The Arithmetic of Coxeter Permutahedra

Federico Ardila
San Francisco State University Universidad de Los Andes

Matthias Beck
San Francisco State University
Freie Universität Berlin
Jodi McWhirter
Washington University St. Louis

The Menu

- Ehrhart (quasi-)polynomials
- Zonotopes
- Coxeter permutahedra
- Signed graphs
- Tree generating functions

Measuring Polytopes

Rational polytope - convex hull of finitely many points in \mathbb{Q}^{d}

- solution set of a system of linear (in-)equalities with integer coefficients

Goal: measuring...

- volume $\operatorname{vol}(\mathcal{P})=\lim _{t \rightarrow \infty} \frac{1}{t^{d}}\left|\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^{d}\right|$

- discrete volume $\left|\mathcal{P} \cap \mathbb{Z}^{d}\right|$

Ehrhart function $\operatorname{ehr}_{\mathcal{P}}(t):=\left|\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^{d}\right|=\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right|$ for $t \in \mathbb{Z}_{>0}$

Discrete Volumes \& Ehrhart Quasipolynomials

Rational polytope - convex hull of finitely many points in \mathbb{Q}^{d}
$q(t)=c_{d}(t) t^{d}+\cdots+c_{0}(t)$ is a quasipolynomial if $c_{0}(t), \ldots, c_{d}(t)$ are periodic functions; the Icm of their periods is the period of $q(t)$.

Theorem (Ehrhart 1962) For any rational polytope $\mathcal{P} \subset \mathbb{R}^{d}$, $\operatorname{ehr}_{\mathcal{P}}(t):=\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is a quasipolynomial in t whose period divides the Icm of the denominators of the vertex coordinates of P.

Example $\mathcal{P}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{2}$

Why care about... Ehrhart (Quasi-)Polynomials

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.

Zonotopes

Zonotope - Minkowski sum of line segments $\mathcal{Z}=\sum_{j=1}^{n}\left[\mathbf{a}_{j}, \mathbf{b}_{j}\right]$
Shephard (1974) Decomposition of \mathcal{Z} into translates of half-open parallelepipeds spanned by the linearly independent subsets of $\left\{\mathbf{b}_{j}-\mathbf{a}_{j}: 1 \leq j \leq n\right\}$.

Stanley (1991) For a finite set of vectors $\mathbf{U} \subset \mathbb{Z}^{d}$, let $\mathcal{Z}(\mathbf{U}):=\sum_{\mathbf{u} \in \mathbf{U}}[\mathbf{0}, \mathbf{u}]$ Then

$$
\operatorname{ehr}_{\mathcal{Z}(\mathbf{U})}(t)=\sum_{\substack{\mathbf{W} \subseteq \mathbf{U} \\ \text { lin. } \mathrm{Undep} .}} \operatorname{vol}(\mathbf{W}) t^{|\mathbf{W}|}
$$

where $|\mathbf{W}|$ denotes the number of vectors in \mathbf{W} and $\operatorname{vol}(\mathbf{W})$ is the relative volume of the parallelepiped generated by \mathbf{W}.

Lie Combinatorics

Finite crystallographic root systems

$$
\begin{aligned}
A_{n-1}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \\
B_{n}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \cup\left\{ \pm \mathbf{e}_{i}: 1 \leq i \leq n\right\} \\
C_{n}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \cup\left\{ \pm 2 \mathbf{e}_{i}: 1 \leq i \leq n\right\} \\
D_{n}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \\
& \ldots \text { and } E_{6}, E_{7}, E_{8}, F_{4}, G_{2} .
\end{aligned}
$$

Positive roots are obtained by choosing the plus sign in each \pm above.
Standard Coxeter permutahedron of the finite root system Φ

$$
\Pi(\Phi):=\sum_{\alpha \in \Phi^{+}}\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]=\operatorname{conv}\{w \cdot \rho: w \in W\}
$$

where $\rho:=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$ and W is the Weyl group of Φ

Lie Combinatorics

Finite crystallographic root systems

$$
\begin{aligned}
A_{n-1}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \\
B_{n}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \cup\left\{ \pm \mathbf{e}_{i}: 1 \leq i \leq n\right\} \\
C_{n}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \cup\left\{ \pm 2 \mathbf{e}_{i}: 1 \leq i \leq n\right\} \\
D_{n}:= & \left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \\
& \ldots \text { and } E_{6}, E_{7}, E_{8}, F_{4}, G_{2} .
\end{aligned}
$$

Positive roots are obtained by choosing the plus sign in each \pm above.

