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§2.2. The Möbius Function and Order Polynomial Reciprocity 33

§2.3. Zeta Polynomials, Distributive Lattices, and Eulerian Posets 36

§2.4. Inclusion–Exclusion and Möbius Inversion 38
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§3.5. Möbius Functions of Face Lattices 81

vii



viii Contents

§3.6. Uniqueness of the Euler Characteristics and Zaslavsky’s
Theorem 85

§3.7. The Brianchon–Gram Relation 90

Notes 93

Exercises 95

Chapter 4. Rational Generating Functions 105

§4.1. Matrix Powers and the Calculus of Polynomials 105

§4.2. Compositions 113

§4.3. Plane Partitions 114

§4.4. Restricted Partitions 117

§4.5. Quasipolynomials 120

§4.6. Integer-point Transforms and Lattice Simplices 122

§4.7. Gradings of Cones and Rational Polytopes 126

§4.8. Stanley Reciprocity for Simplicial Cones 130

§4.9. Chain Partitions and the Dehn–Sommerville Relations 135

Notes 141

Exercises 143

Chapter 5. Subdivisions 151

§5.1. Decomposing a Polyhedron 151
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Preface

Combinatorics is not a field, it’s an attitude.
Anon

A combinatorial reciprocity theorem relates two classes of combinatorial
objects via their counting functions: consider a class X of combinatorial
objects and let f(n) be the function that counts the number of objects in
X of size n, where size refers to some specific quantity that is naturally
associated with the objects in X . Similar to canonization, it requires two
miracles for a combinatorial reciprocity to occur:

1. the function f(n) is the restriction of some reasonable function (e.g., a
polynomial) to the positive integers, and

2. the evaluation f(−n) is an integer of the same sign σ = ±1 for all n ∈ Z>0.

In this situation it is only human to ask if σ f(−n) has a combinatorial
meaning, that is, if there is a natural class X ◦ of combinatorial objects such
that σ f(−n) counts the objects of X ◦ of size n (where size again refers to
some specific quantity naturally associated to X ◦). Combinatorial reciprocity
theorems are among the most charming results in mathematics and, in
contrast to canonization, can be found all over enumerative combinatorics
and beyond.

As a first example we consider the class of maps [k]→ Z>0 from the finite
set [k] := {1, 2, . . . , k} into the positive integers, and so f(n) = nk counts
the number of maps with codomain [n]. Thus f(n) is the restriction of a
polynomial and (−1)kf(−n) = nk satisfies our second requirement above.
This relates the number of maps [k]→ [n] to itself. This relation is a genuine
combinatorial reciprocity but the impression one is left with is that of being
underwhelmed rather than charmed. Later in the book it will become clear
that this example is not boring at all, but for now let’s try again.

xi



xii Preface

The term combinatorial reciprocity theorem was coined by Richard Stanley
in his 1974 paper [162] of the same title, in which he developed a firm
foundation of the subject. Stanley starts with an appealing reciprocity that
he attributes to John Riordan: For a set S and d ∈ Z≥0, the collection of
d-subsets1 of S is (

S

d

)
:= {A ⊆ S : |A| = d} .

For d fixed, the number of d-subsets of S depends only on the cardinality
|S|, and the number of d-subsets of an n-set is

f(n) =

(
n

d

)
=

1

d!
n(n− 1) · · · (n− d+ 2)(n− d+ 1) , (0.0.1)

which is the restriction of a polynomial in n of degree d. From the factorization
we can read off that (−1)df(−n) is a positive integer for every n > 0. More
precisely,

(−1)df(−n) =
1

d!
n(n+ 1) · · · (n+ d− 2)(n+ d− 1) =

(
n+ d− 1

d

)
,

which is the number of d-multisubsets of an n-set, that is, the number of
picking d elements from [n] with repetition but without regard to the order
in which the elements are picked. Now this is a combinatorial reciprocity! In
formulas it reads

(−1)d
(−n
d

)
=

(
n+ d− 1

d

)
. (0.0.2)

This is enticing in more than one way. The identity presents an intriguing
connection between subsets and multisubsets via their counting functions, and
its formal justification is completely within the realms of an undergraduate
class in combinatorics. Equation (0.0.2) can be found in Riordan’s book [143]
on combinatorial analysis without further comment and, charmingly, Stanley
states that his paper [162] can be considered as “further comment”. That
further comment is necessary is apparent from the fact that the formal proof
above falls short of explaining why these two sorts of objects are related by
a combinatorial reciprocity. In particular, comparing coefficients in (0.0.2)
cannot be the method of choice for establishing more general reciprocity
relations.

In this book we develop tools and techniques for handling combinatorial
reciprocities. However, our own perspective is firmly rooted in geometric
combinatorics and, thus, our emphasis is on the geometric nature of the
combinatorial reciprocities. That is, for every class of combinatorial objects
we associate a geometric object (such as a polytope or a polyhedral complex)
in such a way that combinatorial features, including counting functions and

1All our definitions will look like that: incorporated into the text but bold-faced and so

hopefully clearly visible.
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reciprocity, are reflected in the geometry. In short, this book can be seen as
further comment with pictures. At any rate, our text was written with the
intention to give a comprehensive introduction to contemporary enumerative
geometric combinatorics.

A Quick Tour. The book naturally comes in two parts with a special
role played by the first chapter: Chapter 1 introduces four combinatorial
reciprocity theorems that we set out to establish in the course of the book.
Chapters 2–4 are for-the-most-part-independent introductions to three major
themes of combinatorics: partially ordered sets, polyhedra, and generat-
ing functions. Chapters 5–7 treat more sophisticated topics in geometric
combinatorics and are meant to be digested in order. Here is what to expect.

Chapter 1 sets the rhythm. We introduce four functions to count colorings
and flows on graphs, order-preserving functions on partially ordered sets,
and lattice points in dilations of lattice polygons. The definitions in this
chapter are kept somewhat informal, to provide an easy entry into the themes
of the later chapters. In all four cases we state a surprising combinatorial
reciprocity and we point to some of the relations and connections between
these examples, which will make repeated appearances later on. All in all,
this chapter is a source of examples and motivation. You should revisit it
from time to time to see how the various ways to view these objects shape
your perspective.

Chapter 2 gives an introduction to partially ordered sets (posets, for
short). Relating posets by means of order-preserving maps gives rise to the
order polynomials from Chapter 1. One of the highlights here is a purely
combinatorial proof of the reciprocity surrounding order polynomials (and
only later will we see that there was geometry behind it). This gives us an
opportunity to introduce important machinery, including Möbius inversion,
zeta polynomials, and Eulerian posets in a hands-on and nonstandard form.

Geometry enters (quite literally) the picture in Chapter 3, in which we
introduce convex polyhedra. Polyhedra are wonderful objects to study in
their own right, as we hope to convey here, and much of their combinatorial
structure comes in poset-theoretic terms. Our main motivation, however, is
to develop a language that enables us to give the objects from Chapters 1
and 2 a geometric incarnation. The main player in Chapter 3 is the Euler
characteristic, which is a powerful tool to obtain combinatorial truths from
geometry. Two applications of the Euler characteristic, which we will witness
in this chapter, are Zaslavsky’s theorem for hyperplane arrangements and
the Brianchon–Gram relation for polytopes.

Chapter 4 sets up the main algebraic machinery for our book: (rational)
generating functions. We start gently with natural examples of compositions
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and partitions, and combinatorial reciprocity theorems appear almost in-
stantly and just as naturally. The second half of Chapter 4 connects the
world of generating functions with that of polyhedra and cones, where we
develop Ehrhart and Hilbert series from first principles, including Stanley’s
reciprocity theorem for rational simplicial cones, which is at the heart of this
book. This connection, in turn, allows us to view the first half of Chapter 4
from a new, geometric, perspective.

Chapter 5 is devoted to decomposing polyhedra into simple pieces. In
particular, organizing the various pieces automatically suggests to view
triangulations and, more generally, subdivisions as posets. Together with
the technologies developed in the first part of the book, this culminates in a
proof of our main combinatorial reciprocity theorems for polytopes and cones.
The theory of subdividing polyhedra is worthy of study in its own right and
we only glimpse at it by studying various ways to subdivide polytopes in a
geometric, algorithmic, and, of course, combinatorial fashion. A powerful
tool is that of half-open decompositions that quite remarkably help us to see
some deep combinatorics in a clear way.

