real part is u, as promised.

As a side remark, with hindsight it should not be surprising that the function g
that we first constructed in our proof is the derivative of the sought-after function
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f . Namely, by Theorem 2.13 such a function f = u + i v must satisfy

f ′ = ux + i vx = ux − i uy .

(The second equation follows from the Cauchy–Riemann equations (2.3).) It is also
worth mentioning that our proof of Theorem 6.6 shows that if u is harmonic in G ,
then ux is the real part of the function g = ux − i uy , which is holomorphic in G
regardless of whether G is simply connected or not.

As our proof of Theorem 6.6 is constructive, we can use it to produce harmonic
conjugates.

Example 6.7. Revisiting Example 6.1 for the second time, we can construct a
harmonic conjugate of u(x , y ) = x y along the lines of our proof of Theorem 6.6:
first let

g := ux − i uy = y − i x = −i z

which has antiderivative

h(z ) = − i
2 z 2 = x y − i

2

�

x 2 − y2�

whose real part is u and whose imaginary part

v (x , y ) := − 1
2

�

x 2 − y2�

gives a harmonic conjugate for u.

We can give a more practical machinery for computing harmonic conjugates,
which only depends on computing certain (calculus) integrals; thus this can be easily
applied, e.g., to polynomials. We state it for functions that are harmonic in the
whole complex plane, but you can easily adjust it to functions that are harmonic on
certain subsets of C.2

Theorem 6.8. Suppose u is harmonic on C. Then

v (x , y ) :=
∫ y

0

∂ u
∂ x
(x , t ) dt −

∫ x

0

∂ u
∂ y
(t , 0) dt

is a harmonic conjugate for u.

2Theorem 6.8 is due to Sheldon Axler and the basis for his Mathematica package Harmonic Function
Theory.
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Proof. We will prove that u + i v satisfies the Cauchy–Riemann equations (2.3).
The first follows from

∂v
∂ y
(x , y ) =

∂ u
∂ x
(x , y ) ,

by the Fundamental Theorem of Calculus (Theorem A.3).
Second, by Leibniz’s Rule (Theorem A.9), the Fundamental Theorem of Calculus

(Theorem A.3), and the fact that u is harmonic,

∂v
∂ x
(x , y ) =

∫ y

0

∂2u
∂ x 2
(x , t ) dt − ∂ u

∂ y
(x , 0) = −

∫ y

0

∂2u
∂ t 2
(x , t ) dt − ∂ u

∂ y
(x , 0)

= −
�

∂ u
∂ y
(x , y )− ∂ u

∂ y
(x , 0)

�

− ∂ u
∂ y
(x , 0) = −∂ u

∂ y
(x , y ) .

As you might imagine, Proposition 6.3 and Theorem 6.6 allow for a powerful
interplay between harmonic and holomorphic functions. In that spirit, the following
theorem appears not too surprising. You might appreciate its depth better when
looking back at the simple definition of a harmonic function.

Corollary 6.9. A harmonic function is infinitely di�erentiable.

Proof. Suppose u is harmonic in G and z0 ∈G . We will show that u (n)(z0) exists for
all positive integers n. Let r > 0 such that the disk D[z0, r ] is contained in G . Since
D[z0, r ] is simply connected, Theorem 6.6 asserts the existence of a holomorphic
function f in D[z0, r ] such that u = Re f on D[z0, r ]. By Corollary 5.5, f is
infinitely di�erentiable on D[z0, r ], and hence so is its real part u.

This proof is the first in a series of proofs that uses the fact that the property of
being harmonic is local —it is a property at each point of a certain region. Note that
in our proof of Corollary 6.9 we did not construct a function f that is holomorphic
in G ; we only constructed such a function on the disk D[z0, r ]. This f might very
well di�er from one disk to the next.

6.2 Mean-Value and Maximum/Minimum Principle

We have established an intimate connection between harmonic and holomorphic
functions, and so it should come as no surprise that some of the theorems we proved
for holomorphic functions have analogues in the world of harmonic functions. Here
is such a harmonic analogue of Cauchy’s Integral Formula (Theorems 4.24 and 4.27).
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Theorem 6.10. Suppose u is harmonic in the region G and D[w, r ] ⊂G . Then

u(w ) =
1

2π

∫ 2π

0
u
�

w + r e i t � dt .

Proof. Exercise 6.14 provides R so that D[w, r ] ⊂ D[w, R] ⊂ G . The open disk
D[w, R] is simply connected, so by Theorem 6.6 there is a function f holomorphic
in D[w, R] such that u = Re f on D[w, R]. Now we apply Corollary 4.25 to f :

f (w ) =
1

2π

∫ 2π

0
f
�

w + r e i t � dt .

Theorem 6.10 follows by taking the real part on both sides.

Corollary 4.25 and Theorem 6.10 say that holomorphic and harmonic functions
have the mean-value property. Our next result is an important consequence of this
property to extreme values of a function.

Definition. Let G ⊂C be a region. The function u : G →R has a strong relative
maximum at w ∈G if there exists a disk D[w, r ] ⊆G such that u(z ) ≤ u(w ) for all
z ∈ D[w, r ] and u(z0) < u(w) for some z0 ∈ D[w, r ]. The definition of a strong
relative minimum is analogous.

Theorem 6.11. If u is harmonic in the region G , then it does not have a strong
relative maximum or minimum in G .

Proof. Assume, by way of contradiction, that w is a strong relative maximum. Then
there is a disk in G centered at w containing a point z0 with u(z0) < u(w). Let
r := |z0 −w | and apply Theorem 6.10:

u(w ) =
1

2π

∫ 2π

0
u
�

w + r e i t � dt .

Intuitively, this cannot hold, because some of the function values we’re integrating
are smaller than u(w ), contradicting the mean-value property. To make this into a
thorough argument, suppose that z0 = w + r e i t0 for 0 ≤ t0 < 2π. Because u(z0) <
u(w) and u is continuous, there is a whole interval of parameters [t0, t1] ⊆ [0,2π]
such that u(w + r e i t ) < u(w) for t0 ≤ t ≤ t1. Now we split up the mean-value
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integral:

u(w ) =
1

2π

∫ 2π

0
u
�

w + r e i t � dt

=
1

2π

�

∫ t0

0
u
�

w + r e i t � dt +
∫ t1

t0
u
�

w + r e i t � dt +
∫ 2π

t1
u
�

w + r e i t � dt
�

All the integrands can be bounded by u(w); for the middle integral we get a strict
inequality. Hence

u(w ) <
1

2π

�

∫ t0

0
u(w ) dt +

∫ t1

t0
u(w ) dt +

∫ 2π

t1
u(w ) dt

�

= u(w ) ,

a contradiction.
The same argument works if we assume that u has a relative minimum. But

in this case there’s a shortcut argument: if u has a strong relative minimum then
the harmonic function −u has a strong relative maximum, which we just showed
cannot exist.

So far, harmonic functions have benefited from our knowledge of holomorphic
functions. Here is a result where the benefit goes in the opposite direction.

Corollary 6.12. If f is holomorphic and nonzero in the region G , then | f | does
not have a strong relative maximum or minimum in G .

Proof. By Exercise 6.6, the function ln | f (z )| is harmonic on G and so, by Theo-
rem 6.11, does not have a strong relative maximum or minimum in G . But then
neither does | f (z )|, because ln is monotonic.

We finish our excursion about harmonic functions with a preview and its con-
sequences. We say a real valued function u on a region G has a weak relative
maximum at w if there exists a disk D[w, r ] ⊆G such that all z ∈ D[w, r ] satisfy
u(z ) ≤ u(w). We define weak relative minimum similarly. In Chapter 8 we will
strengthen Theorem 6.11 and Corollary 6.12 to Theorem 8.17 and Corollary 8.20
by replacing strong relative extremum in the hypotheses with weak relative extremum.3

A special but important case of the maximum/minimum principle for harmonic

3In particular, we will show that one does not have to assume that f is nonzero in a region G to have
a strong relative maximum in G .
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functions, Corollary 8.20, concerns bounded regions. In Chapter 8 we will establish
that, if u is harmonic in a bounded region G and continuous on its closure, then

sup
z∈G

u(z ) = max
z∈∂G

u(z ) and inf
z∈G

u(z ) = min
z∈∂G

u(z ) (6.1)

where, as usual, ∂G denotes the boundary of G . We’ll exploit this in the next two
corollaries.

Corollary 6.13. Suppose u is harmonic in the bounded region G and continuous
on its closure. If u is zero on ∂G then u is zero in G .

Proof. By (6.1),
u(z ) ≤ sup

z∈G
u(z ) = max

z∈∂G
u(z ) = 0

and
u(z ) ≥ inf

z∈G
u(z ) = min

z∈∂G
u(z ) = 0 ,

so u must be zero in G .

Corollary 6.14. Suppose u and v are harmonic in the bounded region G and
continuous on its closure. If u(z ) = v (z ) for all z ∈ ∂G then u(z ) = v (z ) for all
z ∈G .

Proof. u − v is harmonic in G (Exercise 6.2) and is continuous on the closure G ,
and u − v is zero on ∂G . Now apply Corollary 6.13.

Corollary 6.14 says that if a function u is harmonic in a bounded region G and
is continuous on the closure G then the values of u at points in G are completely
determined by the values of u on the boundary of G . We should remark, however,
that this result is of a completely theoretical nature: it says nothing about how to
extend a continuous function u given on the boundary of a region to be harmonic
in the full region. This problem is called the Dirichlet4 problem, and it has a solution
for all bounded simply-connected regions. If the region is the unit disk and u is a
continuous function on the unit circle, define

û
�

e iφ � := u
�

e iφ � and û
�

r e iφ � :=
1

2π

∫ 2π

0
u
�

e i t �Pr (φ − t ) dt for r < 1 ,

4Named after Johann Peter Gustav Dirichlet (1805–1859).
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where Pr (φ ) is the Poisson kernel which we introduced in Exercise 4.31. Then û is
the desired extension: it is continuous on the closed unit disk, harmonic in the open
unit disk, and agrees with u on the unit circle. In simple cases this solution can be
converted to solutions in other regions, using a conformal map to the unit disk. All
of this is beyond the scope of this book, though Exercise 6.13 gives some indication
why the above formula does the trick. At any rate, we remark that Corollary 6.14
says that the solution to the Dirichlet problem is unique.

Exercises

6.1. Show that all partial derivatives of a harmonic function are harmonic.

6.2. Suppose u(x , y ) and v (x , y ) are harmonic in G , and c ∈R. Prove that u(x , y )+
c v (x , y ) is also harmonic in G .

6.3. Give an example that shows that the product of two harmonic functions is not
necessarily harmonic.

6.4. Let u(x , y ) = e x sin y .

(a) Show that u is harmonic on C.

(b) Find an entire function f such that Re( f ) = u.

6.5. Consider u(x , y ) = ln
�

x 2 + y2
�

.

(a) Show that u is harmonic on C \ {0}.

(b) Prove that u is not the real part of a function that is holomorphic in C \ {0}.

6.6. Show that, if f is holomorphic and nonzero in G , then ln | f (x , y )| is harmonic
in G .

6.7. Suppose u(x , y ) is a function R2 → R that depends only on x . When is u
harmonic?
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6.8. Is it possible to find a real function v (x , y ) so that x 3 + y3 + i v (x , y ) is holo-
morphic?

6.9. Suppose f is holomorphic in the region G ⊆Cwith image H := { f (z ) : z ∈G},
and u is harmonic on H . Show that u( f (z )) is harmonic on G .

6.10. Suppose u(r ,φ ) is a function R2→R given in terms of polar coordinates.

(a) Show that the Laplace equation for u(r ,φ ) is

1
r

ur + ur r +
1
r 2

uφφ = 0 .

(b) Show that u(r ,φ ) = r 2 cos(2φ ) is harmonic on C. Generalize.

(c) If u(r ,φ ) depends only on r , when is u harmonic?

(d) If u(r ,φ ) depends only on φ , when is u harmonic?

6.11. Prove that, if u is harmonic and bounded on C, then u is constant. (Hint:
Use Theorem 6.6 and Liouville’s Theorem (Corollary 5.13).)

6.12. Suppose u(x , y ) is a harmonic polynomial in x and y . Prove that the harmonic
conjugate of u is also a polynomial in x and y .

6.13. Recall from Exercise 4.31 the Poisson kernel

Pr (φ ) =
1− r 2

1− 2r cos(φ ) + r 2
,

where 0 < r < 1. In this exercise, we will prove the Poisson Integral Formula: if u is
harmonic on an open set containing the closed unit disk D[0, 1] then for any r < 1

u
�

r e iφ � =
1

2π

∫ 2π

0
u
�

e i t �Pr (φ − t ) dt . (6.2)

Suppose u is harmonic on an open set containing D[0, 1]. By Exercise 6.14 we
can find R0 > 1 so that u is harmonic in D[0, R0].
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(a) Recall the Möbius function

fa(z ) =
z − a

1− az
,

for some fixed a ∈C with |a| < 1, from Exercise 3.9. Show that u( f−a(z )) is
harmonic on an open disk D[0, R1] containing D[0, 1].

(b) Apply Theorem 6.10 to the function u( f−a(z )) with w = 0 to deduce

u(a) =
1

2πi

∫

C [0,1]

u( f−a(z ))
z

dz . (6.3)

(c) Recalling, again from Exercise 3.9, that fa(z ) maps the unit circle to itself,
apply a change of variables to (6.3) to prove

u(a) =
1

2π

∫ 2π

0
u
�

e i t � 1− |a|2

|e i t − a|2
dt .

(d) Deduce (6.2) by setting a = r e iφ .

6.14. Suppose G is open and D[a, r ] ⊂ G . Show that there is R > r so that
D[a, r ] ⊂ D[a, R] ⊂ G . (Hint: If G = C just take R = r + 1. Otherwise choose
some w ∈ C \ G , let M = |w − a|, and let K = D[a, M ] \ G . Show that K is
nonempty, closed and bounded, and apply Theorem A.1 to find a point z0 ∈ K that
minimizes f (z ) = |z − a| on K . Show that R = |z0 − a| works.)



Chapter 7

Power Series

It is a pain to think about convergence but sometimes you really have to.
Sinai Robins

Looking back to what machinery we have established so far for integrating complex
functions, there are several useful theorems we developed in Chapters 4 and 5. But
there are some simple-looking integrals, such as

∫

C [2,3]

exp(z )
sin(z )

dz , (7.1)

that we cannot compute with this machinery. The problems, naturally, comes from

0 π

Figure 7.1: Modifying the integration path for (7.1).

the singularities at 0 and π inside the integration path, which in turn stem from the
roots of the sine function. We might try to simplify this problem a bit by writing the
integral as the sum of integrals over the two “D” shaped paths shown in Figure 5.1
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(the integrals along the common straight line segments cancel). Furthermore, by
Cauchy’s Theorem 4.18, we may replace these integrals with integrals over small
circles around 0 and π. This transforms (7.1) into a sum of two integrals, which we
are no closer to being able to compute; however, we have localized the problem, in
the sense that we now “only” have to compute integrals around one of the singularities
of our integrand.

This motivates developing techniques to approximate complex functions locally,
in analogy with the development of Taylor series in calculus. It is clear that we need
to go further here, as we’d like to have such approximations near a singularity of a
function. At any rate, to get any of this started, we need to talk about sequences and
series of complex numbers and functions, and this chapter develops them.

7.1 Sequences and Completeness

As in the real case,1 a (complex) sequence is a function from the positive (sometimes
the nonnegative) integers to the complex numbers. Its values are usually written as
an (as opposed to a(n)) and we commonly denote the sequence by (an)

∞
n=1, (an)n≥1,

or simply (an). Considering such a sequence as a function of n, the notion of
convergence is merely a repeat of the definition we gave in Section 3.2, adjusted to
the fact that n is an integer.

Definition. Suppose (an) is a sequence and L ∈C such that for all ε > 0 there is an
integer N such that for all n ≥N , we have |an − L| < ε. Then the sequence (an) is
convergent and L is its limit; in symbols we write

lim
n→∞

an = L .

If no such L exists then the sequence (an) is divergent.

As in our previous definitions of limit, the limit of a sequence is unique if it
exists. See Exercise 7.7.

Example 7.1. We claim that lim
n→∞

i n

n = 0: Given ε > 0, choose N > 1
ε . Then for

any n ≥N ,
�

�

�

�

i n

n
− 0

�

�

�

�

=
�

�

�

�

i n

n

�

�

�

�

=
|i |n

n
=

1
n
≤ 1

N
< ε .

1There will be no surprises in this chapter of the nature real versus complex.
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To prove that a sequence (an) is divergent, we have to show the negation of the
statement that defines convergence, that is: given any L ∈C, there exists ε > 0 such
that, given any integer N , there exists an integer n such that |an − L| ≥ ε. (If you
have not negated many mathematical statements, this is worth meditating about.)

Example 7.2. The sequence (an = i n) diverges: Given L ∈ C, choose ε = 1
2 . We

consider two cases: If Re(L) ≥ 0, then for any N , choose n ≥N such that an = −1.
(This is always possible since a4k+2 = i 4k+2 = −1 for any k ≥ 0.) Then

|an − L| = |1+ L| ≥ 1 >
1
2

.

If Re(L) < 0, then for any N , choose n ≥ N such that an = 1. (This is always
possible since a4k = i 4k = 1 for any k > 0.) Then

|an − L| = |1− L| > 1 >
1
2

.

This proves that (an = i n) diverges.

The following limit laws are the cousins of the identities in Propositions 2.4
and 2.6, with one little twist.

Proposition 7.3. Let (an) and (bn) be convergent sequences and c ∈C. Then

(a) lim
n→∞

an + c lim
n→∞

bn = lim
n→∞

(an + c bn)

(b) lim
n→∞

an · lim
n→∞

bn = lim
n→∞

(an · bn)

(c)
limn→∞ an

limn→∞ bn
= lim

n→∞

�

an

bn

�

(d) lim
n→∞

an = lim
n→∞

an+1

where in (c) we also require that limn→∞ bn 6= 0. Furthermore, if f : G → C is
continuous at L := limn→∞ an and all an ∈G , then

lim
n→∞

f (an) = f (L) .

Again, the proof of this proposition is essentially a repeat from arguments we
have given in Chapters 2 and 3, as you should convince yourself in Exercise 7.4.

We will assume, as an axiom, that R is complete. To phrase this precisely, we
need the following.
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Definition. The sequence (an) is monotone if it is either nondecreasing (an+1 ≥ an

for all n) or nonincreasing (an+1 ≤ an for all n).

There are many equivalent ways of formulating the completeness property for
the reals. Here is what we’ll go by:

Axiom (Monotone Sequence Property). Any bounded monotone sequence con-
verges.

This axiom (or one of its many equivalent statements) gives arguably the most
important property of the real number system; namely, that we can, in many cases,
determine that a given sequence converges without knowing the value of the limit. In
this sense we can use the sequence to define a real number.

Example 7.4. Consider the sequence (an) defined by

an := 1+
1
2
+

1
6
+ · · ·+ 1

n!
.