Standard Coxeter permutahedron of the finite root system Φ

$$
\Pi(\Phi):=\sum_{\alpha \in \Phi^{+}}\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]
$$

Integral Coxeter permutahedron $\Pi^{\mathbb{Z}}(\Phi):=\sum_{\alpha \in \Phi^{+}}[0, \alpha]$

Standard Coxeter Permutahedra

$A_{n-1}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\}$
$B_{n}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \cup\left\{ \pm \mathbf{e}_{i}: 1 \leq i \leq n\right\}$
$C_{n}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\} \cup\left\{ \pm 2 \mathbf{e}_{i}: 1 \leq i \leq n\right\}$
$D_{n}=\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right), \pm\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right): 1 \leq i<j \leq n\right\}$
$\Pi\left(A_{n-1}\right)=\operatorname{conv}\left\{\right.$ permutations of $\left.\frac{1}{2}(-n+1,-n+3, \ldots, n-3, n-1)\right\}$
$\Pi\left(B_{n}\right)=\operatorname{conv}\left\{\right.$ signed permutations of $\left.\frac{1}{2}(1,3, \ldots, 2 n-1)\right\}$
$\Pi\left(C_{n}\right)=\operatorname{conv}\{$ signed permutations of $(1,2, \ldots, n)\}$
$\Pi\left(D_{n}\right)=\operatorname{conv}\{$ evenly signed permutations of $(0,1, \ldots, n-1)\}$

Why care about... Coxeter Permutahedra

- Many questions about permutations can be answered looking at the geometry of the permutahedron
- Fundamental objects in the representation theory of semisimple Lie algebras
- Connections to optimization (Ardila-Castillo-Eur-Postnikov 2020)
- Zonotopes with natural connections to tree enumeration

Signed Graphs

A signed graph $G=(V, E, \sigma)$ comes with a signature $\sigma: E_{*} \rightarrow\{ \pm\}$

A simple cycle is balanced if its product of signs is + . A signed graph is balanced if it contains no half edges and all of its simple cycles are balanced.

An all-negative signed graph is balanced if and only if it is bipartite.
A signed graph is balanced if and only if it has no half edges and can be switched to an all-positive signed graph.

Signed Graphs and Root Systems

Zaslavsky Encoding (1981) of a subset $S \subseteq \Phi^{+}$into the signed graph G_{S} with

- a positive edge $i j$ for each $\mathbf{e}_{i}-\mathbf{e}_{j} \in S$
- a negative edge $i j$ for each $\mathbf{e}_{i}+\mathbf{e}_{j} \in S$
- a halfedge at j for each $\mathbf{e}_{j} \in S$
- a negative loop at j for each $2 \mathbf{e}_{j} \in S$

Linear independent subsets of Φ^{+}correspond precisely to signed pseudoforests which consist of signed trees plus possibly

- a single halfedge (halfedge-tree)
- a single loop (loop-tree)
- a single unbalanced cycle (pseudotree)

$$
\begin{aligned}
& \left|\Phi_{G}\right|=n-\operatorname{tc}(G) \\
& \operatorname{vol}\left(\Phi_{G}\right)=2^{\mathrm{pc}(G)+\operatorname{lc}(G)}
\end{aligned}
$$

Why care about... Signed Graphs

- Earliest appearance in social psychology (Heider 1946, CartwrightHarary 1956) "The enemy of my enemy is my friend"
- Type-B analogues of graphs, natural from the viewpoint of incidence matrices
- Applications to
- Knot theory (positive/negative crossings)
- Biology (perturbed large-scale biological networks
- Chemistry (Möbius systems)
- Physics (spin glasses—mixed Ising model)
- Computer science (correlation clustering)

Integral Coxeter Permutahedra

Fix $\Phi \in\left\{A_{n}, B_{n}, C_{n}, D_{n}: n \geq 2\right\}$ and consider $\Pi^{\mathbb{Z}}(\Phi)=\sum_{\alpha \in \Phi^{+}}[0, \alpha]$
Linear independent subsets of Φ^{+}correspond precisely to signed pseudoforests which consist of signed trees plus possibly