In Chapter 6 we give general posets life in Euclidean space as polyhedral
cones. The theory of order cones allows us to utilize Chapters 2–5, often
in surprisingly interconnected ways, to study posets using geometric means
and, at the same time, interesting arithmetic objects derived from posets.
Just as interesting are applications of this theory, which include permutation
statistics, order polytopes, P -partitions, and their combinatorial reciprocity
theorems.

Chapter 7 finishes the framework that was started in Chapter 1: we
develop a unifying geometric approach to certain families of combinatorial
polynomials. The last missing piece of the puzzle is formed by hyperplane
arrangements, which constitute the main players of Chapter 7. They open a
window to certain families of graph polynomials, including chromatic and
flow polynomials, and we prove combinatorial reciprocity theorems for both.
Hyperplane arrangements also naturally connect to two important families
of polytopes, namely, alcoved polytopes and zonotopes.

The prerequisites for this book are minimal: undergraduate knowledge
of linear algebra and combinatorics should suffice. The numerous exercises
throughout the text are designed so that the book could easily be used for a
graduate class in combinatorics or discrete geometry. The exercises that are
needed for the main body of the text are marked by D.

Acknowledgments. The first (and very preliminary) version of this manu-
script was tried on some patient and error-forgiving students and researchers
at the Mathematical Sciences Research Institute in Spring 2008 and in a
course at the Freie Universität Berlin in Fall 2011. We thank them for their
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crucial input at the early stages of this book. In particular Lennart Claus,
who took the 2011 class and did not see this book finally being finished, is
vividly remembered for his keen interest, his active participation, and his
Mandelkekse.

Since then, the book has, like its authors, matured (and aged). In par-
ticular it has expanded in breadth and depth (and, inevitably, length). We
have had the fortune of receiving many valuable suggestions and corrections;
we would like to thank in particular Tewodros Amdeberhan, Spencer Back-
man, Hélène Barcelo, Seth Chaiken, Adam Chavin, Susanna Fishel, Curtis
Greene, Christian Haase, Max Hlavacek, Katharina Jochemko, Florian Kohl,
Cailan Li, Sebastian Manecke, Jeremy Martin, Tyrrell McAllister, Louis Ng,
Peter Paule, Bruce Sagan, Steven Sam, Paco Santos, Miriam Schlöter, Tom
Schmidt, Christina Schulz, Matthias Schymura, Sam Sehayek, Richard Sieg,
Christian Stump, Ngô Viêt Trung, Andrés Vindas Meléndez, Wei Wang,
Russ Woodroofe, Tom Zaslavsky, and Günter Ziegler. Richard Stanley does
not only also belong to this list, but he deserves special thanks: as one can
see in the references throughout this text, he has been the main creative
mind behind the material that forms the core of this book.

We thank the organizers and students of several classes, graduate schools,
and workshops, in which we could test run various parts of the book: the
2011 Rocky Mountain Mathematics Consortium in Laramie, the 2013 Spring
School in Hanoi, a Winter 2014 combinatorics class at the Freie Universität
Berlin, and the 2015 Summer School at the Research Institute for Symbolic
Computation in Linz.

We are grateful to the editorial staff at the American Mathematical
Society, particularly Sergei Gelfand, who was relentlessly cheerful of this
book project from its inception to its final polishing; his patience and wit
have not only been much appreciated but needed. We thank Ed Dunne,
Chris Thivierge, and the Editorial Committee and reviewers for many helpful
insights, Mary Letourneau for her meticulous copy-editing, and the AMS
TEX gurus, particularly Brian Bartling and Barbara Beeton, for invaluable
assistance. David Austin made much of the geometry in this book come to
life in the figures featured here; we are big fans of his art.

We thank the US National Science Foundation for their support, San
Francisco State University for a presidential award (the resulting sabbatical
allowed M.B. to give the above-mentioned lectures at MSRI), and the DFG
Collaborative Research Center TRR 109 Discretization in Geometry and
Dynamics (sponsoring M.B.’s guest professorship at Freie Univerität in Fall
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M.B. is deeply grateful to Tendai for her love, support, and patience while
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support, and to his family zuhause and kumusha for their love. The idea for
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Chapter 1

Four Polynomials

To many, mathematics is a collection of theorems. For me, mathematics is a
collection of examples; a theorem is a statement about a collection of examples and
the purpose of proving theorems is to classify and explain the examples...
John B. Conway

In the spirit of the above quote, this chapter serves as a source of examples
and motivation for the theorems to come and the tools to be developed. Each
of the following four sections introduces a family of examples together with
a combinatorial reciprocity statement which we will prove in later chapters.

1.1. Graph Colorings

Graphs and their colorings are all-time favorites in introductory classes on
discrete mathematics, and we too succumb to the temptation to start with
one of the most beautiful examples. A graph G = (V,E) is a discrete

structure composed of a finite1 set of nodes V and a collection E ⊆
(
V
2

)

of unordered pairs of nodes, called edges. More precisely, this defines a
simple graph as it excludes the existence of multiple edges between nodes
and, in particular, edges with equal endpoints, i.e., loops. We will, however,
need such nonsimple graphs in the sequel but we dread the formal overhead
nonsimple graphs entail and will trust your discretion to make the necessary
modifications. The most charming feature of graphs is that they are easy to
visualize and their natural habitat is the margins of textbooks or notepads.
Figure 1.1 shows some examples.

An n-coloring of a graph G is a map c : V → [n] := {1, 2, . . . , n}. An
n-coloring c is called proper if no two nodes sharing an edge get assigned

1 Infinite graphs are interesting in their own right; however, they are no fun to color-count
and so will play no role in this book.

1



2 1. Four Polynomials

Figure 1.1. Various graphs.

the same color, that is,

c(u) 6= c(v) whenever uv ∈ E .
The name coloring comes from the natural interpretation of thinking of c(v)
as one of n possible colors that we use for the node v. A proper coloring is
one where adjacent nodes get different colors. Here is a first indication why
considering simple graphs often suffices: the existence and even the number
of n-colorings is unaffected by parallel edges, and there are simply no proper
colorings in the presence of loops.

Much of the fame of graph colorings stems from a question that was
asked around 1852 by Francis Guthrie and answered only some 124 years
later. In order to state the question in modern terms, we call a graph G
planar if G can be drawn in the plane (or scribbled in the margin) such
that edges do not cross except possibly at nodes. For example, the last row
in Figure 1.1 shows a planar and nonplanar embedding of the (planar) graph
K4. Here is Guthrie’s famous conjecture, now a theorem.

Four-color Theorem. Every planar graph has a proper 4-coloring.

There were several attempts at the Four-color Theorem before the first
correct proof by Kenneth Appel and Wolfgang Haken. Here is one particu-
larly interesting (but not yet successful) approach to proving the four-color
theorem, due to George Birkhoff. For a (not necessarily planar) graph G, let

χG(n) := |{c : V → [n] proper n-coloring}| .
The following observation, due to George Birkhoff and Hassler Whitney, is
that χG(n) is the restriction to Z>0 of a particularly nice function.
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Proposition 1.1.1. If G = (V,E) is a loopless graph, then χG(n) agrees
with a polynomial of degree |V | with integral coefficients. If G has a loop,
then χG(n) = 0.

By a slight abuse of notation, we identify χG(n) with this polynomial
and call it the chromatic polynomial of G. Nevertheless, we emphasize
that, so far, only the values of χG(n) at positive integral arguments have an
interpretation in terms of G.

Birkhoff’s motivation to introduce the chromatic polynomial was that
the four-color theorem is equivalent to the statement χG(4) > 0 for all planar
graphs G.

One proof of Proposition 1.1.1 is interesting in its own right, as it
exemplifies deletion–contraction arguments which we will revisit in Chapter 7.
For e ∈ E, the deletion of e results in the graph G \ e := (V,E \ {e}). The
contraction G/e is the graph obtained by identifying the two nodes incident
to e and removing e. An example is given in Figure 1.2.

u

v

w w
u = v

Figure 1.2. Contracting the edge e = uv.

Proof of Proposition 1.1.1. If G has a loop, then it admits no proper
coloring by definition. For the more interesting case that G is loopless, we
induct on |E|.