This sequence is increasing (by definition) and each an ≤ 3 by Exercise 7.9. By the
Monotone Sequence Property, (an) converges, which allows us to define one of the
most famous numbers in all of mathematics,

e := 1+ lim
n→∞

an .

Example 7.5. Fix 0 ≤ r < 1. We claim that limn→∞ r n = 0: First, the sequence
(an = r n) converges because it is decreasing and bounded below by 0. Let L :=
limn→∞ r n . By Proposition 7.3,

L = lim
n→∞

r n = lim
n→∞

r n+1 = r lim
n→∞

r n = r L .

Thus (1− r )L = 0, and so (since 1− r 6= 0) we conclude that L = 0.

We remark that the Monotone Sequence Property implies the Least Upper Bound
Property: every nonempty set of real numbers with an upper bound has a least upper
bound. The Least Upper Bound Property, in turn, implies the following theorem,
which is often listed as a separate axiom.2

2Both the Archimedean Property and the Least Upper Bound Property can be used in (di�erent)
axiomatic developments of R.
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Theorem 7.6. [Archimedean3 Property] If x is any real number then there is an
integer N that is greater than x .

For a proof see Exercise 7.10. Theorem 7.6 essentially says that infinity is not part
of the real numbers. Note that we already used Theorem 7.6 in Example 7.1. The
Archimedean Property underlies the construction of an infinite decimal expansion
for any real number, while the Monotone Sequence Property shows that any such
infinite decimal expansion actually converges to a real number.

We close this discussion of limits with a pair of standard limits. The first of these
can be established by calculus methods (such as L’Hôspital’s rule (Theorem A.11),
by treating n as the variable); both of them can be proved by more elementary
considerations. Either way, we leave the proof of the following to Exercise 7.11.

Proposition 7.7. (a) Exponentials beat polynomials: for any polynomial p(n) (with
complex coe�cients) and any c ∈C with |c | > 1,

lim
n→∞

p(n)
c n

= 0 .

(b) Factorials beat exponentials: for any c ∈C,

lim
n→∞

c n

n!
= 0 .

7.2 Series

Definition. A series is a sequence (an) whose members are of the form an =
∑n

k=1 bk

(or an =
∑n

k=0 bk ); we call (bk ) the sequence of terms of the series. The an =
∑n

k=1 bk (or an =
∑n

k=0 bk ) are the partial sums of the series.

If we wanted to be lazy we would define convergence of a series simply by
referring to convergence of the partial sums of the series—after all, we just defined
series through sequences. However, there are some convergence features that take
on special appearances for series, so we mention them here explicitly. For starters, a

3Archimedes of Syracuse (287–212 bce) attributes this property to Eudoxus of Cnidus (408–355
bce).
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series converges to the limit (or sum) L by definition if

lim
n→∞

an = lim
n→∞

n
∑

k=1
bk = L .

To prove that a series converges we use the definition of limit of a sequence: for any
ε > 0 we have to find an N such that for all n ≥N ,

�

�

�

�

�

n
∑

k=1
bk − L

�

�

�

�

�

< ε .

In the case of a convergent series, we usually write its limit as L =
∞
∑

k=1
bk or L =

∑

k≥1
bk .

Example 7.8. Fix z ∈C with |z | < 1. We claim that the geometric series
∑

k≥1 z k

converges with limit
∑

k≥1
z k =

z
1− z

.

In this case, we can compute the partial sums explicitly:

n
∑

k=1
z k = z + z 2 + · · ·+ z n =

z − z n+1

1− z
,

whose limit as n→∞ exists by Example 7.5, because |z | < 1.

Example 7.9. Another series whose limit we can compute by manipulating the
partial sums is

∑

k≥1

1
k2 + k

= lim
n→∞

n
∑

k=1

� 1
k
− 1

k + 1

�

= lim
n→∞

�

1− 1
2
+

1
2
− 1

3
+

1
3
− 1

4
+ · · ·+ 1

n
− 1

n + 1

�

= lim
n→∞

�

1− 1
n + 1

�

= 1 .

A series where most of the terms cancel like this is called telescoping.

Most of the time we can use the completeness property to check convergence of
a series, and it is fortunate that the Monotone Sequence Property has a convenient
translation into the language of series of real numbers. The partial sums of a series
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form a nondecreasing sequence if the terms of the series are nonnegative, and this
observation immediately yields the following:

Corollary 7.10. If bk ∈ R≥0 then
∑

k≥1
bk converges if and only if the partial sums

are bounded.

Example 7.11. With this new terminology, we can revisit Example 7.4: Let bk =
1
k ! .

In Example 7.4 we showed that the partial sums

n
∑

k=1
bk =

n
∑

k=1

1
k !

are bounded, and
∑

k≥1

1
k !
= e − 1.

Although Corollary 7.10 is a mere direct consequence of the completeness
property of R, it is surprisingly useful. Here is one application, sometimes called the
Comparison Test:

Corollary 7.12. If bk ≥ ck ≥ 0 for all k ≥ 1 and
∑

k≥1
bk converges then so does

∑

k≥1
ck .

Proof. By Corollary 7.10, the partial sums
∑n

k=1 bk are bounded, and thus so are

n
∑

k=1
ck ≤

n
∑

k=1
bk .

But this means, again by Corollary 7.10, that
∑

k≥1 ck converges.

Proposition 7.13. If
∑

k≥1
bk converges then lim

n→∞
bn = 0 .

The contrapositive of this proposition is often used, sometimes called the Test
for Divergence:

Corollary 7.14. If lim
n→∞

bn 6= 0 or lim
n→∞

bn does not exist, then
∑

k≥1
bk diverges.

Example 7.15. Continuing Example 7.8, for |z | ≥ 1 the geometric series
∑

k≥1 z k

diverges since in this case limn→∞ z n either does not exist or is not 0.
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Proof of Proposition 7.13. Suppose
∑

k≥1
bk converges. Then, using Proposition 7.3(a)

& (d),

0 = lim
n→∞

n
∑

k=1
bk − lim

n→∞

n−1
∑

k=1
bk = lim

n→∞

�

n
∑

k=1
bk −

n−1
∑

k=1
bk

�

= lim
n→∞

bn .

A common mistake is to try to use the converse of Proposition 7.13, but the
converse is false:

Example 7.16. The harmonic series
∑

k≥1
1
k diverges (even though the terms go to

0): If we assume the series converges to L, then

L = 1+
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+ · · ·

>
1
2
+

1
2
+

1
4
+

1
4
+

1
6
+

1
6
+ · · ·

= 1+
1
2
+

1
3
+ · · ·

= L ,

a contradiction.

x

f (x )

1

f (1)
f (2) f (3) f (4)

x

f (x )

1

f (1)
f (2) f (3) f (4)f (5)

Figure 7.2: The integral test.
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Proposition 7.17 (Integral Test). If f : [1,∞)→ R≥0 is continuous and nonin-
creasing, then

∫ ∞

1
f (t ) dt ≤

∑

k≥1
f (k ) ≤ f (1) +

∫ ∞

1
f (t ) dt .

The Integral Test literally comes with a proof by picture—see Figure 7.2: the
integral of f on the interval [k , k + 1] is bounded between f (k ) and f (k + 1).
Adding the pieces gives the inequalities above for the nth partial sum versus the
integrals from 1 to n and from 1 to n + 1, and the inequality persists in the limit.

Corollary 7.18. If f : [1,∞) → R≥0 is continuous and nonincreasing, then
∑

k≥1 f (k ) converges if and only if
∫∞

1 f (t ) dt is finite.

Proof. Suppose
∫∞

1 f (t ) dt =∞. Then the first inequality in Proposition 7.17
implies that the partial sums

∑n
k=1 f (k ) are unbounded, and so Corollary 7.10 says

that
∑

k≥1 f (k ) cannot converge.
Conversely, if

∫∞
1 f (t ) dt is finite then the second inequality in Proposition 7.17

says that the partial sums
∑n

k=1 f (k ) are bounded; thus, again with Corollary 7.10,
we conclude that

∑

k≥1 f (k ) converges.

Example 7.19. The series
∑

k≥1
1

k p converges for p > 1 and diverges for p < 1 (and
the case p = 1 was the subject of Example 7.16) because

∫ ∞

1

dx
x p = lim

a→∞

a−p+1

−p + 1
+

1
p − 1

is finite if and only if p > 1.

By now you might be amused that we have collected several results on series
whose terms are nonnegative real numbers. One reason is that such series are a bit
easier to handle, another one is that there is a notion of convergence special to series
that relates any series to one with only nonnegative terms:

Definition. The series
∑

k≥1
bk converges absolutely if

∑

k≥1
|bk | converges.

Theorem 7.20. If a series converges absolutely then it converges.

This seems like an obvious statement, but its proof is, nevertheless, nontrivial.
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Proof. Suppose
∑

k≥1 |bk | converges. We first consider the case that each bk is real.
Let

b+k :=







bk if bk ≥ 0,

0 otherwise
and b−k :=







bk if bk < 0,

0 otherwise.

Then 0 ≤ b+k ≤ |bk | and 0 ≤ −b−k ≤ |bk | for all k ≥ 1, and so by Corollary 7.12,
both

∑

k≥1
b+k and −

∑

k≥1
b−k

converge. But then so does

∑

k≥1
bk =

∑

k≥1
b+k +

∑

k≥1
b−k .

For the general case bk ∈ C, we write each term as bk = ck + i dk . Since
0 ≤ |ck | ≤ |bk | for all k ≥ 1, Corollary 7.12 implies that

∑

k≥1 ck converges absolutely,
and by an analogous argument, so does

∑

k≥1 dk . But now we can use the first case
to deduce that both

∑

k≥1 ck and
∑

k≥1 dk converge, and thus so does

∑

k≥1
bk =

∑

k≥1
ck + i

∑

k≥1
dk .

Example 7.21. Continuing Example 7.19,

ζ (z ) :=
∑

k≥1

1
k z

converges for Re(z ) > 1, because then (using Exercise 3.49)

∑

k≥1

�

�k−z �
� =

∑

k≥1
k−Re(z )

converges. Viewed as a function in z , the series ζ (z ) is the Riemann zeta function,
an indispensable tool in number theory and many other areas in mathematics and
physics.4

4The Riemann zeta function is the subject of the arguably most famous open problem in mathematics,
the Riemann hypothesis. It turns out that ζ (z ) can be extended to a function that is holomorphic onC\{1},
and the Riemann hypothesis asserts that the roots of this extended function in the strip 0 < Re(z ) < 1 are
all on the critical line Re(z ) = 1

2 .
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Another common mistake is to try to use the converse of Theorem 7.20, which
is also false:

Example 7.22. The alternating harmonic series
∑

k≥1
(−1)k+1

k converges:

∑

k≥1

(−1)k+1

k
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

=
�

1− 1
2

�

+
�1

3
− 1

4

�

+
�1

5
− 1

6

�

+ · · ·

(There is a small technical detail to be checked here, since we are e�ectively ignoring
half the partial sums of the original series; see Exercise 7.16.) Since

1
2k − 1

− 1
2k
=

1
2k (2k − 1)

≤ 1
(2k − 1)2

≤ 1
k2

,

∑

k≥1
(−1)k+1

k converges by Corollary 7.12 and Example 7.19.
However, according to Example 7.16,

∑

k≥1
(−1)k+1

k does not converge absolutely.

7.3 Sequences and Series of Functions

The fun starts when we study sequences of functions.

Definition. Let G ⊆ C and fn : G → C for n ≥ 1. We say that ( fn) converges
pointwise to f : G →C if for each z ∈G ,

lim
n→∞

fn(z ) = f (z ) .

We say that ( fn) converges uniformly to f : G → C if for all ε > 0 there is an N
such that for all z ∈G and for all n ≥N

| fn(z )− f (z )| < ε .

Sometimes we want to express that either notion of convergence holds only on a
subset H of G , in which case we say that ( fn) converges pointwise/uniformly on H .

It should be clear that uniform convergence on a set implies pointwise conver-
gence on that set; but the converse is not generally true.
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Let’s digest these two notions of convergence of a function sequence by describing
them using quantifiers; as usual, ∀ denotes for all and ∃means there exists. Pointwise
convergence on G says

∀ ε > 0 ∀ z ∈G ∃N ∀n ≥N | fn(z )− f (z )| < ε ,

whereas uniform convergence on G translates into

∀ ε > 0 ∃N ∀ z ∈G ∀n ≥N | fn(z )− f (z )| < ε .

No big deal — we only exchanged two of the quantifiers. In the first case, N may
well depend on z , in the second case we need to find an N that works for all z ∈G .
And this can make all the di�erence . . .

Example 7.23. Let fn : D[0, 1]→C be defined by fn(z ) = z n . We claim that this
sequence of functions converges pointwise to f : D[0,1]→C given by f (z ) = 0.
This is immediate for the point z = 0. Now given any ε > 0 and 0 < |z | < 1, choose
N > ln(ε)

ln |z | . Then for all n ≥N ,

| fn(z )− f (z )| = |z n − 0| = |z |n ≤ |z |N < ε .

(You ought to check carefully that all of our inequalities work the way we claim they
do.)

Example 7.24. Let fn : D[0, 1
2 ]→C be defined by fn(z ) = z n . We claim that this

sequence of functions converges uniformly to f : D[0, 1
2 ]→C given by f (z ) = 0.

Given any ε > 0 and |z | < 1
2 , choose N > − ln(ε)

ln(2) . Then for all n ≥N ,

| fn(z )− f (z )| = |z |n ≤ |z |N <
� 1

2

�N
< ε .

(Again, you should carefully check our inequalities.)

The di�erences between Example 7.23 and Example 7.24 are subtle, and we
suggest you meditate over them for a while with a good cup of co�ee. You might
already suspect that the function sequence in Example 7.23 does not converge
uniformly, as we will see in a moment.

The first application illustrating the di�erence between pointwise and uniform
convergence says, in essence, that if we have a sequence of functions ( fn) that
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converges uniformly on G then for all z0 ∈G

lim
n→∞

lim
z→z0

fn(z ) = lim
z→z0

lim
n→∞

fn(z ) .

We will need similar interchanges of limits frequently.

Proposition 7.25. Suppose G ⊂ C and fn : G → C is continuous, for each n ≥ 1.
If ( fn) converges uniformly to f : G →C then f is continuous.

Proof. Let z0 ∈G ; we will prove that f is continuous at z0. By uniform convergence,
given ε > 0, there is an N such that for all z ∈G and all n ≥N

| fn(z )− f (z )| < ε
3

.

Now we make use of the continuity of the fn ’s. This means that given (the same)
ε > 0, there is a δ > 0 such that whenever |z − z0| < δ,

| fn(z )− fn(z0)| <
ε
3

.

All that’s left is putting those two inequalities together: by the triangle inequality
(Corollary 1.7(c)),

| f (z )− f (z0)| = | f (z )− fn(z ) + fn(z )− fn(z0) + fn(z0)− f (z0)|

≤ | f (z )− fn(z )|+ | fn(z )− fn(z0)|+ | fn(z0)− f (z0)|

< ε .

This proves that f is continuous at z0.

Proposition 7.25 can sometimes give a hint that a function sequence does not
converge uniformly.

Example 7.26. We modify Example 7.23 and consider the real function sequence
fn : [0, 1]→R given by fn(x ) = x n . It converges pointwise to f : [0, 1]→R given
by

f (x ) =







0 if 0 ≤ x < 1 ,

1 if x = 1 .

As this limiting function is not continuous, the above convergence cannot be uni-
form. This gives a strong indication that the convergence in Example 7.23 is not
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uniform either, though this needs a separate proof, as the domain of the functions
in Example 7.23 is the unit disk (Exercise 7.20(b)).

Now that we have established Proposition 7.25 about continuity, we can ask
about integration of sequences or series of functions. The next theorem should
come as no surprise; however, its consequences (which we will see shortly) are wide
ranging.

Proposition 7.27. Suppose fn : G → C is continuous, for n ≥ 1, ( fn) converges
uniformly to f : G →C, and γ ⊆G is a piecewise smooth path. Then

lim
n→∞

∫

γ
fn =

∫

γ
f .

Proof. We may assume that γ is not just a point, in which case the proposition holds
trivially. Given ε > 0, there exists N such that for all z ∈G and all n ≥N ,

| fn(z )− f (z )| < ε
length(γ)

.

With Proposition 4.6(d) we can thus estimate
�

�

�

�

�

∫

γ
fn −

∫

γ
f

�

�

�

�

�

=

�

�

�

�

�

∫

γ
fn − f

�

�

�

�

�

≤ max
z∈γ
| fn(z )− f (z )| · length(γ) < ε .

All of these notions for sequences of functions hold verbatim for series of func-
tions. For example, if

∑

k≥1 fk (z ) converges uniformly on G and γ ⊆G is a piecewise
smooth path, then

∫

γ

∑

k≥1
fk (z ) dz =

∑

k≥1

∫

γ
fk (z ) dz .

In some sense, the above identity is the reason we care about uniform convergence.
There are several criteria for uniform convergence; see, e.g., Exercises 7.19 and

7.20, and the following result, sometimes called the Weierstraß M -test.

Proposition 7.28. Suppose fk : G →C for k ≥ 1, and | fk (z )| ≤Mk for all z ∈G ,
where

∑

k≥1 Mk converges. Then
∑

k≥1 | fk | and
∑

k≥1 fk converge uniformly in G .
(We say the series

∑

k≥1 fk converges absolutely and uniformly.)

Proof. For each fixed z , the series
∑

k≥1 fk (z ) converges absolutely by Corollary 7.12.
To show that the convergence is uniform, let ε > 0. Then there exists N such that
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for all n ≥N ,
∑

k≥1
Mk −

n
∑

k=1
Mk =

∑

k>n
Mk < ε .

Thus for all z ∈G and n ≥N ,
�

�

�

�

�

∑

k≥1
fk (z )−

n
∑

k=1
fk (z )

�

�

�

�

�

=

�

�

�

�

�

∑

k>n
fk (z )

�

�

�

�

�

≤
∑

k>n
| fk (z )| ≤

∑

k>n
Mk < ε ,

which proves uniform convergence. Replace fk with | fk | in this argument to see that
∑

k≥1 | fk | also converges uniformly.

Example 7.29. We revisit Example 7.8 and consider the geometric series
∑

k≥1 z k

as a series of functions in z . We know from Example 7.8 that this function series
converges pointwise for |z | < 1:

∑

k≥1
z k =

z
1− z

.

To study uniform convergence, we apply Proposition 7.28 with fk (z ) = z k . We
need a series of upper bounds that converges, so fix a real number 0 < r < 1 and let
Mk = r k . Then

| fk (z )| = |z |
k ≤ r k for |z | ≤ r ,

and
∑

k≥1 r k converges by Example 7.8. Thus, Proposition 7.28 says that
∑

k≥1 z k

converges uniformly for |z | ≤ r .
We note the subtle distinction of domains for pointwise/uniform convergence:

∑

k≥1 z k converges (absolutely) for |z | < 1, but to force uniform convergence, we
need to shrink the domain to |z | ≤ r for some (arbitrary but fixed) r < 1.