- a single halfedge (halfedge-tree)
- a single loop (loop-tree)

$$
\begin{aligned}
& \left|\Phi_{G}\right|=n-\operatorname{tc}(G) \\
& \operatorname{vol}\left(\Phi_{G}\right)=2^{\operatorname{pc}(G)+\operatorname{lc}(G)}
\end{aligned}
$$

- a single unbalanced cycle (pseudotree)

Ardila-Castillo-Henley (2015) Let $\mathcal{F}(\Phi)$ be the set of Φ-forests. Then

$$
\operatorname{ehr}_{\Pi}^{\mathbb{Z}(\Phi)}(t)=\sum_{G \in \mathcal{F}(\Phi)} 2^{\operatorname{pc}(G)+\operatorname{lc}(G)} t^{n-\operatorname{tc}(G)}
$$

Almost Integral Zonotopes

Lemma Let $\mathbf{U} \subset \mathbb{Z}^{d}$ be a finite set and $\mathbf{v} \in \mathbb{Q}^{d}$. Then

$$
\operatorname{ehr}_{\mathbf{v}+\mathcal{Z}(\mathbf{U})}(t)=\sum_{\substack{\mathbf{W} \subseteq \mathbf{U} \\ \text { lin. indep. }}} \chi_{\mathbf{W}}(t) \operatorname{vol}(\mathbf{W}) t^{|\mathbf{W}|}
$$

where $\chi_{\mathbf{W}}(t):= \begin{cases}1 & \text { if }(t \mathbf{v}+\operatorname{span}(\mathbf{W})) \cap \mathbb{Z}^{d} \neq \emptyset, \\ 0 & \text { otherwise } .\end{cases}$
Ardlia-MB-McWhirter Fix $\Phi \in\left\{A_{n}: n \geq 2\right.$ even $\} \cup\left\{B_{n}: n \geq 1\right\}$. Let $\mathcal{F}(\Phi)$ be the set of Φ-forests and $\mathcal{E}(\Phi) \subseteq \mathcal{F}(\Phi)$ be the set of Φ-forests such that every tree component has an even number of vertices. Then

$$
\operatorname{ehr}_{\Pi(\Phi)}(t)= \begin{cases}\sum_{G \in \mathcal{F}(\Phi)} 2^{\operatorname{pc}(G)} t^{n-\operatorname{tc}(G)} & \text { if } t \text { is even } \\ \sum_{G \in \mathcal{E}(\Phi)} 2^{\operatorname{pc}(G)} t^{n-\operatorname{tc}(G)} & \text { if } t \text { is odd }\end{cases}
$$

Exponential Generating Functions

Lambert W-function

$$
W(x)=\sum_{n \geq 1}(-n)^{n-1} \frac{x^{n}}{n!} \quad W(x) e^{W(x)}=x
$$

There are $t_{n}:=n^{n-2}$ trees on [n], with exponential generation function

$$
\sum_{n \geq 1} t_{n} \frac{x^{n}}{n!}=-W(-x)-\frac{1}{2} W(-x)^{2}
$$

Sample tree generating function magic

$$
\sum_{n \geq 0} \operatorname{ehr}_{\Pi^{\mathbb{Z}}\left(A_{n-1}\right)}(t) \frac{x^{n}}{n!}=\sum_{n \geq 0} \sum_{\substack{\text { forests } \\ G \text { on }[n]}} t^{n-\operatorname{tc}(G)} \frac{x^{n}}{n!}
$$

Exponential Generating Functions

Ardlia-MB-McWhirter Exponential generating functions for integral and standard Coxeter permutahedra, e.g., for t odd,

$$
\begin{aligned}
\sum_{n \geq 0} \operatorname{ehr}_{\Pi\left(A_{2 n-1}\right)}(t) \frac{x^{2 n}}{(2 n)!} & =\exp \left(-\frac{W(-t x)+W(t x)}{2 t}-\frac{W(-t x)^{2}+W(t x)^{2}}{4 t}\right) \\
\sum_{n \geq 0} \operatorname{ehr}_{\Pi\left(B_{n}\right)}(t) \frac{x^{n}}{n!} & =\frac{\exp \left(-\frac{W(-2 t x)+W(2 t x)}{4 t}-\frac{W(-2 t x)^{2}+W(2 t x)^{2}}{8 t}\right)}{\sqrt{1+W(-2 t x)}}
\end{aligned}
$$