For |E| = 0 there are no coloring restrictions and χG(n) = n|V |. One step
further, assume that G has a single edge e = uv. Then we can color all nodes
V \ {u} arbitrarily and, assuming n ≥ 2, can color u with any color 6= c(v).
Thus, the chromatic polynomial is χG(n) = nd−1(n− 1), where d = |V |.

For the induction step, let e = uv ∈ E. We claim

χG(n) = χG\e(n)− χG/e(n) . (1.1.1)

Indeed, a coloring c of G \ e fails to be a coloring of G if c(u) = c(v). That
is, we are over-counting by all proper colorings that assign the same color to
u and v. These are precisely the proper n-colorings of G/e.

By (1.1.1) and the induction hypothesis, χG(n) is the difference of a
polynomial of degree d = |V | and a polynomial of degree ≤ d− 1, both with
integer coefficients. �
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Figure 1.3. A graph of Berlin.

The deletion–contraction relation (1.1.1) is a natural computing device.
For example, the planar graph B in Figure 1.3 that models neighboring
districts of Berlin comes with the impressive-looking chromatic polynomial

χB(n) = n23 − 53n22 + 1347n21 − 21845n20 + 253761n19 − 2246709n18

+ 15748804n17 − 89620273n16 + 421147417n15 − 1653474650n14

+ 5465562591n13 − 15279141711n12 + 36185053700n11

− 72527020873n10 + 122562249986n9 − 173392143021n8

+ 203081660679n7 − 193650481777n6 + 146638574000n5

− 84870973704n4 + 35266136346n3 − 9362830392n2

+ 1191566376n , (1.1.2)

which, nevertheless, can be easily computed on any computer. (And yes,
χB(4) = 383904 is not zero.)

Our proof of Proposition 1.1.1 and, more precisely, the deletion–contrac-
tion relation (1.1.1) reveal more about chromatic polynomials, which we
invite you to show in Exercise 1.6:

Corollary 1.1.2. Let G be a loopless graph on d ≥ 1 nodes and χG(n) =
cdn

d + cd−1n
d−1 + · · ·+ c0 its chromatic polynomial. Then

(a) the leading coefficient cd = 1;
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(b) the constant coefficient c0 = 0;

(c) (−1)d χG(−n) > 0 for all integers n ≥ 1.

In particular the last property prompts the following natural question
which we alluded to in the preface and which lies at the heart of this book.

Do the evaluations (−1)|V |χG(−n) have combinatorial meaning?

This question was first asked (and beautifully answered) by Richard
Stanley in 1973. To reproduce his answer, we need the notion of orientations
on graphs. Again, to keep the formal pain level at a minimum, we denote
the nodes of G by v1, v2, . . . , vd. We define an orientation on G through a
subset ρ ⊆ E; for an edge e = vivj ∈ E with i < j we direct

vi
e←− vj if e ∈ ρ and vi

e−→ vj if e /∈ ρ .
We denote the oriented graph by ρG and will sometimes write ρG = (V,E, ρ).
Said differently, we may think of G as canonically oriented by directing edges
from small index to large, and ρ records the edges on which this orientation
is reversed; see Figure 1.4 for an example.

v4 v3

v2v1

Figure 1.4. An orientation given by ρ = {14, 23, 24}.

A directed path in ρG is a sequence v0, v1, . . . , vs of distinct nodes such
that vj−1 → vj is a directed edge in ρG for all j = 1, . . . , s. If vs → v0 is also
a directed edge, then v0, v1, . . . , vs, vs+1 := v0 is called a directed cycle.
An orientation ρ of G is acyclic if there are no directed cycles in ρG.

Here is the connection between proper colorings and acyclic orientations:
Given a proper coloring c, we define the orientation

ρ := {vivj ∈ E : i < j, c(vi) > c(vj)} .
That is, the edge from lower index i to higher index j is directed along its
color gradient c(vj) − c(vi). We call this orientation ρ induced by the
coloring c. For example, the orientation pictured in Figure 1.4 is induced by
the coloring shown in Figure 1.5.
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2 1

54

Figure 1.5. A coloring that induces the orientation in Figure 1.4.

Proposition 1.1.3. Let c : V → [n] be a proper coloring and ρ the induced
orientation on G. Then ρG is acyclic.

Proof. Assume that vi0 → vi1 → · · · → vis → vi0 is a directed cycle in ρG.
Then c(vi0) < c(vi1) < · · · < c(vis) < c(vi0), which is a contradiction. �

As there are only finitely many acyclic orientations on G, we might count
colorings according to the acyclic orientation they induce. An orientation
ρ and an n-coloring c of G are called compatible if for every oriented
edge u → v in ρG we have c(u) ≥ c(v). The pair (ρ, c) is called strictly
compatible if c(u) > c(v) for every oriented edge u→ v.

Proposition 1.1.4. If (ρ, c) is strictly compatible, then c is a proper coloring
and ρ is an acyclic orientation on G. In particular, χG(n) is the number of
strictly compatible pairs (ρ, c), where c is a proper n-coloring.

Proof. If (ρ, c) are strictly compatible, then, since each edge is oriented,
c(u) > c(v) or c(u) < c(v) whenever uv ∈ E. Hence c is a proper coloring
and ρ is exactly the orientation induced by c. The acyclicity of ρG now
follows from Proposition 1.1.3. �

We are finally ready for our first combinatorial reciprocity theorem.

Theorem 1.1.5. Let G be a finite graph on d nodes and χG(n) its chromatic
polynomial. Then (−1)d χG(−n) equals the number of compatible pairs (ρ, c),
where c is an n-coloring and ρ is an acyclic orientation. In particular,
(−1)d χG(−1) equals the number of acyclic orientations of G.

As one illustration of this theorem, consider the graph G in Figure 1.6;
its chromatic polynomial is χG(n) = n(n− 1)(n− 2)2, and so Theorem 1.1.5
suggests that G should admit 18 acyclic orientations. Indeed, there are six
acyclic orientations of the subgraph formed by v1, v2, and v4, and for the
remaining two edges, one of the four possible combined orientations of v2v3

and v3v4 produces a cycle with v2v4, so there are a total of 6 · 3 = 18 acyclic
orientations.
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v4 v3

v2v1

Figure 1.6. This graph has 18 acyclic orientations.

A deletion–contraction proof of Theorem 1.1.5 is outlined in Exercise 1.9;
we will give a geometric proof in Section 7.1.

1.2. Flows on Graphs

Given a graph G = (V,E) together with an orientation ρ and the finite
Abelian group Zn = Z/nZ, a Zn-flow is a map f : E → Zn that assigns a
value f(e) ∈ Zn to each edge e ∈ E such that there is conservation of flow at
every node v: ∑

e→v

f(e) =
∑

v
e→

f(e) ,

that is, what “flows” into the node v is precisely what “flows” out of v. This
physical interpretation is a bit shaky as the commodity flowing along edges
are elements of Zn, and the flow conservation is with respect to the group
structure. The set

supp(f) := {e ∈ E : f(e) 6= 0}
is the support of f , and a Zn-flow f is nowhere zero if supp(f) = E. In
this section we will be concerned with counting nowhere-zero Zn-flows, and
so we define

ϕG(n) :=
∣∣{f nowhere-zero Zn-flow on ρG

}∣∣ .
A priori, the counting function ϕG(n) depends on our chosen orientation ρ,
but our language suggests that this is not the case, which we invite you to
verify in Exercise 1.11:

Proposition 1.2.1. The flow-counting function ϕG(n) is independent of
the orientation ρ of G.

A connected component of the graph G is a maximal subgraph of G
in which any two nodes are connected by a path. A graph G is connected
if it has only one connected component.2 As you will discover (at the latest

2These notions refer to an unoriented graph.
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when working on Exercises 1.13 and 1.14), G will not have any nowhere-zero
flow if G has a bridge (also known as an isthmus), that is, an edge whose
removal increases the number of connected components of G.

To motivate why we care about counting nowhere-zero flows, we assume
that G is a planar bridgeless graph with a given embedding into the plane.
The drawing of G subdivides the plane into connected regions in which two
points lie in the same region whenever they can be joined by a path in R2

that does not meet G. Two such regions are neighboring if their topological
closures share a proper (i.e., 1-dimensional) part of their boundaries. This
induces a graph structure on the subdivision of the plane: for the given
embedding of G, we define the dual graph G∗ as the graph with nodes
corresponding to the regions and two regions C1, C2 share an edge e∗ if an
original edge e is properly contained in both their boundaries. As we can
see in the example pictured in Figure 1.7, the dual graph G∗ is typically not
simple with parallel edges. If G had bridges, G∗ would have loops.