7.4 Regions of Convergence

For the remainder of this chapter (indeed, this book) we concentrate on some very
special series of functions.

Definition. A power series centered at z0 is a series of the form

∑

k≥0
ck (z − z0)

k

where c0, c1, c2, . . . ∈C.
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Example 7.30. A slight modification of Example 7.29 gives a fundamental power
series, namely the geometric series

∑

k≥0
z k =

1
1− z

.

So here z0 = 0 and ck = 1 for all k ≥ 0. We note that, as in Example 7.29, this power
series converges absolutely for |z | < 1 and uniformly for |z | ≤ r , for any fixed r < 1.
Finally, as in Example 7.15, the geometric series

∑

k≥0 z k diverges for |z | ≥ 1.

A general power series has a very similar convergence behavior which, in fact,
comes from comparing it to a geometric series.

Theorem 7.31. Given a power series
∑

k≥0 ck (z − z0)
k , there exists a real number

R ≥ 0 or R =∞, such that

(a)
∑

k≥0 ck (z − z0)
k converges absolutely for |z − z0| < R ;

(b)
∑

k≥0 ck (z − z0)
k converges absolutely and uniformly for |z − z0| ≤ r , for any

r < R ;

(c)
∑

k≥0 ck (z − z0)
k diverges for |z − z0| > R .

We remark that this theorem says nothing about the convergence/divergence of
∑

k≥0 ck (z − z0)
k for |z − z0| = R .

Definition. The number R in Theorem 7.31 is called the radius of convergence
of
∑

k≥0 ck (z − z0)
k . The open disk D[z0, R] in which the power series converges

absolutely is the region of convergence. (If R =∞ then this is C.)

In preparation for the proof of Theorem 7.31, we start with the following
observation.

Proposition 7.32. If
∑

k≥0 ck (w − z0)
k converges then

∑

k≥0 ck (z − z0)
k converges

absolutely whenever |z − z0| < |w − z0|.

Proof. Let r := |w−z0|. If
∑

k≥0 ck (w−z0)
k converges then limk→∞ ck (w−z0)

k = 0
and so this sequence of terms is bounded (by Exercise 7.6), say

�

�

�ck (w − z0)
k
�

�

� = |ck | r
k ≤ M .
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Now if |z − z0| < |w − z0|, then

∑

k≥0

�

�

�ck (z − z0)
k
�

�

� =
∑

k≥0
|ck | r

k
�

|z − z0|
r

�k

≤ M
∑

k≥0

�

|z − z0|
r

�k

.

The sum on the right-hand side is a convergent geometric sequence, since |z−z0| < r ,
and so

∑

k≥0 ck (z − z0)
k converges absolutely by Corollary 7.12.

Proof of Theorem 7.31. Consider the set

S :=
¨

x ∈R≥0 :
∑

k≥0
ck x k converges

«

.

(This set is nonempty since 0 ∈ S .)
If S is unbounded then

∑

k≥0 ck (z − z0)
k converges absolutely and uniformly for

|z − z0| ≤ r , for any r (and so this gives the R =∞ case of Theorem 7.31): choose
x ∈ S with x > r , then Proposition 7.32 says that

∑

k≥0 ck r k converges absolutely.
Since

�

�

�ck (z − z0)
k
�

�

� ≤ |ck |r k , we can now use Proposition 7.28.
If S is bounded, let R be its least upper bound. If R = 0 then

∑

k≥0 ck (z − z0)
k

converges only for z = z0, which establishes Theorem 7.31 in this case.
Now assume R > 0. If |z − z0| < R then (because R is a least upper bound for

S ) there exists r ∈ S such that

|z − z0| < r ≤ R .

Thus
∑

k≥0 ck (w− z0)
k converges for w = z0+ r , and so

∑

k≥0 ck (z − z0)
k converges

absolutely by Proposition 7.32. This finishes (a).
If |z − z0| ≤ r for some r < R , again we can find x ∈ S such that r < x ≤ R .

Then
∑

k≥0 |ck | r k converges by Proposition 7.32, and so
∑

k≥0 ck (z−z0)
k converges

absolutely and uniformly for |z − z0| ≤ r by Proposition 7.28. This proves (b).
Finally, if |z − z0| > R then there exists r /∈ S such that

R ≤ r < |z − z0| .

But
∑

k≥0 ck r k diverges, so (by the contrapositive of Theorem 7.20)
∑

k≥0 |ck | r k

diverges, and so (by the contrapositive of Proposition 7.32)
∑

k≥0 ck (z−z0)
k diverges,

which finishes (c).
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Corollary 7.33. If limk→∞
k
Æ

|ck | exists then the radius of convergence of the series
∑

k≥0 ck (z − z0)
k equals

R =







∞ if limk→∞
k
Æ

|ck | = 0 ,
1

limk→∞
k
p
|ck |

otherwise.

Proof. We treat the case that R is finite and leave the case R =∞ to Exercise 7.31.
Given R as in the statement of the corollary, it su�ces (by Theorem 7.31) to

show that
∑

k≥0 ck (z − z0)
k converges for |z − z0| < R and diverges for |z − z0| > R .

Suppose r := |z − z0| < R . Since limk→∞
k
Æ

|ck | =
1
R and 2

R+r >
1
R , there exists

N such that k
Æ

|ck | <
2

R+r for k ≥N . For those k we then have

�

�

�ck (z − z0)
k
�

�

� = |ck ||z − z0|
k =

�

k
Æ

|ck | r
�k
<
� 2r

R + r

�k

and so
∑∞

k=N ck (z−z0)
k converges (absolutely) by Proposition 7.28, because 2r

R+r < 1
and thus

∑

k≥0
� 2r

R+r

�k converges as a geometric series. Thus
∑

k≥0 ck (z − z0)
k

converges.
Now suppose r = |z − z0| > R . Again because limk→∞

k
Æ

|ck | =
1
R and now

2
R+r <

1
R , there exists N such that k

Æ

|ck | >
2

R+r for k ≥N . For those k ,

�

�

�ck (z − z0)
k
�

�

� =
�

k
Æ

|ck | r
�k
>
� 2r

R + r

�k
> 1 ,

and so the sequence ck (z − z0)
k cannot converge to 0. Subsequently (by Corol-

lary 7.14),
∑

k≥0 ck (z − z0)
k diverges.

You might remember this corollary from calculus, where it goes by the name
root test. Its twin sister, the ratio test, is the subject of Exercise 7.32.

Example 7.34. For the power series
∑

k≥0
k z k we compute

lim
k→∞

k
Æ

|ck | = lim
k→∞

kpk = lim
k→∞

e
1
k ln(k ) = e limk→∞

ln(k )
k = e0 = 1 ,

and Corollary 7.33 gives the radius of convergence 1. (Alternatively, we can argue
by di�erentiating the geometric series.)
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Example 7.35. Consider the power series
∑

k≥0

1
k !

z k . Since

lim
k→∞

�

�

�

�

�

ck+1

ck

�

�

�

�

�

= lim
k→∞

k !
(k + 1)!

= lim
k→∞

1
k + 1

= 0 ,

the ratio test (Exercise 7.32) implies that the radius of convergence of
∑

k≥0
1
k ! z k is

∞, and so the power series converges absolutely in C.5

By way of Proposition 7.25, Theorem 7.31 almost immediately implies the
following.

Corollary 7.36. Suppose the power series
∑

k≥0 ck (z−z0)
k has radius of convergence

R > 0. Then the series represents a function that is continuous on D[z0, R].

Proof. Given any point w ∈ D[z0, R], we can find r < R such that w ∈ D[z0, r ]
(e.g., if R 6= ∞ then r = |w−z0|+R

2 will do the trick). Theorem 7.31 says that
∑

k≥0 ck (z − z0)
k converges uniformly in D[z0, r ], and so Proposition 7.25 implies

that the power series is continuous in D[z0, r ], and so particularly at w .

Finally, mixing Proposition 7.27 with Theorem 7.31 gives:

Corollary 7.37. Suppose the power series
∑

k≥0 ck (z−z0)
k has radius of convergence

R > 0 and γ is a piecewise smooth path in D[z0, R]. Then

∫

γ

∑

k≥0
ck (z − z0)

k dz =
∑

k≥0
ck

∫

γ
(z − z0)

k dz .

In particular, if γ is closed then
∫

γ

∑

k≥0
ck (z − z0)

k dz = 0 .

Proof. Let r :=maxz∈γ |γ(z )− z0| (whose existence is guaranteed by Theorem A.1).
Then γ ⊂ D[z0, r ] and r < R . Theorem 7.31 says that

∑

k≥0 ck (z − z0)
k converges

uniformly in D[z0, r ], and so Proposition 7.27 allows us to switch integral and
summation.

The last statement follows now with Exercise 4.15.

These corollaries will become extremely useful in the next chapter.

5In the next chapter, we will see that this power series represents the exponential function.
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Exercises

7.1. For each of the sequences, prove convergence or divergence. If the sequence
converges, find the limit.

(a) an = e πi n
4

(b) an =
(−1)n

n

(c) an = cos(n)

(d) an = 2− i n2

2n2+1

(e) an = sin( 1n )

7.2. Determine whether each of the following series converges or diverges.

(a)
∑

n≥1

�

1+ i
p

3

�n

(b)
∑

n≥1
n
�1

i

�n

(c)
∑

n≥1

�

1+ 2i
p

5

�n

(d)
∑

n≥1

1
n3 + i n

7.3. Compute
∑

n≥1

1
n2 + 2n

.

7.4. Prove Proposition 7.3.

7.5. Prove the following:

(a) lim
n→∞

an = a =⇒ lim
n→∞
|an | = |a|.

(b) lim
n→∞

an = 0 ⇐⇒ lim
n→∞
|an | = 0.

7.6. Show that a convergent sequence is bounded, i.e.: if limn→∞ an exists, then
there is an M such that |an | ≤M for all n ≥ 1.

7.7. Show that the limit of a convergent sequence is unique.

7.8. Let (an) be a sequence. A point a is an accumulation point of the sequence if
for every ε > 0 and every N ∈ Z>0 there exists some n >N such that |an − a| < ε.
Prove that if a sequence has more than one accumulation point then the sequence
diverges.
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7.9.

(a) Show that 1
k ! ≤

3
k (k+1) for any positive integer k .

(b) Conclude with Example 7.9 that for any positive integer n,

1+
1
2
+

1
6
+ · · ·+ 1

n!
≤ 3 .

7.10. Derive the Archimedean Property from the Monotone Sequence Property.

7.11. Prove Proposition 7.7.

7.12. Prove that (cn) converges if and only if (Re cn) and (Im cn) converge.

7.13. Prove that Z is complete and that Q is not complete.

7.14. Prove that, if an ≤ bn ≤ cn for all n and limn→∞ an = limn→∞ cn = L, then
limn→∞ bn = L. This is called the Squeeze Theorem, and is useful in testing a sequence
for convergence.

7.15. Find the least upper bound of the set
�

Re
�

e2πi t
�

: t ∈Q \Z
	

.

7.16.

(a) Suppose that the sequence (cn) converges to zero. Show that
∑

n≥0 cn converges
if and only if

∑

k≥0(c2k+c2k+1) converges. Moreover, if the two series converge
then they have the same limit.

(b) Give an example where (cn) does not converge to 0 and one of the series in
(a) diverges while the other converges.

7.17. Prove that the series
∑

k≥1
bk converges if and only if lim

n→∞

∑

k≥n
bk = 0 .
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Figure 7.3: The functions fn(x ) := sinn(x ) in Exercise 7.21.

7.18.

(a) Show that
∑

k≥1

k
k2 + 1

diverges.

(b) Show that
∑

k≥1

k
k3 + 1

converges.

7.19.

(a) Suppose G ⊆C and fn : G →C for n ≥ 1. Suppose (an) is a sequence in R
with limn→∞ an = 0 and, for each n ≥ 1,

| fn(z )| ≤ an for all z ∈G .

Show that ( fn) converges uniformly to the zero function in G .

(b) Re-prove the statement of Example 7.24 using part (a).

7.20.

(a) Suppose G ⊆C, fn : G →C for n ≥ 1, and ( fn) converges uniformly to the
zero function in G . Show that, if (zn) is any sequence in G , then

lim
n→∞

fn(zn) = 0 .

(b) Apply (a) to the function sequence given in Example 7.23, together with the
sequence (zn = e− 1

n ), to prove that the convergence given in Example 7.23 is
not uniform.
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7.21. Consider fn : [0,π]→R given by fn(x ) = sinn(x ), for n ≥ 1. Prove that ( fn)
converges pointwise to f : [0,π]→R given by

f (x ) =







1 if x = π
2 ,

0 if x 6= π
2 ,

yet this convergence is not uniform. (See Figure 7.3.)

7.22. Where do the following sequences converge pointwise? Do they converge
uniformly on this domain?

(a) (n z n) (b)
� z n

n

�

(c)
� 1

1+nz

�

where Re(z ) ≥ 0

7.23. Let fn(x ) = n2x e−nx .

(a) Show that limn→∞ fn(x ) = 0 for all x ≥ 0. (Hint: Treat x = 0 as a special case;
for x > 0 you can use L’Hôspital’s rule (Theorem A.11) — but remember
that n is the variable, not x .)

(b) Find limn→∞
∫ 1

0 fn(x ) dx . (Hint: The answer is not 0.)

(c) Why doesn’t your answer to part (b) violate Proposition 7.27?

7.24. The product of two power series centered at z0 is another power series centered
at z0. Derive a formula for its coe�cients in terms of the coe�cients of the original
two power series.

7.25. Find a power series (and determine its radius of convergence) for the following
functions.

(a)
1

1+ 4z
(b)

1
3− z

2
(c)

z 2

(4− z )2

7.26. Find a power series representation about the origin of each of the following
functions.

(a) cos z (b) cos(z 2) (c) z 2 sin z (d) (sin z )2
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7.27.

(a) Suppose that the sequence (ck ) is bounded. Show that the radius of conver-
gence of

∑

k≥0 ck (z − z0)
k is at least 1.

(b) Suppose that the sequence (ck ) does not converge to 0. Show that the radius
of convergence of

∑

k≥0 ck (z − z0)
k is at most 1.

7.28. Find the power series centered at 1 and compute its radius of convergence for
each of the following functions:

(a) f (z ) = 1
z (b) f (z ) = Log(z )

7.29. Use the Weierstraß M -test to show that each of the following series converges
uniformly on the given domain:

(a)
∑

k≥1

z k

k2
on D[0, 1]

(b)
∑

k≥0

1
z k

on {z ∈C : |z | ≥ 2}

(c)
∑

k≥0

z k

z k + 1
on D[0, r ] where 0 ≤

r < 1

7.30. Fix z ∈ C and r > |z |. Prove that
∑

k≥0

� z
w

�k
converges uniformly in the

variable w for |w | ≥ r .

7.31. Complete our proof of Corollary 7.33 by considering the case R =∞.

7.32. Prove that, if limk→∞

�

�

�

ck+1
ck

�

�

� exists then the radius of convergence of the series
∑

k≥0 ck (z − z0)
k equals

R =







∞ if limk→∞

�

�

�

ck+1
ck

�

�

� = 0 ,

limk→∞

�

�

�

ck
ck+1

�

�

� otherwise.

7.33. Find the radius of convergence for each of the following series.

(a)
∑

k≥0
ak2

z k where a ∈C

(b)
∑

k≥0
k n z k where n ∈ Z
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(c)
∑

k≥0
z k !

(d)
∑

k≥1

(−1)k

k
z k (k+1)

(e)
∑

k≥1

z k

k k

(f )
∑

k≥0
cos(k ) z k

(g)
∑

k≥0
4k (z − 2)k

7.34. Find a function representing each of the following series.

(a)
∑

k≥0

z 2k

k !
(b)

∑

k≥1
k (z − 1)k−1 (c)

∑

k≥2
k (k − 1) z k

7.35. Recall the function f : D[0, 1]→C defined in Exercise 5.5 through

f (z ) :=
∫

[0,1]

dw
1−w z

.

Find a power series for f .

7.36. Define the functions fn :R≥0→R via fn(t ) =
1
n e− t

n , for n ≥ 1.

(a) Show that the maximum of fn(t ) is 1
n .

(b) Show that fn(t ) converges uniformly to the zero function on R≥0.

(c) Show that
∫∞

0 fn(t ) dt does not converge to 0 as n→∞.

(d) Why doesn’t this contradict Proposition 7.27?



Chapter 8

Taylor and Laurent Series

We think in generalities, but we live in details.
Alfred North Whitehead (1861–1947)

Now that we have developed some machinery for power series, we are ready to
connect them to the earlier chapters. Our first big goal in this chapter is to prove
that every power series represents a holomorphic function in its disk of convergence
and, vice versa, that every holomorphic function can be locally represented by a
power series.

Our second goal returns to our motivation to start Chapter 7: we’d still like to
compute (7.1),

∫

C [2,3]

exp(z )
sin(z )

dz .

Looking back at Figure 7.1 suggests that we expand the function exp(z )
sin(z ) locally into

something like power series centered at 0 and π, and with any luck we can then use
Proposition 7.27 to integrate. Of course, exp(z )

sin(z ) has singularities at 0 and π, so there
is no hope of computing power series at these points. We will develop an analogue
of a power series centered at a singularity.

8.1 Power Series and Holomorphic Functions

Here is the first (and easier) half of the first goal we just announced.

Theorem 8.1. Suppose f (z ) =
∑

k≥0 ck (z − z0)
k has radius of convergence R > 0.

Then f is holomorphic in D[z0, R].

Proof. Corollary 7.36 says that f is continuous in D[z0, R]. Given any closed
piecewise smooth path γ ⊂ D[z0, R], Corollary 7.37 gives

∫

γ f = 0. Now apply
Morera’s theorem (Corollary 5.6).
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A special case of this result concerns power series with infinite radius of conver-
gence: those represent entire functions.

Now that we know that power series are di�erentiable in their regions of con-
vergence, we can ask how to find their derivatives. The next result says that we can
simply di�erentiate the series term by term.

Theorem 8.2. Suppose f (z ) =
∑

k≥0 ck (z − z0)
k has radius of convergence R > 0.

Then
f ′(z ) =

∑

k≥1
k ck (z − z0)

k−1 for any z ∈ D[z0, R] ,

and the radius of convergence of this power series is also R .

Proof. If z ∈ D[z0, R] then |z − z0| < R , so we can choose R1 so that |z − z0| <
R1 < R . Then the circle γ := C [z0, R1] lies in D[z0, R] and z is inside γ . Since f is
holomorphic in D[z0, R]we can use Cauchy’s Integral Formula for f ′ (Theorem 5.1),
as well as Corollary 7.37:

f ′(z ) =
1

2πi

∫

γ

f (w )
(w − z )2

dw =
1

2πi

∫

γ

1
(w − z )2

∑

k≥0
ck (w − z0)

k dw

=
∑

k≥0
ck

1
2πi

∫

γ

(w − z0)
k

(w − z )2
dw =

∑

k≥0
ck

d
dw
(w − z0)

k
�

�

�

�

w=z

=
∑

k≥1
k ck (z − z0)

k−1.

