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Measuring Polytopes

Rational polytope — convex hull of finitely many points in Qd
— solution set of a system of linear (in-)equalities with integer coefficients

Goal: measuring...

I volume vol(P) = lim
t→∞

1

td

∣∣∣∣P ∩ 1

t
Zd
∣∣∣∣

I discrete volume
∣∣P ∩ Zd

∣∣

Ehrhart function ehrP(t) :=

∣∣∣∣P ∩ 1

t
Zd
∣∣∣∣ =

∣∣tP ∩ Zd
∣∣ for t ∈ Z>0
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Discrete Volumes & Ehrhart Quasipolynomials

Rational polytope — convex hull of finitely many points in Qd

q(t) = cd(t) t
d + · · · + c0(t) is a quasipolynomial if c0(t), . . . , cd(t) are

periodic functions; the lcm of their periods is the period of q(t).

Theorem (Ehrhart 1962) For any rational polytope P ⊂ Rd,
ehrP(t) :=

∣∣tP ∩ Zd
∣∣ is a quasipolynomial in t whose period

divides the lcm of the denominators of the vertex coordinates
of P .

Example P = [−1
2,

1
2]2
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Why care about... Ehrhart (Quasi-)Polynomials

I Linear systems are everywhere, and so polyhedra are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

I Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.
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Zonotopes

Zonotope — Minkowski sum of line segments Z =
∑n
j=1[aj,bj]

Shephard (1974) Decomposition of Z
into translates of half-open parallele-
pipeds spanned by the linearly indepen-
dent subsets of {bj − aj : 1 ≤ j ≤ n}.

Stanley (1991) For a finite set of vectors U ⊂ Zd, let Z(U) :=
∑

u∈U[0,u]
Then

ehrZ(U)(t) =
∑
W⊆U

lin. indep.

vol(W) t|W|

where |W| denotes the number of vectors in W and vol(W) is the relative
volume of the parallelepiped generated by W.
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Lie Combinatorics

Finite crystallographic root systems

An−1 := {±(ei − ej) : 1 ≤ i < j ≤ n}
Bn := {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n} ∪ {±ei : 1 ≤ i ≤ n}
Cn := {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n} ∪ {±2 ei : 1 ≤ i ≤ n}
Dn := {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n}

. . . and E6, E7, E8, F4, G2 .

Positive roots are obtained by choosing the plus sign in each ± above.

Standard Coxeter permutahedron of the finite root system Φ

Π(Φ) :=
∑
α∈Φ+

[
−α2 ,

α
2

]
= conv{w · ρ : w ∈W}

where ρ := 1
2

∑
α∈Φ+ α and W is the Weyl group of Φ

The Arithmetic of Coxeter Permutahedra Federico Ardila, Matthias Beck & Jodi McWhirter



Lie Combinatorics

Finite crystallographic root systems

An−1 := {±(ei − ej) : 1 ≤ i < j ≤ n}
Bn := {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n} ∪ {±ei : 1 ≤ i ≤ n}
Cn := {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n} ∪ {±2 ei : 1 ≤ i ≤ n}
Dn := {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n}

. . . and E6, E7, E8, F4, G2 .

Positive roots are obtained by choosing the plus sign in each ± above.

Standard Coxeter permutahedron of the finite root system Φ

Π(Φ) :=
∑
α∈Φ+

[
−α2 ,

α
2

]
Integral Coxeter permutahedron ΠZ(Φ) :=

∑
α∈Φ+

[0, α]

The Arithmetic of Coxeter Permutahedra Federico Ardila, Matthias Beck & Jodi McWhirter



Standard Coxeter Permutahedra

An−1 = {±(ei − ej) : 1 ≤ i < j ≤ n}
Bn = {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n} ∪ {±ei : 1 ≤ i ≤ n}
Cn = {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n} ∪ {±2 ei : 1 ≤ i ≤ n}
Dn = {±(ei − ej), ±(ei + ej) : 1 ≤ i < j ≤ n}

Π(An−1) = conv{permutations of 1
2(−n+ 1,−n+ 3, . . . , n− 3, n− 1)}

Π(Bn) = conv{signed permutations of 1
2(1, 3, . . . , 2n− 1)}

Π(Cn) = conv{signed permutations of (1, 2, . . . , n)}
Π(Dn) = conv{evenly signed permutations of (0, 1, . . . , n− 1)}
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Why care about... Coxeter Permutahedra

I Many questions about permutations can be answered looking at the
geometry of the permutahedron

I Fundamental objects in the representation theory of semisimple Lie
algebras

I Connections to optimization (Ardila–Castillo–Eur–Postnikov 2020)

I Zonotopes with natural connections to tree enumeration

The Arithmetic of Coxeter Permutahedra Federico Ardila, Matthias Beck & Jodi McWhirter



Signed Graphs

A signed graph G = (V,E, σ) comes with a signature σ : E∗ → {±}

A simple cycle is balanced if its product of signs is +. A signed graph is
balanced if it contains no half edges and all of its simple cycles are balanced.