Figure 1.7. A graph and its dual.

Given an orientation of G, an orientation on G∗ is induced by, for example,
rotating the edge clockwise. That is, the dual edge will “point” east assuming
that the primal edge “points” north:

By carefully adding G∗ to the picture we can see that dualizing G∗ recovers
G, i.e., (G∗)∗ = G.

Our interest in flows lies in the connection to colorings: let c be an n-
coloring of G, and for a change we assume that c takes on colors in Zn. After
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giving G an orientation, we can record the color gradient t(uv) = c(v)− c(u)
for each oriented edge u→ v, as shown in Figure 1.8.

2 5
1

5 3

1 4

3 4

3

43

4

1

4 2 1

3

2 5
1

5 3

1 4

Figure 1.8. Recording color gradients, in Z6.

Conversely, knowing the color of a single node v0, we can recover the
coloring from t : E → Zn: for a node v ∈ V simply choose an undirected path
v0 = p0p1p2 · · · pk = v from v0 to v. Then while walking along this path we
can color each node pi by adding or subtracting t(pi−1pi) to c(pi−1) depending
on whether we walked the edge pi−1pi with or against its orientation.

3 4

3

43

4

1

4 2 1

3

4 + 1− 3 + 4 ≡ 0 (mod 6)

4

3

4

1

3

Figure 1.9. A cycle of flows.

The color c(v) is independent of the chosen path and thus, walking along
a cycle in G the sum of the values t(e) of edges along their orientation
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minus those against their orientation has to be zero; this is illustrated in
Figure 1.9. Now, via the correspondence of primal and dual edges, t induces
a map f : E∗ → Zn on the dual graph G∗, shown in Figure 1.10. Each

3 4

3

43

4

1

4 2 1

3

2 5
1

5 3

1 4

2 5
1

5 3

1 4

4

3

3

4

3

2

1

4
1

4

3

Figure 1.10. A flow and its dual.

node of G∗ represents a region that is bounded by a cycle in G, and the
orientation on G∗ is such that walking around this cycle clockwise, each edge
traversed along its orientation corresponds to a dual edge into the region
while counter-clockwise edges dually point out of the region. The cycle
condition, illustrated in Figure 1.11, then proves:

Proposition 1.2.2. Let G be a connected planar graph with dual G∗. For
every n-coloring c of G, the induced map f is a Zn-flow on G∗, and every
such flow arises this way. Moreover, the coloring c is proper if and only if f
is nowhere zero.

Conversely, for a given (nowhere-zero) flow f on G∗ one can construct
a (proper) coloring on G (see Exercise 1.12). In light of all this, we can
rephrase the Four-color Theorem as follows.

Corollary 1.2.3 (Dual Four-color Theorem). If G is a planar bridgeless
graph, then ϕG(4) > 0.

This perspective on colorings of planar graphs was pioneered by William
Tutte who initiated the study of ϕG(n) for all (not necessarily planar) graphs.
To see how much flows differ from colorings, we observe that there is no
universal constant n0 such that every graph has a proper n0-coloring. The
analogous statement for flows is not so clear and, in fact, Tutte conjectured
the following:
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4 + 1− 3 + 4 ≡ 0 (mod 6)

5
1

3

4

4
3

1

4

Figure 1.11. Proposition 1.2.2 illustrated.

Five-flow Conjecture. Every bridgeless graph has a nowhere-zero Z5-flow.

This sounds like a rather daring conjecture, as it is not even clear that
there is any n such that every bridgeless graph has a nowhere-zero Zn-flow.
However, it was shown by Paul Seymour that n ≤ 6 works. In Exercise
1.17 you will show that there exist graphs that do not admit a nowhere-zero
Z4-flow.

On the enumerative side, we have the following.

Proposition 1.2.4. If G is a bridgeless connected graph, then ϕG(n) agrees
with a polynomial with integer coefficients of degree |E| − |V |+ 1 and leading
coefficient 1.

Again, we will abuse notation and refer to ϕG(n) as the flow polynomial
of G. The proof of the polynomiality is a deletion–contraction argument
which is deferred to Exercise 1.13.

Towards a reciprocity statement, we need a notion dual to acyclic ori-
entations: an orientation ρ on G is totally cyclic if every edge in ρG is
contained in a directed cycle. We quickly define the cyclotomic number
of G as ξ(G) := |E| − |V |+ c, where c = c(G) is the number of connected
components of G.

Theorem 1.2.5. Let G be a bridgeless graph. For every positive integer n,
the evaluation (−1)ξ(G)ϕG(−n) counts the number of pairs (f, ρ), where f is
a Zn-flow and ρ is a totally-cyclic reorientation of G/ supp(f). In particular,

(−1)ξ(G)ϕG(−1) equals the number of totally-cyclic orientations of G.

We will prove this theorem in Section 7.6.
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1.3. Order Polynomials

A partially ordered set, or poset for short, is a set Π together with a
binary relation �Π that is

reflexive: a �Π a,
transitive: a �Π b �Π c implies a �Π c, and
antisymmetric: a �Π b and b �Π a implies a = b

for all a, b, c ∈ Π. We write � if the poset is clear from the context.

Partially ordered sets are ubiquitous structures in combinatorics and,
as we will amply demonstrate soon, are indispensable in enumerative and
geometric combinatorics. Most posets that we will encounter in this book
are finite and when we say poset, we will always mean a finite poset unless
stated otherwise.

The essence of a poset is encoded by its cover relations: an element
a ∈ Π is covered by an element b if

[a, b] := {z ∈ Π : a � z � b} = {a, b} ;

in plain English: a ≺ b and there is nothing between a and b. We write
a ≺· b when a is covered by b. From its cover relations we can recover the
poset by taking the transitive closure and adding in the reflexive relations.
The cover relations can be thought of as a directed graph, and this gives an
effective way to picture a poset: The Hasse diagram of Π is a drawing of
the directed graph of cover relations in Π as an (undirected) graph where
the node a is drawn lower than the node b whenever a ≺ b. Here is an
example: for n ∈ Z>0 we define Dn as the set [n] = {1, 2, . . . , n} ordered by
divisibility, that is, a � b if a divides b. The Hasse diagram of D10 is given
in Figure 1.12.

1

5 2 3 7

10 4 6 9

8

Figure 1.12. D10: the set [10], partially ordered by divisibility.

This example truly is a partial order as, for example, 2 and 7 are not
comparable. A poset in which each element is comparable to every other
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element is a chain. To be more precise: the poset Π is a chain if we have
either a � b or b � a for any two elements a, b ∈ Π. The elements of a chain
are totally or linearly ordered.

A map φ : Π→ Π′ is (weakly) order preserving if for all a, b ∈ Π

a �Π b =⇒ φ(a) �Π′ φ(b)

and strictly order preserving if

a ≺Π b =⇒ φ(a) ≺Π′ φ(b) .

For example, we can label the elements of a chain Π such that

Π = {a1 ≺ a2 ≺ · · · ≺ an} ,
which makes Π isomorphic to [n] = {1 < 2 < · · · < n}, in the sense that
there is a bijection φ : Π → [n] such that φ and φ−1 are strictly order
preserving.

Order-preserving maps are the natural morphisms (even in a categorical
sense) between posets, and in this section we will be concerned with counting
(strictly) order-preserving maps from a poset into chains.

A strictly order-preserving map φ from one chain [d] into another [n]
exists only if d ≤ n and is then determined by

1 ≤ φ(1) < φ(2) < · · · < φ(d) ≤ n .

Thus, the number of such maps equals
(
n
d

)
, the number of d-subsets of

an n-set. In the case of a general poset Π, we define the strict order
polynomial

Ω◦Π(n) := |{φ : Π→ [n] strictly order preserving}| .
As we have just seen, Ω◦Π(n) is indeed a polynomial when Π = [d]. We now
show that polynomiality holds for all posets Π.

Proposition 1.3.1. For a finite poset Π, the function Ω◦Π(n) agrees with a
polynomial of degree |Π| with rational coefficients.

Proof. Let d := |Π| and φ : Π → [n] be a strictly order-preserving map.
Now φ factors uniquely into a surjective map σ onto φ(Π) followed by an
injection ι:

Π

σ

!! !!