Note that we used Theorem 5.1 again in the penultimate step, but now applied to
the function (z − z0)

k .
The last statement of the theorem is easy to show: the radius of convergence of

f ′(z ) is at least R (since we have shown that the series for f ′ converges whenever
|z − z0| < R), and it cannot be larger than R by comparison to the series for f (z ),
since the coe�cients for (z−z0) f ′(z ) are larger than the corresponding ones for f (z ).

Example 8.3. Let

f (z ) =
∑

k≥0

z k

k !
.
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In Example 7.35, we showed that f converges in C. We claim that f (z ) = exp(z ),
in analogy with the real exponential function. First, by Theorem 8.2,

f ′(z ) =
d
dz

∑

k≥0

z k

k !
=
∑

k≥1

z k−1

(k − 1)!
=
∑

k≥0

z k

k !
= f (z ) .

Thus

d
dz

f (z )
exp(z )

=
d
dz
( f (z ) exp(−z )) = f ′(z ) exp(−z )− f (z ) exp(−z ) = 0 ,

and so, by Theorem 2.17, f (z )
exp(z ) is constant. Evaluating at z = 0 gives that this

constant is 1, and so f (z ) = exp(z ).

Example 8.4. We can use the power series expansion for exp(z ) to find power series
for the trigonometric functions. For instance,

sin z =
1
2i
(exp(i z )− exp(−i z )) =

1
2i

�

∑

k≥0

(i z )k

k !
−
∑

k≥0

(−i z )k

k !

�

=
1
2i

∑

k≥0

1
k !

�

(i z )k − (−1)k (i z )k
�

=
1
2i

∑

k≥0 odd

2(i z )k

k !

=
1
i

∑

j≥0

(i z )2 j+1

(2 j + 1)!
=
∑

j≥0

i 2 j z 2 j+1

(2 j + 1)!
=
∑

j≥0

(−1) j

(2 j + 1)!
z 2 j+1

= z − z 3

3!
+

z 5

5!
− z 7

7!
+ · · · .

Note that we are allowed to rearrange the terms of the two added sums because the
corresponding series have infinite radii of convergence.

Naturally, Theorem 8.2 can be repeatedly applied to f ′, then to f ′′, and so on.
The various derivatives of a power series can also be seen as ingredients of the series
itself—this is the statement of the following Taylor series expansion.1

Corollary 8.5. Suppose f (z ) =
∑

k≥0 ck (z−z0)
k has a positive radius of convergence.

Then

ck =
f (k )(z0)

k !
.

1Named after Brook Taylor (1685–1731).
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Proof. For starters, f (z0) = c0. Theorem 8.2 gives f ′(z0) = c1. Applying the same
theorem to f ′ gives

f ′′(z ) =
∑

k≥2
k (k − 1) ck (z − z0)

k−2

and so f ′′(z0) = 2 c2. A quick induction game establishes f ′′′(z0) = 6 c3, f ′′′′(z0) =
24 c4, etc.

Taylor’s formula shows that the coe�cients of any power series converging to f
on some open disk D can be determined from the function f restricted to D . It
follows immediately that the coe�cients of a power series are unique:

Corollary 8.6. If
∑

k≥0 ck (z − z0)
k and

∑

k≥0 dk (z − z0)
k are two power series that

both converge to the same function on an open disk centered at z0, then ck = dk for
all k ≥ 0.

Example 8.7. We’d like to compute a power series expansion for f (z ) = exp(z )
centered at z0 = π. Since

f (k )(z0) = exp(z )
�

�

�

�

z=π
= eπ ,

Corollary 8.5 suggests that this power series is

∑

k≥0

eπ

k !
(z − π)k ,

which converges for all z ∈C (essentially by Example 7.35).

We now turn to the second cornerstone result of this section, that a holomorphic
function can be locally represented by a power series.

Theorem 8.8. Suppose f is a function holomorphic in D[z0, R]. Then f can be
represented as a power series centered at z0, with a radius of convergence ≥ R :

f (z ) =
∑

k≥0
ck (z − z0)

k with ck =
1

2πi

∫

γ

f (w )
(w − z0)k+1

dw ,

where γ is any positively oriented, simple, closed, piecewise smooth path in D[z0, R]
for which z0 is inside γ .



150 taylor and laurent series

Proof. Let g (z ) := f (z + z0); so g is a function holomorphic in D[0, R]. Given
z ∈ D[0, R], let r := |z |+R

2 . By Cauchy’s Integral Formula (Theorem 4.27),

g (z ) =
1

2πi

∫

C [0,r ]

g (w )
w − z

dw .

The factor 1
w−z in this integral can be expanded into a geometric series (note that

w ∈ C [0, r ] and so | z
w | < 1):

1
w − z

=
1
w

1
1− z

w
=

1
w

∑

k≥0

� z
w

�k

which converges uniformly in the variable w ∈ C [0, r ] by Exercise 7.30. Hence
Proposition 7.27 applies:

g (z ) =
1

2πi

∫

C [0,r ]

g (w )
w − z

dw =
1

2πi

∫

C [0,r ]
g (w )

1
w

∑

k≥0

� z
w

�k
dw

=
∑

k≥0

�

1
2πi

∫

C [0,r ]

g (w )
w k+1

dw
�

z k .

Now, since f (z ) = g (z − z0), we apply a change of variables to obtain

f (z ) =
∑

k≥0

�

1
2πi

∫

C [z0,r ]

f (w )
(w − z0)k+1

dw
�

(z − z0)
k .

The only di�erences of this right-hand side to the statement of the theorem are the
paths we’re integrating over. However, by Cauchy’s Theorem 4.18,

∫

C [z0,r ]

f (w )
(w − z0)k+1

dw =
∫

γ

f (w )
(w − z0)k+1

dw .

We note a remarkable feature of our proof: namely, if we are given a holomorphic
function f : G →C and are interested in expanding f into a power series centered
at z0 ∈G , then we may maximize the radius of convergence R of this power series,
in the sense that its region of convergence reaches to the boundary of G . Let’s make
this precise.

Definition. For a region G ⊆ C and a point z0 ∈ G , we define the distance of z0

to ∂G , the boundary of G , as the greatest lower bound of {|z − z0| : z ∈ ∂G}; if
this set is empty, we define the distance of z0 to ∂G to be∞.
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What we have proved above, on the side, is the following.

Corollary 8.9. If f : G →C is holomorphic and z0 ∈G , then f can be expanded
into a power series centered at z0 whose radius of convergence is at least the distance
of z0 to ∂G .

Example 8.10. Consider f : C \ {±i} → C given by f (z ) := 1
z 2+1 and z0 = 0.

Corollary 8.9 says that the power series expansion of f at 0 will have radius of
convergence 1. (Actually, it says this radius is at least 1, but it cannot be larger since
±i are singularities of f .) In fact, we can use a geometric series to compute this
power series:

f (z ) =
1

z 2 + 1
=
∑

k≥0

�

−z 2�k =
∑

k≥0
(−1)k z 2k ,

with radius of convergence 1.

Corollary 8.9 is yet another example of a result that is plainly false when translated
into R; see Exercise 8.6.

Comparing the coe�cients of the power series obtained in Theorem 8.8 with
those in Corollary 8.5, we arrive at the long-promised extension of Theorems 4.27
and 5.1.

Corollary 8.11. Suppose f is holomorphic in the region G and γ is a positively
oriented, simple, closed, piecewise smooth path, such that w is inside γ and γ ∼G 0.
Then

f (k )(w ) =
k !

2πi

∫

γ

f (z )
(z −w )k+1

dz .

Corollary 8.11 combined with our often-used Proposition 4.6(d) gives an in-
equality which is often called Cauchy’s Estimate:

Corollary 8.12. Suppose f is holomorphic in D[w, R] and | f (z )| ≤ M for all
z ∈ D[w, R]. Then

�

�

� f (k )(w )
�

�

� ≤
k ! M
R k

.
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Proof. Let r < R . By Corollary 8.11 and Proposition 4.6(d),

�

�

� f (k )(w )
�

�

� =

�

�

�

�

�

k !
2πi

∫

C [w,r ]

f (z )
(z −w )k+1

dz

�

�

�

�

�

≤ k !
2π

max
z∈C [w,r ]

�

�

�

�

�

f (z )
(z −w )k+1

�

�

�

�

�

length(C [w, r ])

≤ k !
2π

M
r k+1

2π r =
k ! M

r k
.

The statement now follows since r can be chosen arbitrarily close to R .

A key aspect of this section is worth emphasizing: namely, we have developed an
alternative characterization of what it means for a function to be holomorphic. In
Chapter 2, we defined a function to be holomorphic in a region G if it is di�erentiable
at each point z0 ∈ G . We now define what it means for a function to be analytic
in G .

Definition. Let f : G → C and z0 ∈ G . If there exist R > 0 and c0, c1, c2, . . . ∈ C
such that the power series

∑

k≥0
ck (z − z0)

k

converges in D[z0, R] and agrees with f (z ) in D[z0, R], then f is analytic at z0.
We call f analytic in G if f is analytic at each point in G .

What we have proved in this section can be summed up as follows:

Theorem 8.13. For any region G , the class of all analytic functions in G coincides
with the class of all holomorphic functions in G .

While the terms holomorphic and analytic do not always mean the same thing,
in the study of complex analysis they do and are frequently used interchangeably.

8.2 Classification of Zeros and the Identity Principle

When we proved the Fundamental Theorem of Algebra (Theorem 5.11; see also
Exercise 5.11), we remarked that, if a polynomial p(z ) of degree d > 0 has a zero
at a (that is, p(a) = 0), then p(z ) has z − a as a factor. That is, we can write
p(z ) = (z − a) q (z ) where q (z ) is a polynomial of degree d − 1. We can then ask
whether q (z ) itself has a zero at a and, if so, we can factor out another (z − a).
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Continuing in this way, we see that we can factor p(z ) as

p(z ) = (z − a)m g (z )

where m is a positive integer ≤ d and g (z ) is a polynomial that does not have a zero
at a. The integer m is called the multiplicity of the zero a of p(z ). Almost exactly
the same thing happens for holomorphic functions.

Theorem 8.14 (Classification of Zeros). Suppose f : G →C is holomorphic and
f has a zero at a ∈G . Then either

(a) f is identically zero on some open disk D centered at a (that is, f (z ) = 0 for
all z ∈ D); or

(b) there exist a positive integer m and a holomorphic function g : G →C, such
that g (a) 6= 0 and

f (z ) = (z − a)m g (z ) for all z ∈G .

In this case the zero a is isolated: there is a disk D[a, r ] which contains no
other zero of f .

The integer m in the second case is uniquely determined by f and a and is called
the multiplicity of the zero at a.

Proof. By Theorem 8.8, there exists R > 0 such that we can expand

f (z ) =
∑

k≥0
ck (z − a)k for z ∈ D[a, R] ,

and c0 = f (a) = 0. There are now exactly two possibilities: either

(a) ck = 0 for all k ≥ 0; or

(b) there is some positive integer m so that ck = 0 for all k < m but cm 6= 0.

The first case gives f (z ) = 0 for all z ∈ D[a, R]. So now consider the second case.
We note that for z ∈ D[a, R],

f (z ) = cm(z − a)m + cm+1(z − a)m+1 + · · · = (z − a)m (cm + cm+1(z − a) + · · · )

= (z − a)m
∑

k≥0
ck+m (z − a)k .
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Thus we can define a function g : G →C through

g (z ) :=



















∑

k≥0
ck+m(z − a)k if z ∈ D[a, R] ,

f (z )
(z − a)m

if z ∈G \ {a} .

(According to our calculations above, the two definitions give the same value when
z ∈ D[a, R]\{a}.) The function g is holomorphic in D[a, R] by the first definition,
and g is holomorphic in G \ {a} by the second definition. Note that g (a) = cm 6= 0
and, by construction,

f (z ) = (z − a)m g (z ) for all z ∈G .

Since g (a) 6= 0 there is, by continuity, r > 0 so that g (z ) 6= 0 for all z ∈ D[a, r ], so
D[a, r ] contains no other zero of f . The integer m is unique, since it is defined in
terms of the power series expansion of f at a, which is unique by Corollary 8.6.

Theorem 8.14 gives rise to the following result, which is sometimes called the
identity principle or the uniqueness theorem.

Theorem 8.15. Suppose G is a region, f : G →C is holomorphic, and f (an) = 0
where (an) is a sequence of distinct numbers that converges in G . Then f is the
zero function on G .

Applying this theorem to the di�erence of two functions immediately gives the
following variant.

Corollary 8.16. Suppose f and g are holomorphic in a region G and f (ak ) = g (ak )
at a sequence that converges to w ∈G with ak 6= w for all k . Then f (z ) = g (z ) for
all z in G .

Proof of Theorem 8.15. Consider the following two subsets of G :

X := {a ∈G : there exists r such that f (z ) = 0 for all z ∈ D[a, r ]}

Y := {a ∈G : there exists r such that f (z ) 6= 0 for all z ∈ D[a, r ] \ {a}} .

If f (a) 6= 0 then, by continuity of f , there exists a disk centered at a in which
f is nonzero, and so a ∈ Y .



classif ication of zeros and the identity principle 155

If f (a) = 0, then Theorem 8.14 says that either a ∈ X or a is an isolated zero of
f , so a ∈ Y .

We have thus proved that G is the disjoint union of X and Y . Exercise 8.11
proves that X and Y are open, and so (because G is a region) either X or Y has to be
empty. The conditions of Theorem 8.15 say that limn→∞ an is not in Y , and thus it
has to be in X . Thus G = X and the statement of Theorem 8.15 follows.

The identity principle yields the strengthenings of Theorem 6.11 and Corol-
lary 6.12 promised in Chapter 6. We recall that that we say the function u : G →R
has a weak relative maximum w if there exists a disk D[w, r ] ⊆ G such that all
z ∈ D[w, r ] satisfy u(z ) ≤ u(w ).

Theorem 8.17 (Maximum-Modulus Theorem). Suppose f is holomorphic and
nonconstant in a region G . Then | f | does not attain a weak relative maximum in G .

There are many reformulations of this theorem, such as:

Corollary 8.18. Suppose f is holomorphic in a bounded region G and continuous
on its closure. Then

sup
z∈G
| f (z )| = max

z∈∂G
| f (z )| .

Proof. This is trivial if f is constant, so we assume f is non-constant. By the
Extreme Value Theorem A.1 there is a point z0 ∈G so that maxz∈G | f (z )| = | f (z0)|.
Clearly supz∈G | f (z )| ≤ maxz∈G | f (z )|, and this is easily seen to be an equality
using continuity at z0, since there are points of G arbitrarily close to z0. Finally,
Theorem 8.17 implies z0 6∈G , so z0 must be in ∂G .

Theorem 8.17 has other important consequences; we give two here, whose proofs
we leave for Exercises 8.12 and 8.13.

Corollary 8.19 (Minimum-Modulus Theorem). Suppose f is holomorphic and
nonconstant in a region G . Then | f | does not attain a weak relative minimum at a
point a in G unless f (a) = 0.

Corollary 8.20. If u is harmonic and nonconstant in a region G , then it does not
have a weak relative maximum or minimum in G .

Note that Equation (6.1) in Chapter 6 follows from Corollary 8.20 using essen-
tially the same argument as in the proof of Corollary 8.18.
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Proof of Theorem 8.17. Suppose there exist a ∈ G and R > 0 such that | f (a)| ≥
| f (z )| for all z ∈ D[a, R]. We will show that then f is constant.

If f (a) = 0 then f (z ) = 0 for all z ∈ D[a, R], so f is identically zero by
Theorem 8.15.

Now assume f (a) 6= 0, which allows us to define the holomorphic function
g : G →C via g (z ) := f (z )

f (a) . This function satisfies

| g (z )| ≤ | g (a)| = 1 for all z ∈ D[a, R] ,

Also g (a) = 1, so, by continuity of g , we can find r ≤ R such that Re( g (z )) > 0
for z ∈ D[a, r ]. This allows us, in turn, to define the holomorphic function
h : D[a, r ]→C through h(z ) := Log( g (z )), which satisfies

h(a) = Log( g (a)) = Log(1) = 0

and
Re(h(z )) = Re(Log( g (z ))) = ln(| g (z )|) ≤ ln(1) = 0 .

Exercise 8.35 now implies that h must be identically zero in D[a, r ]. Hence g (z ) =
exp(h(z )) must be equal to exp(0) = 1 for all z ∈ D[a, r ], and so f (z ) = f (a) g (z )
must have the constant value f (a) for all z ∈ D[a, r ]. Corollary 8.16 then implies
that f is constant in G .

8.3 Laurent Series

Theorem 8.8 gives a powerful way of describing holomorphic functions. It is,
however, not as general as it could be. It is natural, for example, to think about
representing exp( 1z ) as

exp
� 1

z

�

=
∑

k≥0

1
k !

� 1
z

�k
=
∑

k≥0

1
k !

z−k ,

a “power series” with negative exponents. To make sense of expressions like the
above, we introduce the concept of a double series

∑

k∈Z
ak :=

∑

k≥0
ak +

∑

k≥1
a−k .
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Here ak ∈C are terms indexed by the integers. The double series above converges
if and only if the two series on the right-hand side do. Absolute and uniform
convergence are defined analogously. Equipped with this, we can now introduce the
following central concept.

Definition. A Laurent2 series centered at z0 is a double series of the form

∑

k∈Z
ck (z − z0)

k .

Example 8.21. The series that started this section is the Laurent series of exp( 1z )
centered at 0.

Example 8.22. Any power series is a Laurent series (with ck = 0 for k < 0).

We should pause for a minute and ask for which z a general Laurent series can
possibly converge. By definition

∑

k∈Z
ck (z − z0)

k =
∑

k≥0
ck (z − z0)

k +
∑

k≥1
c−k (z − z0)

−k .

The first series on the right-hand side is a power series with some radius of conver-
gence R2, that is, with Theorem 7.31, it converges in {z ∈C : |z − z0| < R2}, and
the convergence is uniform in {z ∈C : |z − z0| ≤ r2}, for any fixed r2 < R2. For the
second series, we invite you (in Exercise 8.30) to revise our proof of Theorem 7.31
to show that this series converges for

1
|z − z0|

<
1
R1

for some R1, and that the convergence is uniform in {z ∈C : |z − z0| ≥ r1}, for any
fixed r1 > R1. Thus the Laurent series converges in the annulus

A := {z ∈C : R1 < |z − z0| < R2}

(assuming this set is not empty, i.e., R1 < R2), and the convergence is uniform on
any set of the form

{z ∈C : r1 ≤ |z − z0| ≤ r2} for R1 < r1 < r2 < R2 .

2After Pierre Alphonse Laurent (1813–1854).
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Example 8.23. We’d like to compute the start of a Laurent series for 1
sin(z ) centered

at z0 = 0. We start by considering the function g : D[0,π]→C defined by

g (z ) :=







1
sin(z ) −

1
z if z 6= 0 ,

0 if z = 0 .