An all-negative signed graph is balanced if and only if it is bipartite.

A signed graph is balanced if and only if it has no half edges and can be
switched to an all-positive signed graph.
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Signed Graphs and Root Systems

Zaslavsky Encoding (1981) of a subset S ⊆ Φ+ into the signed graph GS
with

I a positive edge ij for each ei − ej ∈ S

I a negative edge ij for each ei + ej ∈ S

I a halfedge at j for each ej ∈ S

I a negative loop at j for each 2ej ∈ S

Linear independent subsets of Φ+ correspond precisely to signed pseudo-
forests which consist of signed trees plus possibly

I a single halfedge (halfedge-tree)

I a single loop (loop-tree)

I a single unbalanced cycle (pseudotree)

|ΦG| = n− tc(G)

vol(ΦG) = 2pc(G)+lc(G)
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Why care about... Signed Graphs

I Earliest appearance in social psychology (Heider 1946, Cartwright–
Harary 1956) “The enemy of my enemy is my friend”

I Type-B analogues of graphs, natural from the viewpoint of incidence
matrices

I Applications to

I Knot theory (positive/negative crossings)
I Biology (perturbed large-scale biological networks
I Chemistry (Möbius systems)
I Physics (spin glasses—mixed Ising model)
I Computer science (correlation clustering)
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Integral Coxeter Permutahedra

Fix Φ ∈ {An, Bn, Cn, Dn : n ≥ 2} and consider ΠZ(Φ) =
∑
α∈Φ+

[0, α]

Linear independent subsets of Φ+ correspond precisely to signed pseudo-
forests which consist of signed trees plus possibly

I a single halfedge (halfedge-tree)

I a single loop (loop-tree)

I a single unbalanced cycle (pseudotree)

|ΦG| = n− tc(G)

vol(ΦG) = 2pc(G)+lc(G)

Ardila–Castillo–Henley (2015) Let F(Φ) be the set of Φ-forests. Then

ehrΠZ(Φ)(t) =
∑

G∈F(Φ)

2pc(G)+lc(G) tn−tc(G).
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Almost Integral Zonotopes

Lemma Let U ⊂ Zd be a finite set and v ∈ Qd. Then

ehrv+Z(U)(t) =
∑
W⊆U

lin. indep.

χW(t) vol(W) t|W|

where χW(t) :=

{
1 if (tv + span(W)) ∩ Zd 6= ∅,
0 otherwise.

Ardlia–MB–McWhirter Fix Φ ∈ {An : n ≥ 2 even} ∪ {Bn : n ≥ 1}. Let
F(Φ) be the set of Φ-forests and E(Φ) ⊆ F(Φ) be the set of Φ-forests such
that every tree component has an even number of vertices. Then

ehrΠ(Φ)(t) =


∑

G∈F(Φ)

2pc(G)tn−tc(G) if t is even,∑
G∈E(Φ)

2pc(G)tn−tc(G) if t is odd.
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Exponential Generating Functions

Lambert W -function W (x) =
∑
n≥1

(−n)n−1 x
n

n!
W (x) eW (x) = x

There are tn := nn−2 trees on [n], with exponential generation function∑
n≥1

tn
xn

n!
= −W (−x)− 1

2
W (−x)2

Sample tree generating function magic∑
n≥0

ehrΠZ(An−1)(t)
xn

n!
=
∑
n≥0

∑
forests
G on [n]

tn−tc(G) x
n

n!
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Exponential Generating Functions

Ardlia–MB –McWhirter Exponential generating functions for integral and
standard Coxeter permutahedra, e.g., for t odd,

∑
n≥0

ehrΠ(A2n−1)(t)
x2n

(2n)!
= exp

(
−W (−tx) +W (tx)

2t
−W (−tx)2 +W (tx)2

4t

)
∑
n≥0

ehrΠ(Bn)(t)
xn

n!
=

exp
(
−W (−2tx)+W (2tx)

4t − W (−2tx)2+W (2tx)2

8t

)
√

1 +W (−2tx)
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