φ
// [n]

φ(Π)
. �

ι
==

(Use the functions σ(a) := φ(a) and ι(a) := a, defined with domains and
codomains pictured above.) The image φ(Π) is a subposet of a chain and
so is itself a chain. Thus Ω◦Π(n) counts the number of pairs (σ, ι) of strictly
order-preserving maps Π � [r] � [n] for r = 1, 2, . . . , d. For fixed r, there are
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only finitely many order-preserving surjections σ : Π→ [r], say, sr many. As
we discussed earlier, the number of strictly order-preserving maps [r]→ [n]
is exactly

(
n
r

)
, which is a rational polynomial in n of degree r. Hence, for

fixed r, there are sr
(
n
r

)
many pairs (σ, ι) and we obtain

Ω◦Π(n) = sd

(
n

d

)
+ sd−1

(
n

d− 1

)
+ · · ·+ s1

(
n

1

)
,

which finishes our proof. �

As an aside, Proposition 1.3.1 proves that Ω◦Π(n) is a polynomial with
integral coefficients if we use

{(
n
r

)
: r ∈ Z≥0

}
as a basis for the polynomial

ring R[n]. That the binomial coefficients indeed form a basis for the univariate
polynomials follows from Proposition 1.3.1: if Π is an antichain on d
elements, i.e., a poset in which no elements are related, then

Ω◦Π(n) = nd = sd

(
n

d

)
+ sd−1

(
n

d− 1

)
+ · · ·+ s1

(
n

1

)
. (1.3.1)

In this case, the coefficients sr = S(d, r) are the Stirling numbers of the
second kind which count the number of surjective maps [d] � [r]. (The
Stirling numbers might come in handy in Exercise 1.10.)

For the case that Π is a d-chain, the reciprocity statement (0.0.2) says
that (−1)d Ω◦Π(−n) gives the number of d-multisubsets of an n-set, which
equals, in turn, the number of (weak) order-preserving maps from a d-chain
to an n-chain. Our next combinatorial reciprocity theorem expresses this
duality between weak and strict order-preserving maps from a general poset
into chains. You can already guess what is coming. We define the order
polynomial

ΩΠ(n) := |{φ : Π→ [n] order preserving}| .
A slight modification (which we invite you to check in Exercise 1.20) of our
proof of Proposition 1.3.1 implies that ΩΠ(n) indeed agrees with a polynomial
in n of degree |Π|, and the following reciprocity theorem gives the relationship
between the two polynomials ΩΠ(n) and Ω◦Π(n).

Theorem 1.3.2. Let Π be a finite poset. Then

(−1)|Π|Ω◦Π(−n) = ΩΠ(n) .

We will prove this theorem in Chapter 2. To further motivate the study
of order polynomials, we remark that a poset Π gives rise to an oriented
graph by way of the cover relations of Π. Conversely, the binary relation
given by an oriented graph G can be completed to a partial order Π(G)
by adding the necessary transitive and reflexive relations if and only if G
is acyclic. Figure 1.13 shows an example, for the orientation pictured in
Figure 1.4. The following result will be the subject of Exercise 1.18.
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Figure 1.13. From an acyclic orientation to a poset.

Proposition 1.3.3. Let ρG = (V,E, ρ) be an acyclic graph and Π(ρG) the
induced poset. A map c : V → [n] is strictly compatible with the orientation
ρ of G if and only if c is a strictly order-preserving map Π(ρG)→ [n].

In Proposition 1.1.4 we identified the number of n-colorings χG(n) of G
as the number of colorings c strictly compatible with some acyclic orientation
ρ of G, and so this proves:

Corollary 1.3.4. The chromatic polynomial χG(n) of a graph G is the sum
of the order polynomials Ω◦Π(ρG)(n) for all acyclic orientations ρ of G.

1.4. Ehrhart Polynomials

The formulation of (0.0.1) in terms of d-subsets of an n-set has a straightfor-
ward geometric interpretation that will fuel much of what is about to come:
the d-subsets of [n] correspond precisely to the points in Rd with integral
coordinates in the set

(n+ 1)4◦d =
{

x ∈ Rd : 0 < x1 < x2 < · · · < xd < n+ 1
}
. (1.4.1)

Next we explain the notation on the left-hand side: we define

4◦d :=
{

x ∈ Rd : 0 < x1 < x2 < · · · < xd < 1
}
,

and for a set S ⊆ Rd and a positive integer n, we set

nS := {nx : x ∈ S} ,
the n-th dilate of S. (We hope the notation in (1.4.1) now makes sense.)
For example, when d = 2,

4◦2 =
{

(x1, x2) ∈ R2 : 0 < x1 < x2 < 1
}

is the interior of a triangle, and every integer point (x1, x2) in the (n+ 1)-st
dilate of 4◦2 satisfies 0 < x1 < x2 < n+ 1 or, equivalently, 1 ≤ x1 < x2 ≤ n.
We illustrate these integer points for the case n = 5 in Figure 1.14.

A convex lattice polygon P ⊂ R2 is the smallest convex set containing
a given finite set of noncollinear integer points in the plane. The interior of
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x1

x2 x1 = x2

x2 = 6

Figure 1.14. The integer points in 64◦2.

P is denoted by P◦. Convex polygons are 2-dimensional instances of convex
polytopes, which live in any dimension and whose properties we will study
in detail in Chapter 3. For now, we count on your intuition about terms like
convex and objects such as vertices and edges of a polygon, which will be
defined rigorously in Chapter 3.

For a bounded set S ⊂ R2, we write E(S) :=
∣∣S ∩ Z2

∣∣ for the number of
integer lattice points in S. Our example above motivates the definitions of
the counting functions

ehrP◦(n) := E(nP◦) =
∣∣nP◦ ∩ Z2

∣∣

and

ehrP(n) := E(nP) =
∣∣nP ∩ Z2

∣∣ ,
the Ehrhart functions of P. The historical reasons for this naming con-
vention will be given in Chapters 4 and 5.

As we know from (0.0.1), the number of integer lattice points in the
(n+ 1)-st dilate of 4◦2 is given by the polynomial

ehr4◦2(n+ 1) =

(
n

2

)
.

To make the combinatorial reciprocity statement given by (0.0.1) geometric,
we observe that the number of weak order-preserving maps from [n] into [2]
is given by the integer points in the (n− 1)-st dilate of

42 =
{

(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1
}
,

the closure of 4◦2. The combinatorial reciprocity statement given by (0.0.1)
now reads (−1)2

(−n
2

)
equals the number of integer points in (n − 1)42.
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Unraveling the parameters (and making appropriate shifts), we can rephrase
this as: (−1)2 ehr4◦2(−n) equals the number of integer points in n42. The
reciprocity theorem featured in this section states that this holds for all convex
lattice polygons; in Chapter 5 we will prove an analogue in all dimensions.

Theorem 1.4.1. Let P ⊂ R2 be a lattice polygon. Then ehrP(n) agrees with
a polynomial of degree 2 with rational coefficients, and (−1)2 ehrP(−n) equals
the number of integer points in nP◦.

In the remainder of this section we will prove this theorem. The proof
will be a series of simplifying steps that are similar in spirit to those that we
will employ for the general result in Section 5.2.

Figure 1.15. A triangulation of a hexagon.

As a first step, we reduce the problem of showing polynomiality for
Ehrhart functions of arbitrary lattice polygons to that of lattice triangles.
Let P be a lattice polygon in the plane with n vertices. We can triangulate P
by cutting the polygon along sufficiently many (exactly n−3) nonintersecting
diagonals, as in Figure 1.15. The result is a set of n− 2 lattice triangles that
cover P. We denote by T the collection of faces of all these triangles, that is,
T consists of n zero-dimensional polytopes (vertices), 2n− 3 one-dimensional
polytopes (edges), and n− 2 two-dimensional polytopes (triangles).