A quick application of L’Hôspital’s Rule (A.11) shows that g is continuous (see
Exercise 8.31). Even better, another round of L’Hôspital’s Rule proves that

lim
z→0

1
sin(z ) −

1
z

z
=

1
6

.

But this means that

g ′(z ) =







− cos(z )
sin2(z ) +

1
z 2 if z 6= 0 ,

1
6 if z = 0 ,

in particular, g is holomorphic in D[0,π].3 By Theorem 8.8, g has a power series
expansion at 0, which we may compute using Corollary 8.5. It starts with

g (z ) =
1
6

z +
7

360
z 3 +

31
15120

z 5 + · · ·

and it converges, by Corollary 8.9, for |z | < π. But this gives our sought-after
Laurent series

1
sin(z )

= z−1 +
1
6

z +
7

360
z 3 +

31
15120

z 5 + · · ·

which converges for 0 < |z | < π.

Theorem 8.1 implies that a Laurent series represents a function that is holomor-
phic in its annulus of convergence. The fact that we can conversely represent any
function holomorphic in such an annulus by a Laurent series is the substance of the
next result.

3This is a (simple) example of analytic continuation: the function g is holomorphic in D[0,π] and
agrees with 1

sin(z ) −
1
z in D[0,π] \ {0}, the domain in which the latter function is holomorphic. When

we said, in the footnote on p. 130, that the Riemann zeta function ζ (z ) =
∑

k≥1
1

k z can be extended to a
function that is holomorphic on C \ {1}, we were also talking about analytic continuation.
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Theorem 8.24. Suppose f is a function that is holomorphic in

A := {z ∈C : R1 < |z − z0| < R2} .

Then f can be represented in A as a Laurent series centered at z0,

f (z ) =
∑

k∈Z
ck (z − z0)

k with ck =
1

2πi

∫

C [z0,r ]

f (w )
(w − z0)k+1

dw ,

where R1 < r < R2.

By Cauchy’s Theorem 4.18 we can replace the circle C [z0, r ] in the formula for
the Laurent coe�cients by any path γ ∼A C [z0, r ].

γ1

γ2

Figure 8.1: The path γ in our proof of Theorem 8.24.

Proof. Let g (z ) = f (z + z0); so g is a function holomorphic in

{z ∈C : R1 < |z | < R2} .

Fix R1 < r1 < |z | < r2 < R2, and let γ be the path in Figure 8.1, where γ1 := C [0, r1]
and γ2 := C [0, r2]. By Cauchy’s Integral Formula (Theorem 4.27),

g (z ) =
1

2πi

∫

γ

g (w )
w − z

dw =
1

2πi

∫

γ2

g (w )
w − z

dw − 1
2πi

∫

γ1

g (w )
w − z

dw . (8.1)
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For the integral over γ2 we play exactly the same game as in our proof of Theorem 8.8.
The factor 1

w−z in this integral can be expanded into a geometric series (note that
w ∈ γ2 and so | z

w | < 1)

1
w − z

=
1
w

1
1− z

w
=

1
w

∑

k≥0

� z
w

�k
,

which converges uniformly in the variable w ∈ γ2 by Exercise 7.30. Hence Proposi-
tion 7.27 applies:

∫

γ2

g (w )
w − z

dw =
∫

γ2

g (w )
1
w

∑

k≥0

� z
w

�k
dw =

∑

k≥0

�

∫

γ2

g (w )
w k+1

dw
�

z k .

The integral over γ1 is computed in a similar fashion; now we expand the factor 1
w−z

into the following geometric series (note that w ∈ γ1 and so |wz | < 1)

1
w − z

= − 1
z

1
1− w

z
= − 1

z

∑

k≥0

�w
z

�k
,

which converges uniformly in the variable w ∈ γ1. Again Proposition 7.27 applies:

∫

γ1

g (w )
w − z

dw = −
∫

γ1

g (w )
1
z

∑

k≥0

�w
z

�k
dw = −

∑

k≥0

�

∫

γ1

g (w )w k dw
�

z−k−1

= −
∑

k≤−1

�

∫

γ1

g (w )
w k+1

dw
�

z k .

Putting everything back into (8.1) gives

g (z ) =
1

2πi

�

∑

k≥0

�

∫

γ2

g (w )
w k+1

dw
�

z k +
∑

k≤−1

�

∫

γ1

g (w )
w k+1

dw
�

z k
�

.

By Cauchy’s Theorem 4.18, we can now change both γ1 and γ2 to C [0, r ], as long
as R1 < r < R2, which finally gives

g (z ) =
1

2πi

∑

k∈Z

�
∫

C [0,r ]

g (w )
w k+1

dw
�

z k .

The statement follows now with f (z ) = g (z − z0) and a change of variables in the
integral.
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This theorem, naturally, has several corollaries that have analogues in the world
of Taylor series. Here are two samples:

Corollary 8.25. If
∑

k∈Z ck (z − z0)
k and

∑

k∈Z dk (z − z0)
k are two Laurent series

that both converge, for R1 < |z − z0| < R2, to the same function, then ck = dk for
all k ∈ Z.

Corollary 8.26. If G is a region, z0 ∈ G , and f is holomorphic in G \ {z0},
then f can be expanded into a Laurent series centered at z0 that converges for
0 < |z − z0| < R where R is at least the distance of z0 to ∂G .

Finally, we come to the analogue of Corollary 7.37 for Laurent series. We could
revisit its proof, but the statement that would follow is actually the special case
k = −1 of Theorem 8.24, read from right to left:

Corollary 8.27. Suppose f is a function that is holomorphic in

A := {z ∈C : R1 < |z − z0| < R2} ,

with Laurent series
f (z ) =

∑

k∈Z
ck (z − z0)

k .

If γ is any simple, closed, piecewise smooth path in A, such that z0 is inside γ , then

∫

γ
f (z ) dz = 2πi c−1 .

This result is profound: it says that we can integrate (at least over closed curves)
by computing Laurent series —in fact, we “only” need to compute one coe�cient of a
Laurent series. We will have more to say about this in the next chapter; for now, we
give just one application, which might have been bugging you since the beginning
of Chapter 7.

Example 8.28. We will (finally!) compute (7.1), the integral
∫

C [2,3]
exp(z )
sin(z ) dz . Our

plan is to split up the integration path C [2, 3] as in Figure 7.1, which gives, say,

∫

C [2,3]

exp(z )
sin(z )

dz =
∫

C [0,1]

exp(z )
sin(z )

dz +
∫

C [π,1]

exp(z )
sin(z )

dz .

To compute the two integrals on the right-hand side, we can use Corollary 8.27, for
which we need the Laurent expansions of exp(z )

sin(z ) centered at 0 and π.
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By Examples 8.3 and 8.23,

exp(z )
sin(z )

=
�

1+ z +
1
2

z 2 +
1
6

z 3 + · · ·
��

z−1 +
1
6

z +
7

360
z 3 +

31
15120

z 5 + · · ·
�

= z−1 + 1+
2
3

z + · · ·

and Corollary 8.27 gives
∫

C [0,1]
exp(z )
sin(z ) dz = 2πi .

For the integral around π, we use the fact that sin(z ) = sin(π − z ), and so we
can compute the Laurent expansion of 1

sin(z ) at π also via Example 8.23:

1
sin(z )

= − 1
sin(z − π)

= −(z − π)−1 − 1
6
(z − π)− 7

360
(z − π)3 − · · ·

Adding Example 8.7 to the mix yields

exp(z )
sin(z )

=
�

eπ + eπ(z − π) +
eπ

2
(z − π)2 + · · ·

��

−(z − π)−1 − 1
6
(z − π)− · · ·

�

= − eπ(z − π)−1 − eπ − 2
3

eπ(z − π) + · · ·

and now Corollary 8.27 gives
∫

C [π,1]
exp(z )
sin(z ) dz = −2πi eπ . Putting it all together

yields the integral we’ve been after for two chapters:

∫

C [2,3]

exp(z )
sin(z )

dz = 2πi (1− eπ) .

Exercises

8.1. For each of the following series, determine where the series converges absolutely
and where it converges uniformly:

(a)
∑

k≥0

1
(2k + 1)!

z 2k+1
(b)

∑

k≥0

� 1
z − 3

�k

8.2. What functions are represented by the series in the previous exercise?
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8.3. Find the power series centered at π for sin(z ).

8.4. Re-prove Proposition 3.16 using the power series of exp(z ) centered at 0.

8.5. Find the terms through third order and the radius of convergence of the power
series for each of the following functions, centered at z0. (Do not find the general
form for the coe�cients.)

(a) f (z ) =
1

1+ z 2
, z0 = 1

(b) f (z ) =
1

exp(z ) + 1
, z0 = 0

(c) f (z ) = (1+ z ) 1
2 , z0 = 0

(d) f (z ) = exp(z 2), z0 = i

8.6. Consider f :R→R given by f (x ) := 1
x 2+1 , the real version of our function in

Example 8.10, to show that Corollary 8.9 has no analogue in R.4

8.7. Prove the following generalization of Theorem 8.1: Suppose ( fn) is a sequence
of functions that are holomorphic in a region G , and ( fn) converges uniformly to f
on G . Then f is holomorphic in G . (This result is called the Weierstraß convergence
theorem.)

8.8. Use the previous exercise and Corollary 8.12 to prove the following: Suppose
( fn) is a sequence of functions that are holomorphic in a region G and that ( fn)
converges uniformly to f on G . Then for any k ∈N, the sequence of k th derivatives
�

f (k )n

�

converges (pointwise) to f (k ).

8.9. Suppose |ck | ≥ 2k for all k . What can you say about the radius of convergence
of
∑

k≥0 ck z k ?

8.10. Suppose the radius of convergence of
∑

k≥0 ck z k is R . What is the radius of
convergence of each of the following?

(a)
∑

k≥0
ck z 2k (b)

∑

k≥0
3k ck z k (c)

∑

k≥0
ck z k+5 (d)

∑

k≥0
k2ck z k

4Incidentally, the same example shows, once more, that Liouville’s theorem (Corollary 5.13) has no
analogue in R.
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8.11. Suppose G is a region and f : G →C is holomorphic. Prove that the sets

X = {a ∈G : there exists r such that f (z ) = 0 for all z ∈ D[a, r ]}

Y = {a ∈G : there exists r such that f (z ) 6= 0 for all z ∈ D[a, r ] \ {a}} .

in our proof of Theorem 8.15 are open.

8.12. Prove the Minimum-Modulus Theorem (Corollary 8.19): Suppose f is holo-
morphic and nonconstant in a region G . Then | f | does not attain a weak relative
minimum at a point a in G unless f (a) = 0.

8.13. Prove Corollary 8.20: Assume that u is harmonic in a region G and has a
weak local maximum at a ∈G .

(a) If G is simply connected then apply Theorem 8.17 to exp(u(z ) + i v (z ))),
where v is a harmonic conjugate of u. Conclude that u is constant on G .

(b) If G is not simply connected, then the above argument applies to u on any
disk D[a, R] ⊂G . Conclude that the partials ux and uy are zero on G , and
adapt the argument of Theorem 2.17 to show that u is constant.

8.14. Let f :C→C be given by f (z ) = z 2 − 2. Find the maximum and minimum
of | f (z )| on the closed unit disk.

8.15. Give another proof of the Fundamental Theorem of Algebra (Theorem 5.11),
using the Minimum-Modulus Theorem (Corollary 8.19). (Hint: Use Proposi-
tion 5.10 to show that a polynomial does not achieve its minimum modulus on a
large circle; then use the Minimum-Modulus Theorem to deduce that the polynomial
has a zero.)

8.16. Give another proof of (a variant of ) the Maximum-Modulus Theorem 8.17
via Corollary 8.11, as follows: Suppose f is holomorphic in a region containing
D[a, r ], and | f (z )| ≤M for z ∈ C [a, r ]. Given a point z0 ∈ D[a, r ], show (e.g.,
by Corollary 8.11) that there is a constant c ∈C such that

�

�

� f (z0)
k
�

�

� ≤ c M k .

Conclude that | f (z0)| ≤M .
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8.17. Find a Laurent series for

1
(z − 1)(z + 1)

centered at z = 1 and specify the region in which it converges.

8.18. Find a Laurent series for
1

z (z − 2)2

centered at z = 2 and specify the region in which it converges.

8.19. Find a Laurent series for
z − 2
z + 1

centered at z = −1 and the region in which it
converges.

8.20. Find the terms cn z n in the Laurent series for
1

sin2(z )
centered at z = 0, for

−4 ≤ n ≤ 4.

8.21. Find the first four nonzero terms in the power series expansion of tan(z )
centered at the origin. What is the radius of convergence?

8.22.

(a) Find the power series representation for exp(az ) centered at 0, where a ∈C is
any constant.

(b) Show that

exp(z ) cos(z ) =
1
2
(exp((1+ i )z ) + exp((1− i )z )) .

(c) Find the power series expansion for exp(z ) cos(z ) centered at 0.

8.23. Show that
z − 1
z − 2

=
∑

k≥0

1
(z − 1)k

for |z − 1| > 1.
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8.24. Prove: If f is entire and Im( f ) is constant on the closed unit disk then f is
constant.

8.25.

(a) Find the Laurent series for cos z
z 2 centered at z = 0.

(b) Prove that f :C→C is entire, where

f (z ) =
¨

cos z−1
z 2 if z 6= 0 ,
− 1

2 if z = 0

8.26. Find the Laurent series for sec(z ) centered at the origin.

8.27. Suppose that f is holomorphic at z0, f (z0) = 0, and f ′(z0) 6= 0. Show that f
has a zero of multiplicity 1 at z0.

8.28. Find the multiplicities of the zeros of each of the following functions:

(a) f (z ) = exp(z )− 1, z0 = 2kπi , where k is any integer.

(b) f (z ) = sin(z )− tan(z ), z0 = 0.

(c) f (z ) = cos(z )− 1+ 1
2 sin2(z ), z0 = 0.

8.29. Find the zeros of the following functions and determine their multiplicities:

(a) (1+ z 2)4

(b) sin2(z )

(c) 1+ exp(z )

(d) z 3 cos(z )

8.30. Prove that the series of the negative-index terms of a Laurent series

∑

k≥1
c−k (z − z0)

−k

converges for
1

|z − z0|
<

1
R1

for some R1, and that the convergence is uniform in {z ∈C : |z − z0| ≥ r1}, for any
fixed r1 > R1.
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8.31. Show that

lim
z→0

�

1
sin(z )

− 1
z

�

= 0 and lim
z→0

1
sin(z ) −

1
z

z
=

1
6

.

(These are the limits we referred to in Example 8.23.)

8.32. Find the three Laurent series of

f (z ) =
3

(1− z )(z + 2)
,

centered at 0, defined on the three regions |z | < 1, 1 < |z | < 2, and 2 < |z |,
respectively. (Hint: Use a partial fraction decomposition.)

8.33. Suppose that f (z ) has exactly one zero, at a, inside the circle γ , and that it
has multiplicity 1. Show that

a =
1

2πi

∫

γ

z f ′(z )
f (z )

dz .

8.34. Recall that a function f : G →C is even if f (−z ) = f (z ) for all z ∈G , and
f is odd if f (−z ) = − f (z ) for all z ∈G . Prove that, if f is even (resp., odd), then
the Laurent series of f at 0 has only even (resp., odd) powers.

8.35. Suppose f is holomorphic and not identically zero on an open disk D centered
at a, and suppose f (a) = 0. Use the following outline to show that Re f (z ) > 0 for
some z in D .

(a) Why can you write f (z ) = (z − a)m g (z ) where m > 0, g is holomorphic,
and g (a) 6= 0?

(b) Write g (a) in polar coordinates as c e iα and define G (z ) = e−iα g (z ). Why is
Re G (a) > 0?

(c) Why is there a positive constant δ so that Re G (z ) > 0 for all z ∈ D[a,δ]?

(d) Write z = a + r e iθ for 0 < r < δ. Show that f (z ) = r m e i mθ e iαG (z ).

(e) Find a value of θ so that f (z ) has positive real part.
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8.36.

(a) Find a Laurent series for
1

(z 2 − 4)(z − 2)

centered at z = 2 and specify the region in which it converges.

(b) Compute
∫

C [2,1]

dz
(z 2 − 4)(z − 2)

.

8.37.

(a) Find the power series of exp(z ) centered at z = −1.

(b) Compute
∫

C [−2,2]

exp(z )
(z + 1)34

dz .

8.38. Compute
∫

γ

exp(z )
sin(z )

dz where γ is a closed curve not passing through integer

multiples of π.



Chapter 9

Isolated Singularities and the
Residue Theorem

1
r 2 has a nasty singularity at r = 0, but it did not bother Newton—the moon is
far enough.
Edward Witten

We return one last time to the starting point of Chapters 7 and 8: the quest for

∫

C [2,3]

exp(z )
sin(z )

dz .

We computed this integral in Example 8.28 crawling on hands and knees (but we
finally computed it!), by considering various Taylor and Laurent expansions of exp(z )
and 1

sin(z ) . In this chapter, we develop a calculus for similar integral computations.

9.1 Classification of Singularities

What are the di�erences among the functions exp(z )−1
z , 1

z 4 , and exp( 1z ) at z = 0?
None of them are defined at 0, but each singularity is of a di�erent nature. We will
frequently consider functions in this chapter that are holomorphic in a disk except
at its center (usually because that’s where a singularity lies), and it will be handy to
define the punctured disk with center z0 and radius R ,

·D[z0, R] := {z ∈C : 0 < |z − z0| < R} = D[z0, R] \ {z0} .

We extend this definition naturally with ·D[z0,∞] :=C\{z0}. For complex functions
there are three types of singularities, which are classified as follows.
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Definition. If f is holomorphic in the punctured disk ·D[z0, R] for some R > 0 but
not at z = z0, then z0 is an isolated singularity of f . The singularity z0 is called

(a) removable if there exists a function g holomorphic in D[z0, R] such that
f = g in ·D[z0, R],

(b) a pole if lim
z→z0

| f (z )| =∞,

(c) essential if z0 is neither removable nor a pole.

Example 9.1. Let f :C \ {0}→C be given by f (z ) = exp(z )−1
z . Since

exp(z )− 1 =
∑

k≥1

1
k !

z k ,

the function g :C→C defined by

g (z ) :=
∑

k≥0

1
(k + 1)!

z k ,

which is entire (because this power series converges in C), agrees with f in C \ {0}.
Thus f has a removable singularity at 0.

Example 9.2. In Example 8.23, we showed that f : C \ { jπ : j ∈ Z} → C
given by f (z ) = 1

sin(z ) −
1
z has a removable singularity at 0, because we proved that

g : D[0,π]→C defined by

g (z ) =







1
sin(z ) −

1
z if z 6= 0 ,

0 if z = 0 .

is holomorphic in D[0,π] and agrees with f on ·D[0,π].

Example 9.3. The function f :C \ {0}→C given by f (z ) = 1
z 4 has a pole at 0, as

lim
z→0

�

�

�

�

1
z 4

�

�

�

�

= ∞ .

Example 9.4. The function f :C\{0}→C given by f (z ) = exp( 1z ) has an essential
singularity at 0: the two limits

lim
x→0+

exp
� 1

x

�

= ∞ and lim
x→0−

exp
� 1

x

�

= 0
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show that f has neither a removable singularity nor a pole.

To get a feel for the di�erent types of singularities, we start with the following
criteria.

Proposition 9.5. Suppose z0 is an isolated singularity of f . Then

(a) z0 is removable if and only if limz→z0
(z − z0) f (z ) = 0;

(b) z0 is a pole if and only if it is not removable and limz→z0
(z − z0)

n+1 f (z ) = 0
for some positive integer n.

Proof. (a) Suppose that z0 is a removable singularity of f , so there exists a holomor-
phic function h on D[z0, R] such that f (z ) = h(z ) for all z ∈ ·D[z0, R]. But then
h is continuous at z0, and so

lim
z→z0

(z − z0) f (z ) = lim
z→z0

(z − z0) h(z ) = h(z0) lim
z→z0

(z − z0) = 0 .

Conversely, suppose that limz→z0
(z − z0) f (z ) = 0 and f is holomorphic in

·D[z0, R]. We define the function g : D[z0, R]→C by

g (z ) :=







(z − z0)
2 f (z ) if z 6= z0 ,

0 if z = z0 .

Then g is holomorphic in ·D[z0, R] and

g ′(z0) = lim
z→z0

g (z )− g (z0)
z − z0

= lim
z→z0

(z − z0)
2 f (z )

z − z0
= lim

z→z0

(z − z0) f (z ) = 0 ,

so g is holomorphic in D[z0, R]. We can thus expand g into a power series

g (z ) =
∑

k≥0
ck (z − z0)

k

whose first two terms are zero: c0 = g (z0) = 0 and c1 = g ′(z0) = 0. But then we can
write

g (z ) = (z − z0)
2∑

k≥0
ck+2 (z − z0)

k

and so
f (z ) =

∑

k≥0
ck+2 (z − z0)

k for all z ∈ ·D[z0, R] .
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But this power series is holomorphic in D[z0, R], so z0 is a removable singularity.

(b) Suppose that z0 is a pole of f . Since f (z )→∞ as z → z0 we may assume
that R is small enough that f (z ) 6= 0 for z ∈ ·D[z0, R]. Then 1

f is holomorphic in
·D[z0, R] and

lim
z→z0

1
f (z )

= 0 ,

so part (a) implies that 1
f has a removable singularity at z0. More precisely, the

function g : D[z0, R]→C defined by

g (z ) :=







1
f (z ) if z ∈ ·D[z0, R] ,

0 if z = z0 ,

is holomorphic. By Theorem 8.14, there exist a positive integer n and a holomorphic
function h on D[z0, R] such that h(z0) 6= 0 and g (z ) = (z − z0)

n h(z ) . Actually,
h(z ) 6= 0 for all z ∈ D[z0, R] since g (z ) 6= 0 for all z ∈ ·D[z0, R]. Thus

lim
z→z0

(z − z0)
n+1 f (z ) = lim

z→z0

(z − z0)
n+1

g (z )

= lim
z→z0

z − z0

h(z )
=

1
h(z0)

lim
z→z0

(z − z0) = 0 .

Note that 1
h is holomorphic and non-zero on D[z0, R], n > 0, and

f (z ) =
1

g (z )
=

1
(z − z0)n

· 1
h(z )

for all z ∈ ·D[z0, R] .

Conversely, suppose z0 is not a removable singularity and

lim
z→z0

(z − z0)
n+1 f (z ) = 0

for some non-negative integer n. We choose the smallest such n. By part (a),
h(z ) := (z − z0)

n f (z ) has a removable singularity at z0, so there is a holomorphic
function g on D[z0, R] that agrees with h on ·D[z0, R]. Now if n = 0 this just says
that f has a removable singularity at z0, which we have excluded. Hence n > 0.
Since n was chosen as small as possible and n−1 is a non-negative integer less than n,
we must have g (z0) = limz→z0

(z − z0)
n f (z ) 6= 0. Summarizing, g is holomorphic
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on D[z0, R] and non-zero at z0, n > 0, and

f (z ) =
g (z )
(z − z0)n

for all z ∈ ·D[z0, R] .

But then z0 is a pole of f , since

lim
z→z0

| f (z )| = lim
z→z0

�

�

�

�

�

h(z )
(z − z0)n

�

�

�

�

�

= lim
z→z0

�

�

�

�

�

g (z )
(z − z0)n

�

�

�

�

�

= | g (z0)| lim
z→z0

1
|z − z0|n

= ∞ .

We underline one feature of the last part of our proof:

Corollary 9.6. Suppose f is holomorphic in ·D[z0, R]. Then f has a pole at z0 if and
only if there exist a positive integer m and a holomorphic function g : D[z0, R]→C,
such that g (z0) 6= 0 and

f (z ) =
g (z )

(z − z0)m
for all z ∈ ·D[z0, R] .

If z0 is a pole then m is unique.

Proof. The only part not covered in the proof of Theorem 9.5 is uniqueness of
m. Suppose f (z ) = (z − z0)

−m1 g1(z ) and f (z ) = (z − z0)
−m2 g2(z ) both work,

with m2 > m1. Then g2(z ) = (z − z0)
m2−m1 g1(z ), and plugging in z = z0 yields

g2(z0) = 0, violating g2(z0) 6= 0.

Definition. The integer m in Corollary 9.6 is the order of the pole z0.

This definition, naturally coming out of Corollary 9.6, parallels that of the
multiplicity of a zero, which naturally came out of Theorem 8.14. The two results
also show that f has a zero at z0 of multiplicity m if and only if 1

f has a pole of
order m. We will make use of the notions of zeros and poles quite extensively in this
chapter.

You might have noticed that the Proposition 9.5 did not include any result on
essential singularities. Not only does the next theorem make up for this but it also
nicely illustrates the strangeness of essential singularities. To appreciate the following
result, we suggest meditating about its statement over a good cup of co�ee.



174 isolated singularities and the residue theorem

Theorem 9.7 (Casorati1 –Weierstraß). If z0 is an essential singularity of f and r
is any positive real number, then every w ∈ C is arbitrarily close to a point in
f ( ·D[z0, r ]). That is, for any w ∈ C and any ε > 0 there exists z ∈ ·D[z0, r ] such
that |w − f (z )| < ε.

In the language of topology, Theorem 9.7 says that the image of any punctured
disk centered at an essential singularity is dense in C.

There is a stronger theorem, beyond the scope of this book, which implies the
Casorati–Weierstraß Theorem 9.7. It is due to Charles Emile Picard (1856–1941)
and says that the image of any punctured disk centered at an essential singularity
misses at most one point of C. (It is worth coming up with examples of functions
that do not miss any point in C and functions that miss exactly one point. Try it!)

Proof. Suppose (by way of contradiction) that there exist w ∈C and ε > 0 such that
for all z ∈ ·D[z0, r ]

|w − f (z )| ≥ ε .

Then the function g (z ) := 1
f (z )−w stays bounded as z → z0, and so

lim
z→z0

z − z0

f (z )−w
= lim

z→z0

(z − z0) g (z ) = 0 .

(Proposition 9.5(a) tells us that g has a removable singularity at z0.) Hence

lim
z→z0

�

�

�

�

�

f (z )−w
z − z0

�

�

�

�

�

= ∞

and so the function f (z )−w
z−z0

has a pole at z0. By Proposition 9.5(b), there is a positive
integer n so that

lim
z→z0

(z − z0)
n+1 f (z )−w

z − z0
= lim

z→z0

(z − z0)
n ( f (z )−w ) = 0 .

Invoking Proposition 9.5 again, we conclude that the function f (z )−w has a pole or
removable singularity at z0, which implies the same holds for f (z ), a contradiction.

1Felice Casorati (1835–1890).
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The following classifies singularities according to their Laurent series, and is very
often useful in calculations.

Proposition 9.8. Suppose z0 is an isolated singularity of f with Laurent series

f (z ) =
∑

k∈Z
ck (z − z0)

k ,

valid in some punctured disk centered at z0. Then

(a) z0 is removable if and only if there are no negative exponents (that is, the
Laurent series is a power series);

(b) z0 is a pole if and only if there are finitely many negative exponents, and the
order of the pole is the largest k such that c−k 6= 0;

(c) z0 is essential if and only if there are infinitely many negative exponents.

Proof. (a) Suppose z0 is removable. Then there exists a holomorphic function
g : D[z0, R]→C that agrees with f on ·D[z0, R], for some R > 0. By Theorem 8.8,
g has a power series expansion centered at z0, which coincides with the Laurent
series of f at z0, by Corollary 8.25.

Conversely, if the Laurent series of f at z0 has only nonnegative powers, we can
use it to define a function that is holomorphic at z0.

(b) Suppose z0 is a pole of order n. Then, by Corollary 9.6, f (z ) = (z−z0)
−n g (z ) on

some punctured disk ·D[z0, R], where g is holomorphic on D[z0, R] and g (z0) 6= 0.
Thus g (z ) =

∑

k≥0 ck (z − z0)
k in D[z0, R] with c0 6= 0, so

f (z ) = (z − z0)
−n ∑

k≥0
ck (z − z0)

k =
∑

k≥−n
ck+n(z − z0)

k ,

and this is the Laurent series of f , by Corollary 8.25.
Conversely, suppose that

f (z ) =
∑

k≥−n
ck (z − z0)

k = (z − z0)
−n ∑

k≥−n
ck (z − z0)

k+n

= (z − z0)
−n ∑

k≥0
ck−n(z − z0)

k ,

where c−n 6= 0. Define g (z ) :=
∑

k≥0 ck−n(z − z0)
k . Then g is holomorphic at z0

and g (z0) = c−n 6= 0 so, by Corollary 9.6, f has a pole of order n at z0.
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(c) follows by definition: an essential singularity is neither removable nor a pole.

Example 9.9. The order of the pole at 0 of f (z ) = sin(z )
z 3 is 2 because (by Example 8.4)

f (z ) =
sin(z )

z 3
=

z − z 3

3! +
z 5

5! − · · ·
z 3

=
1
z 2
− 1

3!
+

z 2

5!
− · · ·

and the smallest power of z with nonzero coe�cient in this series is −2.

9.2 Residues

We now pick up the thread from Corollary 8.27 and apply it to the Laurent series

f (z ) =
∑

k∈Z
ck (z − z0)

k

at an isolated singularity z0 of f . It says that if γ is any positively oriented, simple,
closed, piecewise smooth path in the punctured disk of convergence of this Laurent
series, and z0 is inside γ , then

∫

γ
f (z ) dz = 2πi c−1 .

Definition. Suppose z0 is an isolated singularity of f with Laurent series

∑

k∈Z
ck (z − z0)

k .

Then c−1 is the residue of f at z0, denoted by Resz=z0
( f (z )) or Res( f (z ), z = z0).

Corollary 8.27 suggests that we can compute integrals over closed curves by
finding the residues at isolated singularities, and our next theorem makes this precise.

Theorem 9.10 (Residue Theorem). Suppose f is holomorphic in the region G , ex-
cept for isolated singularities, and γ is a positively oriented, simple, closed, piecewise
smooth path that avoids the singularities of f , and γ ∼G 0. Then there are only
finitely many singularities inside γ , and

∫

γ
f = 2πi

∑

k
Res
z=zk

( f (z ))

where the sum is taken over all singularities zk inside γ .
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γ

Figure 9.1: Proof of Theorem 9.10.

Proof. First, let S be the set of singularities inside γ . S is closed (since the set of
points in G where f is holomorphic is open) and bounded (since the inside of
γ is bounded), and the points of S are isolated in S (by Theorem 8.14(b)). An
application of Exercise 9.23 shows that S is finite.

Now we follow the approach started in Figure 7.1: as with that integration path,
we “subdivide” γ so that we can replace it by closed curves around the singularities
inside γ . These curves, in turn, can then be transformed to circles around the
singularities, as suggested by Figure 9.1. By Cauchy’s Theorem 4.18,

∫

γ f equals
the sum of the integrals of f over these circles. Now use Corollary 8.27.

Computing integrals is as easy (or hard!) as computing residues. The following
two propositions start the range of tricks you may use when computing residues.

Proposition 9.11. (a) If z0 is a removable singularity of f then Res
z=z0

( f (z )) = 0 .

(b) If z0 is a pole of f of order n then

Res
z=z0

( f (z )) =
1

(n − 1)!
lim
z→z0

d n−1

dz n−1

�

(z − z0)
n f (z )

�

.

Proof. (a) follows from Proposition 9.8(a).
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(b) We know by Proposition 9.8(b) that the Laurent series at z0 looks like

f (z ) =
∑

k≥−n
ck (z − z0)

k .

But then
(z − z0)

n f (z ) =
∑

k≥−n
ck (z − z0)

k+n

is a power series, and we can use Taylor’s formula (Corollary 8.5) to compute c−1.

It is worth noting that we are really coming full circle here: compare this propo-
sition to Cauchy’s Integral Formulas (Theorems 4.27 & 5.1 and Corollary 8.11).

Example 9.12. The integrand exp(z )
sin(z ) in Example 8.28 has poles of order 1 at 0 and

π. We thus compute

Res
z=0

�

exp(z )
sin(z )

�

= lim
z→0

�

z
exp(z )
sin(z )

�

= exp(0) lim
z→0

z
sin(z )

= 1

and

Res
z=π

�

exp(z )
sin(z )

�

= lim
z→π

�

(z − π)
exp(z )
sin(z )

�

= exp(π) lim
z→π

z − π
sin(z )

= −eπ ,

confirming our computations in Example 8.28.

Example 9.13. Revisiting Example 9.9, the function f (z ) = sin(z )
z 3 has a double pole

at 0 with

Res
z=0

�

sin(z )
z 3

�

= lim
z→0

d
dz

�

z 2 sin(z )
z 3

�

= lim
z→0

�

z cos(z )− sin(z )
z 2

�

= 0 ,

after a few iterations of L’Hôspital’s Rule. (In this case, it is simpler to read the
residue o� the Laurent series in Example 9.9.)

Proposition 9.14. Suppose f and g are holomorphic at z0, which is a simple zero
of g (i.e., a zero of multiplicity 1). Then

Res
z=z0

�

f (z )
g (z )

�

=
f (z0)
g ′(z0)

.
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Proof. The functions f and g have power series centered at z0; the one for g has
by assumption no constant term:

f (z ) =
∑

k≥0
ak (z − z0)

k

g (z ) =
∑

k≥1
bk (z − z0)

k = (z − z0)
∑

k≥1
bk (z − z0)

k−1.

Let h(z ) :=
∑

k≥1
bk (z − z0)

k−1 and note that h(z0) = b1 6= 0. Hence

f (z )
g (z )

=
f (z )

(z − z0) h(z )
,

and the function f
h is holomorphic at z0. By Prop 9.11 and Taylor’s formula

(Corollary 8.5),

Res
z=z0

�

f (z )
g (z )

�

= lim
z→z0

�

(z − z0)
f (z )

(z − z0)h(z )

�

=
f (z0)
h(z0)

=
a0

b1
=

f (z0)
g ′(z0)

.

Example 9.15. Revisiting once more Example 8.28, we note that f (z ) = exp(z )
and g (z ) = sin(z ) fit the bill. Thus

Res
z=0

�

exp(z )
sin(z )

�

=
exp(0)
cos(0)

= 1

and
Res
z=π

�

exp(z )
sin(z )

�

=
exp(π)
cos(π)

= −eπ ,

confirming once more our computations in Examples 8.28 and 9.12.

Example 9.16. We compute the residue of z 2+2
(exp(z )−1) cos(z ) at z0 = 2πi , by applying

Proposition 9.14 with f (z ) = z 2+2
cos(z ) and g (z ) = exp(z )− 1. Thus

Res
z=2πi

�

z 2 + 2
(exp(z )− 1) cos(z )

�

=
(2πi )2+2
cos(2πi )

exp(2πi )
=
−4π2 + 2
cosh(2π)

.

An extension of Proposition 9.14 of sorts is given in Exercise 9.12.
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9.3 Argument Principle and Rouché’s Theorem

In the previous section we saw how to compute integrals via residues, but in many
applications we actually do not have an explicit expression for a function that we
need to integrate (or this expression is very complicated). However, it may still be
possible to compute the value of a function at any given point. In this situation we
cannot immediately apply the Residue Theorem because we don’t know where the
singularities are. Of course, we could use numerical integration to compute integrals
over any path, but computationally this task could be very resource intensive. But if
we do know the singularities, we can compute the residues numerically by computing
a finite number of the integrals over small circles around these singularities. And
after that we can apply the residue theorem to compute the integral over any closed
path very e�ectively: we just sum up the residues inside this path. The argument
principle that we study below, in particular, addresses this question. We start by
introducing the logarithmic derivative.

Suppose we have a di�erentiable function f . Di�erentiating Log f (where
Log is some branch of the logarithm) gives f ′

f , which is one good reason to call this
quotient the logarithmic derivative of f . It has some remarkable properties, one of
which we would like to discuss here.

Now let’s say we have two functions f and g holomorphic in some region. Then
the logarithmic derivative of their product behaves very nicely:

( f g )′

f g
=

f ′ g + f g ′

f g
=

f ′

f
+

g ′

g
.

We can apply this fact to the following situation: Suppose that f is holomorphic
in a region G and f has (finitely many) zeros z1, . . . , z j of multiplicities n1, . . . , n j ,
respectively. By Theorem 8.14, we can express f as

f (z ) = (z − z1)
n1 · · · (z − z j )

n j g (z ) ,
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where g is also holomorphic in G and never zero. Let’s compute the logarithmic
derivative of f and play the same remarkable cancellation game as above:

f ′(z )
f (z )

=

n1(z − z1)
n1−1(z − z2)

n2 · · · (z − z j )
n j g (z ) + · · ·+ (z − z1)

n1 · · · (z − z j )
n j g ′(z )

(z − z1)n1 · · · (z − z j )
n j g (z )

=
n1

z − z1
+

n2

z − z2
+ · · ·+

n j

z − z j
+

g ′(z )
g (z )

. (9.1)

Something similar happens if f has finitely many poles in G . In Exercise 9.19,
we invite you to prove that, if p1, . . . , pk are all the poles of f in G with order
m1, . . . , mk , respectively, then the logarithmic derivative of f can be expressed as

f ′(z )
f (z )

= −
m1

z − p1
−

m2

z − p2
− · · · −

mk

z − pk
+

g ′(z )
g (z )

, (9.2)

where g is a function without poles in G . Naturally, we can combine the expressions
for zeros and poles, as we will do in a moment.

Definition. A function f is meromorphic in the region G if f is holomorphic in
G except for poles.

Theorem 9.17 (Argument Principle2). Suppose f is meromorphic in a region G
and γ is a positively oriented, simple, closed, piecewise smooth path that does not
pass through any zero or pole of f , and γ ∼G 0. Denote by Z ( f ,γ) the number of
zeros of f inside γ counted according to multiplicity and by P ( f ,γ) the number of
poles of f inside γ counted according to order. Then

1
2πi

∫

γ

f ′

f
= Z ( f ,γ)− P ( f ,γ) .