Our triangulation is a well-behaved collection of polytopes in the plane
in the sense that they intersect nicely: if two elements of T intersect, then
they intersect in a common face of both. This is useful, as counting lattice
points is a valuation.3 Namely, for S, T ⊂ R2,

E(S ∪ T ) = E(S) + E(T )− E(S ∩ T ) , (1.4.2)

and applying the inclusion–exclusion relation (1.4.2) repeatedly to the ele-
ments in our triangulation of P yields

ehrP(n) =
∑

F∈T
µ(F) ehrF(n) , (1.4.3)

3We’ll have more to say about valuations in Section 3.4.
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where the µ(F) are some coefficients that correct for over-counting. If F is
a triangle, then µ(F) = 1—after all, we want to count the lattice points in
P that are covered by the triangles. For an edge F of the triangulation, we
have to make the following distinction: F is an interior edge of T if it is
contained in two triangles. In this case the lattice points in F get counted
twice, and in order to compensate for this, we set µ(F) = −1. In the case
that F is a boundary edge, i.e., F lies in only one triangle of T , there is
no over-counting and we can set µ(F) = 0. To generalize this to all faces
of T , we call a face F ∈ T a boundary face of T if F is contained in the
boundary of P, and an interior face otherwise. We can give the coefficients
µ(F) explicitly as follows.

Proposition 1.4.2. Let T be a triangulation of a lattice polygon P ⊂ R2.
Then the coefficients µ(F) in (1.4.3) are given by

µ(F) =

{
(−1)2−dimF if F is interior,

0 otherwise.

For boundary vertices F = {v}, we can check that µ(F) = 0 is correct: the
vertex is counted positively as a lattice point by every incident triangle and
negatively by every incident interior edge. As there are exactly one interior
edge less than incident triangles, we do not count the vertex more than once.
For an interior vertex, the number of incident triangles and incident (interior)
edges are equal and hence µ(F) = 1. (In triangulations of P obtained by
cutting along diagonals we never encounter interior vertices, however, they
will appear soon when we consider a different type of triangulation.)

The coefficient µ(F) for a triangulation of a polygon was easy to argue
and to verify in the plane. For higher-dimensional polytopes we will have
to resort to more algebraic and geometric means. The right algebraic setup
will be discussed in Chapter 2 where we will make use of the fact that
a triangulation T constitutes a partially ordered set. In the language of
posets, µ(F) is an evaluation of the Möbius function for the poset T . Möbius
functions are esthetically satisfying but are in general difficult to compute.
However, we are dealing with situations with plenty of geometry involved,
and we will make use of that in Chapter 5 to give a statement analogous to
Proposition 1.4.2 in general dimension.

Returning to our 2-dimensional setting, showing that ehrF(n) is a poly-
nomial whenever F is a lattice point, a lattice segment, or a lattice triangle
gives us the first half of Theorem 1.4.1. If F is a vertex, then ehrF(n) = 1. If
F ∈ T is an edge of one of the triangles and thus a lattice segment, verifying
that ehrF(n) is a polynomial is the content of Exercise 1.21.

The remaining challenge now is the polynomiality and reciprocity for
lattice triangles. For the rest of this section, let 4 ⊂ R2 be a fixed lattice
triangle in the plane. The idea that we will use is to triangulate the dilates
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n4 for n ≥ 1, but the triangulation will change with n. Figure 1.16 gives
the picture for n = 1, 2, 3.

Figure 1.16. Special triangulations of dilates of a lattice triangle.

We trust that you can imagine the triangulation for all values of n. The
special property of this triangulation is that up to lattice translations, there
are only a few different pieces. In fact, there are only two different lattice
triangles used in the triangulation of n4: there is 4 itself and (lattice
translates of) the reflection of 4 with respect to the origin, which we will
denote by 4. As for edges, we have three different kinds of edges, namely,
the edges —, —, and —. Up to lattice translation, there is only one vertex •.

Now we count how many copies of each tile occur in these special triangu-
lations; let t(Q, n) denote the number of times Q appears in our triangulation
of n4. For triangles, we count

t(4, n) =

(
n+ 1

2

)
and t(

4

, n) =

(
n

2

)
.

For the interior edges, we observe that each interior edge is incident to a
unique upside-down triangle

4

and consequently

t( —, n) = t(—, n) = t( —, n) =

(
n

2

)
.

Similarly, for interior vertices,

t(•, n) =

(
n− 1

2

)
.

Thus with (1.4.3), the Ehrhart function for the triangle 4 is

ehr4(n) =

(
n+ 1

2

)
E(4) +

(
n

2

)
E( 4)

−
(
n

2

)(
E( —) + E(—) + E( —)

)

+

(
n− 1

2

)
E(•) .

(1.4.4)
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This proves that ehr4(n) agrees with a polynomial of degree 2, and together
with (1.4.3) this establishes the first half of Theorem 1.4.1.

To prove the combinatorial reciprocity of Ehrhart polynomials in the
plane, we make the following useful observation.

Proposition 1.4.3. If for every lattice polygon P ⊂ R2 we have that
ehrP(−1) equals the number of lattice points in the interior of P, then
ehrP(−n) = E(nP◦) for all n ≥ 1.

Proof. For fixed n ≥ 1, we denote by Q the lattice polygon nP. We see that
ehrQ(m) = E(m(nP)) for all m ≥ 1. Hence the Ehrhart polynomial of Q is
given by ehrP(mn) and for m = −1 we conclude

ehrP(−n) = ehrQ(−1) = E(Q◦) = E(nP◦) ,

which finishes our proof. �

To establish the combinatorial reciprocity of Theorem 1.4.1 for triangles,
we can simply substitute n = −1 into (1.4.4) and use (0.0.2) to obtain

ehr4(−1) = E( 4)− E( —)− E(—)− E( —) + 3E(•) ,
which equals the number of interior lattice points of

4
. Observing that 4

and 4have the same number of lattice points finishes the argument.

For the general case, Exercise 1.21 gives

ehrP(−1) =
∑

F∈T
E(F◦) = E(P◦)

and this (finally!) concludes our proof of Theorem 1.4.1.

Exercises 1.21 and 1.23 also answer the question of why we carefully
triangulate P along diagonals (as opposed to cutting it up arbitrarily to
obtain triangles): Theorem 1.4.1 is only true for lattice polygons. There are
versions for polygons with rational and irrational coordinates but they become
increasingly complicated. By cutting along diagonals we can decompose a
lattice polygon into lattice segments and lattice triangles. This part becomes
nontrivial already in dimension 3, and we will worry about this in Chapter 5.

In Exercise 1.25 we will look into the question as to what the coefficients
of ehrP(n), for a lattice polygon P, tell us. We finish this chapter by
considering the constant coefficient c0 = ehrP(0). This is the most tricky
one, as we could argue that ehrP(0) = E(0P) and since 0P is just a single
point, we get c0 = 1. This argument is flawed: we defined ehrP(n) only for
n ≥ 1. To see that this argument is, in fact, plainly wrong, we consider
S = P1 ∪ P2 ⊂ R2, where P1 and P2 are disjoint lattice polygons. Since they
are disjoint, ehrS(n) = ehrP1(n) + ehrP2(n). Now 0S is also just a point and
therefore

1 = ehrS(0) = ehrP1(0) + ehrP2(0) = 2 .
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It turns out that c0 = 1 is still correct but the justification will have to wait
until Theorem 5.1.8. In Exercise 1.26, you will prove a more general version
for Theorem 1.4.1 that dispenses of convexity.

Notes

Graph-coloring problems started in the form of coloring maps such that
countries sharing a proper part of their boundaries get colored with different
colors. The graphs associated to such map-coloring problems are planar as
is illustrated in Figure 1.3. So the fact that the chromatic polynomial is
indeed a polynomial was proved for maps (in 1912 by George Birkhoff [32])
before Hassler Whitney proved it for general graphs in 1932 [184]. The
deletion–contraction argument that we used in the proof of Proposition 1.1.1
gives an algorithm that we used, for example, for the chromatic polynomial
(1.1.2) of Berlin. Complexity-theory-savvy readers might want to ponder the
(exponential) complexity of this algorithm but it can be implemented with
little effort (we used SAGE [55]) and for small graphs it works well. As we
mentioned, the first proof of the Four-color Theorem is due to Kenneth Appel
and Wolfgang Haken [7,8]. Theorem 1.1.5 is due to Richard Stanley [161].
We will give a proof from a geometric point of view in Section 7.1.

As already mentioned, the approach of studying colorings of planar
graphs through flows on their duals was pioneered by William Tutte [179],
who also conceived the Five-flow Conjecture. This conjecture becomes a
theorem when “5” is replaced by “6”, due to Paul Seymour [154]; the 8-flow
theorem had previously been shown by François Jaeger [93,94]. Theorem
1.2.5 was proved in [37]. We will give a proof in Section 7.6.