Proof. Suppose the zeros of f inside γ are z1, . . . , z j of multiplicities n1, . . . , n j ,
respectively, and the poles inside γ are p1, . . . , pk with order m1, . . . , mk , respectively.
(You may meditate about the fact why there can be only finitely many zeros and
poles inside γ .) In fact, we may shrink G , if necessary, so that these are the only

2The name Argument Principle stems from interpreting the integral
∫

γ
f ′
f as the change in the

argument of f (z ) as z traverses γ , sinceLog( f (z ))′ = f ′(z )
f (z ) .
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zeros and poles in G . By (9.1) and (9.2),

f ′(z )
f (z )

=
n1

z − z1
+ · · ·+

n j

z − z j
−

m1

z − p1
− · · · −

mk

z − pk
+

g ′(z )
g (z )

,

where g is a function that is holomorphic in G (in particular, without poles) and
never zero. Thanks to Cauchy’s Theorem 4.18 and Exercise 4.4, the integral is easy:

∫

γ

f ′

f
=

n1

∫

γ

dz
z − z1

+ · · · + n j

∫

γ

dz
z − z j

− m1

∫

γ

dz
z − p1

− · · · − mk

∫

γ

dz
z − pk

+
∫

γ

g ′

g

= 2πi
�

n1 + · · ·+ n j −m1 − · · · −mk

�

+
∫

γ

g ′

g
.

Finally, g ′
g is holomorphic in G (because g is never zero in G ), so that Corollary 4.20

gives
∫

γ

g ′

g
= 0 .

As mentioned above, this beautiful theorem helps to locate poles and zeroes of
a function f . The idea is simple: we can first numerically integrate f ′

f over a big
circle γ that includes all possible paths over which we potentially will be integrating
f . Then the numerical value of 1

2πi
∫

γ
f ′
f will be close to an integer that, according

to the Argument Principle, equals Z ( f ,γ) − P ( f ,γ). Then we can integrate f ′
f

over a smaller closed path γ1 that encompasses half of the interior of γ and find
Z ( f ,γ1)− P ( f ,γ1). Continuing this process for smaller and smaller regions will
(after certain verification) produce small regions where f has exactly one zero or
exactly one pole. Integrating f over the boundaries of those small regions that
contain poles and dividing by 2πi gives all residues of f .

Another nice related application of the Argument Principle is a famous theorem
due to Eugene Rouché (1832–1910).

Theorem 9.18 (Rouché’s Theorem). Suppose f and g are holomorphic in a region
G and γ is a positively oriented, simple, closed, piecewise smooth path, such that
γ ∼G 0 and | f (z )| > | g (z )| for all z ∈ γ . Then

Z ( f + g ,γ) = Z ( f ,γ) .
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This theorem is of surprising practicality. It allows us to locate the zeros of a
function fairly precisely. Here is an illustration.

Example 9.19. All the roots of the polynomial p(z ) = z 5+ z 4+ z 3+ z 2+ z +1 have
modulus less than two.3 To see this, let f (z ) = z 5 and g (z ) = z 4 + z 3 + z 2 + z + 1.
Then for z ∈ C [0, 2]

| g (z )| ≤ |z |4+|z |3+|z |2+|z |+1 = 16+8+4+2+1 = 31 < 32 = |z |5 = | f (z )| .

So g and f satisfy the condition of the Theorem 9.18. But f has just one root, of
multiplicity 5 at the origin, whence

Z (p, C [0, 2]) = Z ( f + g , C [0, 2]) = Z ( f , C [0, 2]) = 5 .

Proof of Theorem 9.18. By (9.1) and the Argument Principle (Theorem 9.17)

Z ( f + g ,γ) =
1

2πi

∫

γ

( f + g )′

f + g
=

1
2πi

∫

γ

�

f
�

1+ g
f

��′

f
�

1+ g
f

�

=
1

2πi

∫

γ





f ′

f
+

�

1+ g
f

�′

1+ g
f





= Z ( f ,γ) +
1

2πi

∫

γ

�

1+ g
f

�′

1+ g
f

.

We are assuming that | g
f | < 1 on γ , which means that the function 1+ g

f evaluated
on γ stays away from R≤0. But then Log(1 + g

f ) is a well-defined holomorphic
function on γ . Its derivative is

�

1+ g
f

�′

1+ g
f

3The Fundamental Theorem of Algebra (Theorem 5.11) asserts that p has five roots in C. What’s
special about the statement of Example 9.19 is that they all have modulus < 2. Note also that there is no
general formula for computing roots of a polynomial of degree 5. (Although for this p it’s not hard to
find one root—and therefore all of them.)
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which implies by Corollary 4.13 that

1
2πi

∫

γ

�

1+ g
f

�′

1+ g
f
= 0 .

Exercises

9.1. Suppose that f has a zero of multiplicity m at a. Explain why 1
f has a pole of

order m at a.

9.2. Find the poles or removable singularities of the following functions and deter-
mine their orders:

(a) (z 2 + 1)−3(z − 1)−4

(b) z cot(z )

(c) z−5 sin(z )

(d)
1

1− exp(z )

(e)
z

1− exp(z )

9.3. Show that if f has an essential singularity at z0 then 1
f also has an essential

singularity at z0.

9.4. Suppose f is a nonconstant entire function. Prove that any complex number
is arbitrarily close to a number in f (C). (Hint: If f is not a polynomial, use
Theorem 9.7 for f ( 1z ).)

9.5. Evaluate the following integrals for γ = C [0, 3].

(a)
∫

γ
cot(z ) dz

(b)
∫

γ
z 3 cos( 3z ) dz

(c)
∫

γ

dz
(z + 4)(z 2 + 1)

(d)
∫

γ
z 2 exp( 1z ) dz

(e)
∫

γ

exp(z )
sinh(z )

dz

(f )
∫

γ

i z+4

(z 2 + 16)2
dz
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9.6. Suppose f has a simple pole (i.e., a pole of order 1) at z0 and g is holomorphic
at z0. Prove that

Res
z=z0

�

f (z ) g (z )
�

= g (z0) Res
z=z0

�

f (z )
�

.

9.7. Find the residue of each function at 0:

(a) z−3 cos(z )

(b) csc(z )

(c)
z 2 + 4z + 5

z 2 + z

(d) exp(1− 1
z )

(e)
exp(4z )− 1

sin2(z )

9.8. Use residues to evaluate the following integrals:

(a)
∫

C [i−1,1]

dz
z 4 + 4

(b)
∫

C [i ,2]

dz
z (z 2 + z − 2)

(c)
∫

C [0,2]

exp(z )
z 3 + z

dz

(d)
∫

C [0,1]

dz
z 2 sin z

(e)
∫

C [0,3]

exp(z )
(z + 2)2 sin z

dz

(f )
∫

C [π,1]

exp(z )
sin(z ) cos(z )

dz

9.9. Use the Residue Theorem 9.10 to re-prove Cauchy’s Integral Formulas (Theo-
rems 4.27 & 5.1 and Corollary 8.11).

9.10. Revisiting Exercise 8.34, show that if f is even then Resz=0( f (z )) = 0.

9.11. Suppose f has an isolated singularity at z0.

(a) Show that f ′ also has an isolated singularity at z0.

(b) Find Resz=z0
( f ′).

9.12. Extend Proposition 9.14 by proving, if f and g are holomorphic at z0, which
is a double zero of g , then

Res
z=z0

�

f (z )
g (z )

�

=
6 f ′(z0) g ′′(z0)− 2 f (z0) g ′′′(z0)

3 g ′′(z0)2
.
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9.13. Compute
∫

C [2,3]

cos(z )
sin2(z )

dz .

9.14. Generalize Example 5.14 and Exercise 5.18 as follows: Let p(x ) and q (x ) be
polynomials such that q (x ) 6= 0 for x ∈ R and the degree of q (x ) is at least two
larger than the degree of p(x ). Prove that

∫∞
−∞

p(x )
q (x ) dx equals 2πi times the sum of

the residues of p(z )
q (z ) at all poles in the upper half plane.

9.15. Compute
∫ ∞

−∞

dx
(1+ x 2)2

.

9.16. Generalize Exercise 5.19 by deriving conditions under which we can compute
∫∞
−∞

p(x ) cos(x )
q (x ) dx for polynomials p(x ) and q (x ), and give a formula for this integral

along the lines of Exercise 9.14.

9.17. Compute
∫ ∞

−∞

cos(x )
1+ x 4

dx .

9.18. Suppose f is entire and a, b ∈C with a 6= b and |a|, |b | < R . Evaluate

∫

C [0,R]

f (z )
(z − a)(z − b )

dz

and use this to give an alternate proof of Liouville’s Theorem 5.13. (Hint: Show
that if f is bounded then the above integral goes to zero as R increases.)

9.19. Prove (9.2).

9.20. Suppose f is meromorphic in the region G , g is holomorphic in G , and γ
is a positively oriented, simple, closed, piecewise smooth path that does not pass
through any zero or pole of f , and γ ∼G 0. Denote the zeros and poles of f inside
γ by z1, . . . , z j and p1, . . . , pk , respectively, counted according to multiplicity. Prove
that

1
2πi

∫

γ
g

f ′

f
=

j
∑

m=1
g (zm)−

k
∑

n=1
g (pn) .
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9.21. Find the number of zeros of

(a) 3 exp(z )− z in D[0, 1]

(b) 1
3 exp(z )− z in D[0, 1]

(c) z 4 − 5z + 1 in {z ∈C : 1 ≤ |z | ≤ 2}

9.22. Give another proof of the Fundamental Theorem of Algebra (Theorem 5.11),
using Rouché’s Theorem 9.18. (Hint: If p(z ) = an z n + an−1z n−1 + · · ·+ a1z + 1,
let f (z ) = an z n and g (z ) = an−1z n−1 + an−2z n−2 + · · ·+ a1z + 1, and choose as γ a
circle that is large enough to make the condition of Rouché’s theorem work. You
might want to first apply Proposition 5.10 to g (z ).)

9.23. Suppose S ⊂C is closed and bounded and all points of S are isolated points
of S . Show that S is finite, as follows:

(a) For each z ∈ S we can choose φ (z ) > 0 so that D[z ,φ (z )] contains no points
of S except z . Show that φ is continuous. (Hint: This is really easy if you use
the first definition of continuity in Section 2.1.)

(b) Assume S is non-empty. By the Extreme Value Theorem A.1, φ has a min-
imum value, r0 > 0. Let r = r0/2. Since S is bounded, it lies in a disk
D[0, M ] for some M . Show that the small disks D[z , r ], for z ∈ S , are
disjoint and lie in D[0, M + r ].

(c) Find a bound on the number of such small disks. (Hint: Compare the areas
of D[z , r ] and D[0, M + r ].)



Chapter 10

Discrete Applications of the
Residue Theorem

All means (even continuous) sanctify the discrete end.
Doron Zeilberger

On the surface, this chapter is just a collection of exercises. They are more involved
than any of the ones we’ve given so far at the end of each chapter, which is one reason
why we will lead you through each of the following ones step by step. On the other
hand, these sections should really be thought of as a continuation of the book, just
in a di�erent format. All of the following problems are of a discrete mathematical
nature, and we invite you to solve them using continuous methods —namely, complex
integration. There are very few results in mathematics that so intimately combine
discrete and continuous mathematics as does the Residue Theorem 9.10.

10.1 Infinite Sums

In this exercise, we evaluate the sums
∑

k≥1
1
k2 and

∑

k≥1
(−1)k

k2 . We hope the idea of
how to compute such sums in general will become clear.

(1) Consider the function f (z ) = π cot(πz )
z 2 . Compute the residues at all the

singularities of f .

(2) Let N be a positive integer and γN be the rectangular path from N + 1
2 − iN

to N + 1
2 + iN to −N − 1

2 + iN to −N − 1
2 − iN back to N + 1

2 − iN .

(a) Show that | cot(πz )| < 2 for z ∈ γN . (Hint: Use Exercise 3.36.)

(b) Show that limN→∞
∫

γN
f = 0.

(3) Use the Residue Theorem 9.10 to arrive at an identity for
∑

k∈Z\{0}
1
k2 .
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(4) Evaluate
∑

k≥1
1
k2 .

(5) Repeat the exercise with the function f (z ) = π
z 2 sin(πz ) to arrive at an evaluation

of
∑

k≥1

(−1)k

k2
.

(Hint: To bound this function, you may use the fact that 1
sin2(z ) = 1+cot2(z ).)

(6) Evaluate
∑

k≥1
1
k4 and

∑

k≥1
(−1)k

k4 .

We remark that, in the language of Example 7.21, you have computed the
evaluations ζ (2) and ζ (4) of the Riemann zeta function. The function ζ ∗(z ) :=
∑

k≥1
(−1)k

k z is called the alternating zeta function.

10.2 Binomial Coe�cients

The binomial coe�cient
�n

k

�

is a natural candidate for being explored analytically, as
the binomial theorem

(x + y )n =
n
∑

k=0

�

n
k

�

x k y n−k

(for x , y ∈C and n ∈ Z≥0) tells us that
�n

k

�

is the coe�cient of z k in (z + 1)n . You
will derive two sample identities in the course of the exercises below.

(1) Convince yourself that

�

n
k

�

=
1

2πi

∫

γ

(z + 1)n

z k+1
dz

where γ is any simple closed piecewise smooth path such that 0 is inside γ .

(2) Derive a recurrence relation for binomial coe�cients from the fact that 1
z +1 =

z+1
z . (Hint: Multiply both sides by (z+1)n

z k .)

(3) Now suppose x ∈R with |x | < 1/4. Find a simple closed path γ surrounding
the origin such that

∑

k≥0

�

(z + 1)2

z
x
�k

converges uniformly on γ as a function of z . Evaluate this sum.
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(4) Keeping x and γ from (3), convince yourself that

∑

k≥0

�

2k
k

�

x k =
1

2πi

∑

k≥0

∫

γ

(z + 1)2k

z k+1
x k dz ,

use (3) to interchange summation and integral, and use the Residue Theo-
rem 9.10 to evaluate the integral, giving an identity for

∑

k≥0
�2k

k

�

x k .

10.3 Fibonacci Numbers

The Fibonacci1 numbers are a sequence of integers defined recursively through

f0 = 0

f1 = 1

fn = fn−1 + fn−2 for n ≥ 2.

Let F (z ) =
∑

k≥0 fk z k .

(1) Show that F has a positive radius of convergence.

(2) Show that the recurrence relation among the fn implies that F (z ) = z
1−z−z 2 .

(Hint: Write down the power series of z F (z ) and z 2 F (z ) and rearrange both
so that you can easily add.)

(3) Verify that

Res
z=0

�

1
z n(1− z − z 2)

�

= fn .

(4) Use the Residue Theorem 9.10 to derive an identity for fn . (Hint: Integrate

1
z n(1− z − z 2)

around C [0, R] and show that this integral vanishes as R →∞.)

1Named after Leonardo Pisano Fibonacci (1170–1250).
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(5) Generalize to other sequences defined by recurrence relations, e.g., the Tri-
bonacci numbers

t0 = 0

t1 = 0

t2 = 1

tn = tn−1 + tn−2 + tn−3 for n ≥ 3.

10.4 The Coin-Exchange Problem

In this exercise, we will solve and extend a classical problem of Ferdinand Georg
Frobenius (1849–1917). Suppose a and b are relatively prime2 positive integers,
and suppose t is a positive integer. Consider the function

f (z ) =
1

(1− z a) (1− z b ) z t+1
.

(1) Compute the residues at all nonzero poles of f .

(2) Verify that Resz=0( f ) =N (t ), where

N (t ) = |{(m, n) ∈ Z : m, n ≥ 0, ma + nb = t }| .

(3) Use the Residue Theorem, Theorem 9.10, to derive an identity for N (t ).
(Hint: Integrate f around C [0, R] and show that this integral vanishes as
R →∞.)

(4) Use the following three steps to simplify this identity to

N (t ) =
t

ab
−
�

b−1 t
a

�

−
�

a−1 t
b

�

+ 1 .

2This means that the integers do not have any common factor.
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Here, {x} denotes the fractional part3 of x , a−1a ≡ 1 (mod b )4, and b−1b ≡ 1
(mod a).

(a) Verify that for b = 1,

N (t ) = |{(m, n) ∈ Z : m, n ≥ 0, ma + n = t }|

= |{m ∈ Z : m ≥ 0, ma ≤ t }|

=
�

�

�

�

h

0,
t
a

i

∩Z
�

�

�

�

=
t
a
−
n t

a

o

+ 1 .

(b) Use this together with the identity found in (3) to obtain

1
a

a−1
∑

k=1

1
(1− e 2πi k/a) e2πi k t /a

= −
n t

a

o

+
1
2
− 1

2a
.

(c) Verify that

a−1
∑

k=1

1
(1− e2πi k b/a) e2πi k t /a

=
a−1
∑

k=1

1
(1− e2πi k/a) e2πi k b−1 t /a

.

(5) Prove that N (ab − a − b ) = 0, and N (t ) > 0 for all t > ab − a − b .

Historical remark. Given relatively prime positive integers a1, a2, . . . , an , let’s call an
integer t representable if there exist nonnegative integers m1, m2, . . . , mn such that

t = m1 a1 +m2 a2 + · · ·+mn an .

(There are many scenarios in which you may ask whether or not t is representable,
given fixed a1, a2, . . . , an ; for example, if the a j ’s are coin denomination, this question
asks whether you can give exact change for t .) In the late 19th century, Frobenius
raised the problem of finding the largest integer that is not representable. We call
this largest integer the Frobenius number g (a1, . . . , an). It is well known (probably
at least since the 1880’s, when James Joseph Sylvester (1814–1897) studied the
Frobenius problem) that g (a1, a2) = a1a2 − a1 − a2. You verified this result in (5).
For n > 2, there is no nice closed formula for g (a1, . . . , an). The formula in (4)

3The fractional part of a real number x is, loosely speaking, the part after the decimal point. More
thoroughly, the greatest integer function of x , denoted by bx c, is the greatest integer not exceeding x .
The fractional part is then {x} = x − bx c.

4This means that a−1 is an integer such that a−1a = 1+ k b for some k ∈ Z.
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is due to Tiberiu Popoviciu (1906–1975), though an equivalent version of it was
already known to Peter Barlow (1776–1862).

10.5 Dedekind Sums

This exercise outlines one more nontraditional application of the Residue Theo-
rem 9.10. Given two positive, relatively prime integers a and b , let

f (z ) := cot(πaz ) cot(πb z ) cot(πz ) .

(1) Choose an ε > 0 such that the rectangular path γR from 1−ε−i R to 1−ε+i R
to −ε + i R to −ε − i R back to 1− ε − i R does not pass through any of the
poles of f .

(a) Compute the residues for the poles of f inside γR . Hint: Use the
periodicity of the cotangent and the fact that

cot z =
1
z
− 1

3
z + higher-order terms .

(b) Prove that limR→∞
∫

γR
f = −2i and deduce that for any R > 0

∫

γR

f = −2i .

(2) Define

s (a, b ) :=
1

4b

b−1
∑

k=1
cot

�

πka
b

�

cot
�

πk
b

�

. (10.1)

Use the Residue Theorem 9.10 to show that

s (a, b ) + s (b , a) = −1
4
+

1
12

�

a
b
+

1
ab
+

b
a

�

. (10.2)

(3) Generalize (10.1) and (10.2).
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Historical remark. The sum in (10.1) is called a Dedekind5 sum. It first appeared in
the study of the Dedekind η-function

η(z ) = exp
�

πi z
12

�∏

k≥1
(1− exp(2πi k z ))

in the 1870’s and has since intrigued mathematicians from such di�erent areas
as topology, number theory, and discrete geometry. The reciprocity law (10.2) is
the most important and famous identity of the Dedekind sum. The proof that is
outlined here is due to Hans Rademacher (1892–1969).

5Named after Julius Wilhelm Richard Dedekind (1831–1916).



Appendix: Theorems From Calculus

First, it is necessary to study the facts, to multiply the number of observations, and
then later to search for formulas that connect them so as thus to discern the particular
laws governing a certain class of phenomena. In general, it is not until after these
particular laws have been established that one can expect to discover and articulate
the more general laws that complete theories by bringing a multitude of apparently
very diverse phenomena together under a single governing principle.
Augustin Louis Cauchy (1789–1857)

Here we collect a few theorems from real calculus that we make use of in the course
of the text.

Theorem A.1 (Extreme-Value Theorem). Suppose K ⊂Rn is closed and bounded
and f : K →R is continuous. Then f has a minimum and maximum value, i.e.,

min
x∈K

f (x ) and max
x∈K

f (x )

exist in R.

Theorem A.2 (Mean-Value Theorem). Suppose I ⊆R is an interval, f : I →R is
di�erentiable, and x , x +∆x ∈ I . Then there exists 0 < a < 1 such that

f (x +∆x )− f (x )
∆x

= f ′(x + a ∆x ) .

Many of the most important results of analysis concern combinations of limit
operations. The most important of all calculus theorems combines di�erentiation
and integration (in two ways):
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Theorem A.3 (Fundamental Theorem of Calculus). Suppose f : [a, b ] → R is
continuous.

(a) The function F : [a, b ]→R defined by F (x ) =
∫ x

a f (t ) dt is di�erentiable
and F ′(x ) = f (x ).

(b) If F is any antiderivative of f , that is, F ′ = f , then
∫ b

a f (x ) dx = F (b )−F (a).

Theorem A.4. If f , g : [a, b ]→R are continuous functions and c ∈R then

∫ b

a

�

f (x ) + c g (x )
�

dx =
∫ b

a
f (x ) dx + c

∫ b

a
g (x ) dx .

Theorem A.5. If f , g : [a, b ]→R are continuous functions then
�

�

�

�

�

∫ b

a
f (x ) g (x ) dx

�

�

�

�

�

≤
∫ b

a
| f (x ) g (x )| dx ≤

�

max
a≤x≤b

| f (x )|
�
∫ b

a
| g (x )| dx .

Theorem A.6. If g : [a, b ] → R is di�erentiable, g ′ is continuous, and f :
[ g (a), g (b )]→R is continuous then

∫ b

a
f ( g (t )) g ′(t ) dt =

∫ g (b )

g (a)
f (x ) dx .

For functions of several variables we can perform di�erentiation/integration
operations in any order, if we have su�cient continuity:

Theorem A.7. If the mixed partials ∂2 f
∂ x ∂ y and ∂2 f

∂ y ∂ x are defined on an open set
G ⊆R2 and are continuous at a point (x0, y0) ∈G , then they are equal at (x0, y0).

Theorem A.8. If f is continuous on [a, b ]× [c , d ] ⊂R2 then

∫ b

a

∫ d

c
f (x , y ) d y dx =

∫ d

c

∫ b

a
f (x , y ) dx d y .

We can apply di�erentiation and integration with respect to di�erent variables
in either order:
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Theorem A.9 (Leibniz’s Rule1). Suppose f is continuous on [a, b ]× [c , d ] ⊂ R2

and the partial derivative ∂ f
∂ x exists and is continuous on [a, b ]× [c , d ]. Then

d
dx

∫ d

c
f (x , y ) d y =

∫ d

c

∂ f
∂ x
(x , y ) d y .

Leibniz’s Rule follows from the Fundamental Theorem of Calculus (Theo-
rem A.3). You can try to prove it, e.g., as follows: Define F (x ) =

∫ d
c f (x , y ) d y , get

an expression for F (x )− F (a) as an iterated integral by writing f (x , y )− f (a, y ) as
the integral of ∂ f

∂ x , interchange the order of integrations, and then di�erentiate using
Theorem A.3.

Theorem A.10 (Green’s Theorem2). Let C be a positively oriented, piecewise
smooth, simple, closed path in R2 and let D be the set bounded by C . If f (x , y )
and g (x , y ) have continuous partial derivatives on an open region containing D
then

∫

C
f dx + g d y =

∫

D

∂ g
∂ x
−

∂ f
∂ y

dx d y .

Theorem A.11 (L’Hôspital’s Rule3 ). Suppose I ⊂R is an open interval and either
c is in I or c is an endpoint of I . Suppose f and g are di�erentiable functions on
I \ { c} with g ′(x ) never zero. Suppose

lim
x→c

f (x ) = 0, lim
x→c

g (x ) = 0, lim
x→c

f ′(x )
g ′(x )

= L .

Then
lim
x→c

f (x )
g (x )

= L .

There are many extensions of L’Hôspital’s rule. In particular, the rule remains
true if any of the following changes are made:

• L is infinite.

• I is unbounded and c is an infinite endpoint of I .

• limx→c f (x ) and limx→c g (x ) are both infinite.

1Named after Gottfried Wilhelm Leibniz (1646–1716).
2Named after George Green (1793–1841).
3Named after Guillaume de l’Hôspital (1661–1704).



Solutions to Selected Exercises

Well here’s another clue for you all.

John Lennon & Paul McCartney (“Glass Onion,” The White Album)

1.1 (a) 7− i (b) 1− i (c) −11− 2i (d) 5 (e) −2+ 3i

1.2 (b) 19
25 −

8
25 i (c) 1

1.3 (a)
p

5, −2− i (b) 5
p

5, 5− 10i

(c)
Æ

10
11 , 3

11 (
p

2− 1) + i
11 (
p

2+ 9) (d) 8, 8i

1.4 (a) 2 e i π
2 (b)

p
2 e i π

4 (c) 2
p

3i e i 5π
6 (d) e i 3π

2

1.5 (a) −1+ i (b) 34i (c) −1 (d) 2

1.9 ± e i π
4 − 1

1.11 (a) z = e i π
3 k , k = 0, 1, . . . , 5 (b) z = 2 e i π

4 +
π
2 k , k = 0, 1, 2, 3

1.18 cos π
5 =

1
4 (
p

5+ 1) and cos 2π
5 =

1
4 (
p

5− 1).

1.33 For instance:

(a) γ(t ) = (1+ i ) + e i t , 0 ≤ t ≤ 2π.

(b) γ(t ) = (−1− i )(1− t ) + (2i )t = −1− i + (1+ 3i )t , 0 ≤ t ≤ 1.

(c) γ(t ) = 34e (π−t )i = −34e−i t , 0 ≤ t ≤ π.

2.2 (a) 0 (b) 1+ i

2.18 (a) di�erentiable and holomorphic in C with derivative −e−x e−i y

(b) nowhere di�erentiable or holomorphic

(c) di�erentiable only on {x + i y ∈C : x = y} with derivative 2x , nowhere
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holomorphic

(d) nowhere di�erentiable or holomorphic

(e) di�erentiable and holomorphic in C with derivative

− sin x cosh y − i cos x sinh y

(f ) nowhere di�erentiable or holomorphic

(g) di�erentiable only at 0 with derivative 0, nowhere holomorphic

(h) di�erentiable only at 0 with derivative 0, nowhere holomorphic

(i) di�erentiable only at i with derivative i , nowhere holomorphic

(j) di�erentiable and holomorphic in C with derivative 2y − 2x i = −2i z

(k) di�erentiable only at 0 with derivative 0, nowhere holomorphic

(l) di�erentiable only at 0 with derivative 0, nowhere holomorphic

2.25 (a) 2x y (b) cos(x ) sinh(y )

2.26 Neither is defined at the origin, nor continuously extendable to the origin, so

neither is harmonic on all of C. Away from the origin, the first is harmonic,

while the second is not.

3.14 (a)
−z + 1
z − 3

(b)
(i − 1)z + 1− i

i z − 2i
(c)

i z − 1
−z + i

3.40 (a) ln(2) + πi
2 (b) e−π (c) 1

2 ln(2) + 3πi
4

3.44 (a) di�erentiable at 0, nowhere holomorphic

(b) di�erentiable and holomorphic on C \ {−1, e i π
3 , e−i π

3 }

(c) di�erentiable and holomorphic on C \ {x + i y ∈C : x ≥ −1, y = 2}

(d) nowhere di�erentiable or holomorphic

(e) di�erentiable and holomorphic on C \ {x + i y ∈C : x ≤ 3, y = 0}

(f ) di�erentiable and holomorphic in C (i.e. entire)

3.45 (a) z = i (b) there is no solution (c) z = lnπ + i ( π2 + 2πk ), k ∈ Z

(d) z = π
2 + 2πk ± 4i , k ∈ Z (e) z = π

2 + πk , k ∈ Z

(f ) z = πk i , k ∈ Z (g) z = πk , k ∈ Z (h) z = 2i

3.50 f ′(z ) = c z c−1
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4.1 (a) 6 (b) π (c) 4 (d)
p

17+ 1
4 sinh−1(4)

4.5 (a) 8πi (b) 0 (c) 0 (d) 0

4.6 (a) 1
2 (1− i ), 1

2 (i −1), −i , 1 (b) πi , −π, 0, 2πi (c) πi r 2, −π r 2, 0, 2πi r 2

4.7 (a) 1
3 (e

3 − e3i ) (b) 0 (c) 1
3 (exp(3+ 3i )− 1)

4.12 − 8
p

2
3 i

4.18 (a) −4+ i (4+ π
2 ) (b) ln(5)− 1

2 ln(17) + i ( π2 −Arg(4i + 1))

(c) 2
p

2− 1+ 2
p

2 i (d) 1
4 sin(8)− 2+ i

�

2− 1
4 sinh(8)

�

4.27 0 for r < |a|; 2πi for r > |a|

4.30 2πp
3

4.34 0

4.35 0 for r = 1; − πi
3 for r = 3; 0 for r = 5

4.37 (a) 2πi (b) 0 (c) − 2πi
3 (d) 2πi

3 (e
3 − 1)

5.1 (a) 2πi (b) −6πi (c) 4πi (d) 0

5.3 (a) 0 (b) 2πi (c) 0 (d) πi (e) 0 (f ) 0

5.4 2πi exp(w )

5.18 πp
2

5.20
π

e1/
p

2
sin
�

1
p

2
+

π
4

�

7.1 (a) divergent (b) convergent (limit 0) (c) divergent

(d) convergent (limit 2− i
2 ) (e) convergent (limit 0)

7.3 2
3

7.25 (a)
∑

k≥0
(−4)k z k (b)

∑

k≥0

1
3 · 6k

z k (c)
∑

k≥0

k + 1
2 · 4k

z k+2
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7.26 (a)
∑

k≥0

(−1)k

(2k )!
z 2k (b)

∑

k≥0

(−1)k

(2k )!
z 4k

(c)
∑

k≥0

(−1)k

(2k + 1)!
z 2k+3 (d)

∑

k≥1

(−1)k+122k−1

(2k )!
z 2k

7.28 (a)
∑

k≥0
(−1)k (z − 1)k (b)

∑

k≥1

(−1)k−1

k
(z − 1)k

7.33 (a)∞ if |a| < 1, 1 if |a| = 1, and 0 if |a| > 1 (b) 1 (c) 1 (d) 1

7.34 (a) exp(z 2) (b)
1

(2− z )2
(c)

2z 2

(2− z )3

8.1 (a) C, {z ∈C : |z | ≤ r } for any r

(b) {z ∈C : |z − 3| > 1}, {z ∈C : r ≤ |z − 3| ≤ R} for any 1 < r ≤ R

8.2 (a) sinh(z ) (b)
z − 3
z − 4

8.14 The maximum is 3 (attained at z = ±i ), and the minimum is 1 (attained at

z = ±1).

8.17 One Laurent series is
∑

k≥0(−2)k (z − 1)−k−2, converging for |z − 1| > 2.

8.18 One Laurent series is
∑

k≥0(−2)k (z − 2)−k−3, converging for |z − 2| > 2.

8.19 One Laurent series is −3 (z + 1)−1 + 1, converging for z 6= −1.

8.25 (a)
∑

k≥0

(−1)k

(2k )!
z 2k−2

8.36 (a) One Laurent series is
∑

k≥−2
(−1)k
4k+3 (z − 2)k , converging for 0 < |z − 2| < 4.

(b) −πi
8

8.37 (a)
∑

k≥0

1
e k !
(z + 1)k (b)

2πi
e 33!

9.5 (a) 2πi (b)
27πi

4
(c) −2πi

17
(d)

πi
3

(e) 2πi (f ) 0

9.15 π
2

9.21 (a) 0 (b) 1 (c) 4



Index

absolute convergence, 129
absolute value, 5
accumulation point, 13, 24
addition, 2
algebraically closed, 103
alternating harmonic series, 131
alternating zeta function, 189
analytic, 152
analytic continuation, 158
antiderivative, 76, 100, 196
Arg, 59
arg, 60
argument, 5
axis

imaginary, 5
real, 5

bijection, 31, 43
binary operation, 2
binomial coe�cient, 189
boundary, 13, 117
boundary point, 13
bounded, 13
branch of the logarithm, 59

calculus, 1, 195
Casorati–Weierstraß theorem, 173
Cauchy’s estimate, 151
Cauchy’s integral formula, 85

extensions of, 97, 151
Cauchy’s theorem, 81
Cauchy–Goursat theorem, 82
Cauchy–Riemann equations, 32
chain of segments, 16
circle, 12
closed

disk, 13
path, 16
set, 13

closure, 13
co�ee, 88, 132, 173
comparison test, 127
complete, 123
complex number, 2
complex plane, 5

extended, 47
complex projective line, 47
composition, 27
concatenation, 74
conformal, 30, 44, 118
conjugate, 10
connected, 14
continuous, 26
contractible, 83
convergence, 122

pointwise, 131
uniform, 131
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convergent
sequence, 122
series, 126

cosine, 56
cotangent, 56, 193
cross ratio, 49
curve, 14
cycloid, 90

Dedekind sum, 193
dense, 174
derivative, 28

partial, 32
di�erence quotient, 29
di�erentiable, 28
dilation, 45
discriminant, 18
disk

closed, 13
open, 12
punctured, 169
unit, 16

distance of complex numbers, 6
divergent, 122
domain, 23
double series, 156

e , 61, 124
embedding of R into C, 3
empty set, 13
entire, 28, 104
essential singularity, 170
Euclidean plane, 12
Euler’s formula, 8, 61

even, 167
exponential function, 55
exponential rules, 55
extended complex plane, 47

Fibonacci numbers, 190
field, 3
fixed point, 62
Frobenius problem, 191
function, 23

conformal, 30, 44
even, 167
exponential, 55
logarithmic, 59
odd, 167
trigonometric, 56

fundamental theorem
of algebra, 4, 102, 164, 183,

187
of calculus, 76, 100, 196

geogebra, 21
geometric interpretation of

multiplication, 6
geometric series, 126
Green’s theorem, 94, 197
group, 3

harmonic, 34, 110
harmonic conjugate, 112
holomorphic, 28
homotopic, 80
homotopy, 80
hyperbolic trig functions, 58
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i , 4
identity, 3
identity map, 23
identity principle, 154
image

of a function, 27
of a point, 23

imaginary axis, 5
imaginary part, 4
improper integral, 104, 186
infinity, 46
inside, 88
integral, 71

path independent, 102
integral test, 129
integration by parts, 92
interior point, 13
inverse function, 31

of a Möbius transformation, 43
inverse parametrization, 74
inversion, 45
isolated point, 13
isolated singularity, 170

Jacobian, 65
Jordan curve theorem, 88

L’Hôspital’s rule, 197
Laplace equation, 110
Laurent series, 157
least upper bound, 124, 137
Leibniz’s rule, 83, 196
length, 73
limit

infinity, 46
of a function, 24
of a sequence, 122
of a series, 126

linear fractional transformation, 43
Liouville’s theorem, 104
Log, 59
log, 61
logarithm, 59
logarithmic derivative, 180

max/min property for harmonic
functions, 115, 155

maximum
strong relative, 115
weak relative, 116, 155

maximum-modulus theorem, 155
mean-value theorem

for harmonic functions, 114
for holomorphic functions, 86
for real functions, 195

meromorphic, 181
minimum

strong relative, 115
weak relative, 155

minimum-modulus theorem, 155
Möbius transformation, 43
modulus, 5
monotone, 124
monotone sequence property, 124
Morera’s theorem, 100
multiplication, 2

north pole, 51
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obvious, 23
odd, 167
one-to-one, 31
onto, 31
open

disk, 12
set, 13

order of a pole, 173
orientation, 15

partial derivative, 32
path, 14

closed, 16
inside of, 88
interior of, 88
polygonal, 79
positively oriented, 88

path independent, 102
periodic, 55, 193
Picard’s theorem, 174
piecewise smooth, 72
plane, 12
pointwise convergence, 131
Poisson integral formula, 119
Poisson kernel, 95, 118
polar form, 9
pole, 170
polynomial, 4, 20, 40, 102
positive orientation, 88
power series, 135

di�erentiation of, 147
integration of, 139

primitive, 76

primitive root of unity, 9
principal argument, 59
principal logarithm, 59
principal value of ab , 61
punctured disk, 169

real axis, 5
real number, 2
real part, 4
rectangular form, 9
region, 14

of convergence, 136
simply-connected, 101, 111

removable singularity, 170
reparametrization, 73
residue, 176
residue theorem, 176
reverse triangle inequality, 11, 20
Riemann hypothesis, 130
Riemann sphere, 47
Riemann zeta function, 130
root, 4
root of unity, 9

primitive, 9
root test, 138
Rouché’s theorem, 182

separated, 14
sequence, 122

convergent, 122
divergent, 122
limit, 122
monotone, 124

series, 125
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simple, 16
simply connected, 101
sine, 56
singularity, 169
smooth, 14

piecewise, 72
south pole, 51
stereographic projection, 51

tangent, 56
Taylor series expansion, 148
topology, 12, 88
translation, 45
triangle inequality, 11

reverse, 11

Tribonacci numbers, 191
trigonometric functions, 56
trigonometric identities, 7
trivial, 26

uniform convergence, 131
uniqueness theorem, 154
unit circle, 16
unit disk, 16
unit sphere, 51

vector, 5

Weierstraß M -test, 134
Weierstraß convergence theorem,
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