The number of proper n-colorings, of nowhere-zero Zn-flows, and of
acyclic or totally cyclic orientations can all be computed by using deletions
and contractions. More generally, let f be a function that assigns any graph
G a number f(G) ∈ R such that f(G) = f(G′) if G and G′ are isomorphic.
Then f is called a generalized Tutte–Grothendieck invariant if there are
constants α, β such that for any e ∈ E(G)

f(G) =

{
α f(G \ e) + β f(G/e) if e is neither a loop nor a bridge,

f(e) f(G \ e) otherwise.

Here f(e) is the value on the graph that consists of the edge e alone. It is not
difficult to show that there is a universal Tutte–Grothendieck invariant in the
following sense: for every graph G there is a polynomial TG(x, y) ∈ Z[x, y]
such that f(G) is an evaluation of TG(x, y) in terms of α, β, and the values
of f on a loop and bridge; see [44] for much more on this. The polynomial
TG(x, y) is called the Tutte polynomial of G. Its evaluations, its coefficients,
as well as the many mathematical contexts in which they occur are quite
remarkable, and that area of geometric and algebraic combinatorics is very
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active. We will see the notion of deletion–contraction in a more geometric
context in Chapter 7.

Order polynomials were introduced by Richard Stanley [160, 166] as
“chromatic-like polynomials for posets” (this is reflected in Corollary 1.3.4);
Theorem 1.3.2 is due to him. We will study order polynomials in depth in
Chapters 2 and 6.

Theorem 1.4.1 is essentially due to Georg Pick [136], whose famous
formula is the subject of Exercise 1.25. In some sense, this formula marks the
beginning of the study of integer-point enumeration in polytopes. Our phras-
ing of Theorem 1.4.1 suggests that it has an analogue in higher dimensions,
and we will study this analogue in Chapters 4 and 5.

Herbert Wilf [185] raised the question of characterizing which polyno-
mials can occur as chromatic polynomials of graphs. This question has
spawned a lot of work in algebraic combinatorics. For example, a recent
theorem of June Huh [89] says that the absolute values of the coefficients of
every chromatic polynomial form a unimodal sequence, that is, the sequence
increases up to some point, after which it decreases. Huh’s theorem had
been conjectured by Ronald Read [140] almost 50 years earlier. In fact, Huh
proved much more. In Chapter 7 we will study arrangements of hyperplanes
and their associated characteristic polynomials. Huh and later Huh and Eric
Katz [90] proved that, up to sign, the coefficients of characteristic polynomi-
als of hyperplane arrangements (defined over any field) form a log-concave
sequence. We will see the relation between chromatic and characteristic
polynomials in Chapter 7.

Exercises

1.1 Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there
is a bijection φ : V1 → V2 such that for all u, v ∈ V1

uv ∈ E1 if and only if φ(u)φ(v) ∈ E2.

Let G be a planar graph and let G1 and G2 be the dual graphs for
two distinct planar embeddings of G. Is it true that G1 and G2 are
isomorphic?

If not, can you give a sufficient condition on G such that the above
claim is true? (Hint: A precise characterization is rather difficult,
but for a sufficient condition you might want to contemplate Steinitz’s
theorem [176]; see [190, Ch. 4] for a modern treatment.)

1.2 Find two simple nonisomorphic graphs G and H with χG(n) = χH(n).
Can you find many (polynomial, exponential) such examples in the
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number of nodes? Can you make your examples arbitrarily high con-
nected?

1.3 Find the chromatic polynomials of
(a) the path on d nodes;
(b) the cycle on d nodes;
(c) the wheel with d spokes (and d+ 1 nodes); for example, the wheel

with six spokes is this:

1.4 Verify that the graph of Berlin in Figure 1.3 cannot be colored with
three colors. (Hint: Instead of evaluating the chromatic polynomial,
try to find a simple subgraph that is not 3-colorable.)

1.5 Show that if G has c connected components, then nc divides the poly-
nomial χG(n).

1.6 D Complete the proof of Corollary 1.1.2: Let G be a loopless nonempty
graph on d nodes and χG(n) = cdn

d + cd−1n
d−1 + · · ·+ c0 its chromatic

polynomial. Then
(a) the leading coefficient cd = 1;
(b) the constant coefficient c0 = 0;
(c) (−1)d χG(−n) > 0.

1.7 Prove that every complete graph Kd (a graph with d nodes and all
possible edges between them) has exactly d! acyclic orientations.

1.8 Using a construction similar to the one in our proof of Proposition 1.3.1,
show that the chromatic polynomial of a given graph G can be written
as

χG(n) = ad

(
n

d

)
+ ad−1

(
n

d− 1

)
+ · · ·+ a1

(
n

1

)

for some (explicitly describable) nonnegative integers a1, a2, . . . , ad.
(This gives yet another proof of Proposition 1.1.1.)

1.9 In this exercise you will give a deletion–contraction proof of Theo-
rem 1.1.5.
(a) Verify that the deletion–contraction relation (1.1.1) implies for the

function χG(n) := (−1)d χG(−n) that

χG(n) = χG\e(n) + χG/e(n) .

(b) Define XG(n) as the number of compatible pairs of an acyclic
orientation ρ and an n-coloring c. Show XG(n) satisfies the same
deletion–contraction relation as χG(n).

(c) Infer that χG(n) = XG(n) by induction on |E|.
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1.10 The complete bipartite graph Kr,s is the graph on the node set
V = {1, 2, . . . , r, 1′, 2′, . . . , s′} and edges

E =
{
ij′ : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
.

Determine the chromatic polynomial χKr,s(n) for m, k ≥ 1. (Hint:
Proper n-colorings of Kr,s correspond to pairs (f, g) of maps f : [r]→ [n]
and g : [s]→ [n] with disjoint ranges.)

1.11 D Prove Proposition 1.2.1: The flow-counting function ϕG(n) is inde-
pendent on the orientation of G.

1.12 D Let G be a connected planar graph with dual G∗. By reversing the
steps in our proof before Proposition 1.2.2, show that every (nowhere-
zero) Zn-flow f on G∗ naturally gives rise to n different (proper) n-
colorings on G.

1.13 D Prove Proposition 1.2.4: If G is a bridgeless connected graph, then
ϕG(n) agrees with a monic polynomial of degree |E| − |V | + 1 with
integer coefficients.

1.14 D Let G = (V,E) be a graph, and let n be a positive integer. An n-flow
is a function g : E → Z with −n < g(e) < n such that conservation of
flow holds at every node of G. The n-flow is nowhere zero if g(e) 6= 0
for all e ∈ E.
(a) Show that if G has a nowhere-zero n-flow, then G has a nowhere-zero

Zn-flow.
(b) For a nowhere-zero Zn-flow f , define g : E → [−(n− 1), n− 1] such

that g(e) is congruent to f(e) modulo n. The conservation of flow
of g is not necessarily satisfied at each node. The absolute value of
the different between incoming and outgoing flow at v is called the
excess.
An augmenting path from a node u to a node v is a path u =
u0u1 . . . ur = v in the undirected graph G such that ui−1 → ui is
a directed edge in ρG if and only if g(ui−1ui) > 0. Let h : E →
{−1, 0, 1} be the function such that h(e)g(e) > 0 if e is on the path
and h(e) = 0 otherwise. Show that g+nh : E → Z still takes values
in the interval [−(n − 1), n − 1] and reduces the excess at some
node.

(c) Prove that if G has a nowhere-zero Zn-flow, then G has a nowhere-
zero n-flow.

(d) Prove that

ϕG(n) 6= 0 implies ϕG(n+ 1) 6= 0 .

(e) Even stronger, prove that

ϕG(n) ≤ ϕG(n+ 1) .
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(This is nontrivial. But you will easily prove this after having read
Chapter 7.)

1.15 Let ρG = (V,E, ρ) be an oriented graph and n ≥ 2.
(a) Let f : E → Zn be a nowhere-zero Zn-flow and let e ∈ E. Show that

f naturally yields a nowhere-zero Zn-flow on the contraction ρG/e.
(b) For S ⊆ V let Ein(S) be the in-coming edges, i.e., u → v with

v ∈ S and u ∈ V \ S, and let Eout(S) be the out-going edges.
Show that f : E → Zn is a nowhere-zero Zn-flow if and only if

∑

e∈Ein(S)

f(e) =
∑

e∈Eout(S)

f(e)

for all S ⊆ V . (Hint: For the sufficiency, contract all edges in S
and V \ S.)

(c) Infer that ϕG ≡ 0 if G has a bridge.

1.16 Discover the notion of tensions.

1.17 Consider the Petersen graph G pictured in Figure 1.17.

Figure 1.17. The Petersen graph.

(a) Show that ϕG(4) = 0.
(b) Show that the polynomial ϕG(n) has nonreal roots.
(c) Construct a planar4 graph whose flow polynomial has nonreal roots.

(Hint: Think of the dual coloring question.)

1.18 D Prove Proposition 1.3.3: Let ρG = (V,E, ρ) be an acyclic graph and
Π = Π(ρG) the induced poset. A map c : V → [n] is strictly compatible
with the orientation ρ of G if and only if c is a strictly order-preserving
map Π→ [n].

1.19 Compute Ω◦D10
(n).

1.20 D Show that ΩΠ(n) is a polynomial in n.

4The Petersen graph is a (famous) example of a nonplanar graph.
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1.21 D Let S = conv
{(

a1

b1

)
,
(
a2

b2

)}
, with a1, a2, b1, b2 ∈ Z, be a lattice seg-

ment.5 Show that

ehrS(n) = Ln+ 1 ,

where L = | gcd(a2 − a1, b2 − b1)|, the lattice length of S. Conclude
further that − ehrS(−n) equals the number of lattice points of nS other
than the endpoints, in other words,

(−1)dimS ehrS(−n) = ehrS◦(n) .

Can you find an explicit formula for ehrS(n) when S is a segment with
rational endpoints?

1.22 Let O be a closed polygonal lattice path, i.e., the union of lattice
segments, such that each vertex on O lies on precisely two such segments,
and that topologically O is a closed curve. Show that

ehrO(n) = Ln ,

where L is the sum of the lattice lengths of the lattice segments that
make up O or, equivalently, the number of lattice points on O.

1.23 D Let v1,v2 ∈ Z2, and let Q be the half-open parallelogram

Q := {λv1 + µv2 : 0 ≤ λ, µ < 1} .
Show (for example, by tiling the plane by translates of Q) that

ehrQ(n) = An2,

where A = |det ( a cb d )| .
1.24 A lattice triangle conv{v1,v2,v3} is unimodular if v2−v1 and v3−v1

form a lattice basis of Z2.
(a) Prove that a lattice triangle is unimodular if and only if it has

area 1
2 .

(b) Conclude that for any two unimodular triangles 41 and 42, there
exist T ∈ GL2(Z) and x ∈ Z2 such that 42 = T (41) + x.

(c) Compute the Ehrhart polynomials of all unimodular triangles.
(d) Show that every lattice polygon can be triangulated into unimodular

triangles.
(e) Use the above facts to give an alternative proof of Theorem 1.4.1.

1.25 Let P ⊂ R2 be a lattice polygon, and denote the area of P by A, the
number of integer points inside the polygon P by I, and the number of
integer points on the boundary of P by B. Prove that

A = I + 1
2B − 1

5We use the notation conv(V ) to denote the convex hull of a set V of vectors.
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(a famous formula due to Georg Alexander Pick). Deduce from this
formulas for the coefficients of the Ehrhart polynomial of P.

1.26 Let P,Q ⊂ R2 be lattice polygons, such that Q is contained in the
interior of P. Generalize Exercise 1.25 (i.e., both a version of Pick’s
theorem and the accompanying Ehrhart polynomial) to the “polygon
with a hole” P− Q. Generalize your formulas to a lattice polygon with
n “holes” (instead of one).

1.27 Let f(t) = adt
d + ad−1t

d−1 + · · · + a0 ∈ R[t] be a polynomial such
that f(n) is an integer for every integer n > 0. Give a proof or a
counterexample for the following statements:
(a) All coefficients aj are integers.
(b) f(n) is an integer for all n ∈ Z.
(c) If (−1)kf(−n) ≥ 0 for all n > 0, then k = deg(f).

1.28 Suppose f(t) = adt
d + ad−1t

d−1 + · · ·+ a0 ∈ R[t] is a polynomial with
ad > 0. Prove that, if all roots of f(t) have negative real parts, then
each aj > 0.





Chapter 2

Partially Ordered Sets

Life is the twofold internal movement of composition and decomposition at once
general and continuous.
Henri de Blainville

Partially ordered sets, posets for short, made an appearance twice so far.
First (in Section 1.3) as a class of interesting combinatorial objects with a
rich counting theory intimately related to graph colorings and, second (in
Section 1.4), as a natural book-keeping structure for geometric subdivisions
of polygons. In particular, the stage for the principle of overcounting-and-
correcting, more commonly referred to as inclusion–exclusion, is naturally
set in the theory of posets. Our agenda in this chapter is twofold: we need to
introduce machinery that will be crucial tools in later chapters, but we will
also prove our first combinatorial reciprocity theorems in a general setting,
from first principles; later on we will put these theorems in a geometric
context. We recall that a poset Π is a finite set with a binary relation �Π

that is reflexive, transitive, and antisymmetric.

2.1. Order Ideals and the Incidence Algebra

We now return to Section 1.3 and the problem of counting (via ΩΠ(n))
order-preserving maps φ : Π→ [n] which satisfy

a �Π b =⇒ φ(a) ≤ φ(b)

for all a, b ∈ Π. The preimages φ−1(j), for j = 1, 2, . . . , n, partition Π and
uniquely identify φ, but from a poset point of view they do not have enough
structure. A better perspective comes from the following observation: let
φ : Π→ [2] be an order-preserving map into the 2-chain, and let I := φ−1(1).
Now

y ∈ I and x �Π y =⇒ x ∈ I .

29
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A subset I ⊆ Π with this property is called an order ideal of Π. Conversely,
if I ⊆ Π is an order ideal, then φ : Π→ [2] with φ−1(1) = I defines an order
preserving map. Thus, order-preserving maps φ : Π → [2] are in bijection
with the order ideals of Π. Dually, the complement F = Π \ I of an order
ideal I is characterized by the property that x � y ∈ F implies x ∈ F . Such
a set is called a dual order ideal or filter of Π. This reasoning proves the
following observation.

Proposition 2.1.1. Let Π be a finite poset. Then ΩΠ(2) is the number of
order ideals (or, equivalently, filters) of Π.

To characterize general order-preserving maps into chains in terms of Π,
we note that every order ideal of [n] is principal, that is, every order ideal
I ⊆ [n] is of the form

I = {j ∈ [n] : j ≤ k} = [k]

for some k. In particular, if φ : Π→ [n] is order preserving, then the preimage
φ−1([k]) of an order ideal [k] ⊆ [n] is an order ideal of Π, and this gives us
the following bijection.

Proposition 2.1.2. order-preserving maps φ : Π→ [n] are in bijection with
multichains1 of order ideals

∅ = I0 ⊆ I1 ⊆ · · · ⊆ In = Π

of length n. The map φ is strictly order preserving if and only if Ij \ Ij−1 is
an antichain for all j = 1, 2, . . . , n.

Proof. We need to argue only the second part. We observe that φ is strictly
order preserving if and only if there are no elements x ≺ y with φ(x) = φ(y).
Hence, φ is strictly order preserving if and only if φ−1(j) = Ij \ Ij−1 does
not contain a pair of comparable elements. �

The collection J (Π) of order ideals of Π is itself a poset under set inclusion,
which we call the lattice of order ideals or the Birkhoff lattice2 of Π.
What we just showed is that ΩΠ(n) counts the number of multichains of length
n in J (Π) \ {∅,Π}. The next problem we address is counting multichains in
general posets. To that end, we introduce an algebraic gadget: the incidence
algebra I(Π) is a C-vector space spanned by those functions α : Π×Π→ C
that satisfy

α(x, y) = 0 whenever x 6� y .
We define the (convolution) product of α, β : Π×Π→ C as

(α ∗ β)(r, t) :=
∑

r�s�t
α(r, s)β(s, t) ,

1A multichain is a sequence of comparable elements, where we allow repetition.
2The reason for this terminology will become clear shortly.
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and together with δ ∈ I(Π) defined by

δ(x, y) :=

{
1 if x = y,

0 if x 6= y,
(2.1.1)

this gives I(Π) the structure of an associative C-algebra with unit δ. (If
this is starting to feel like linear algebra, you are on the right track.) A
distinguished role is played by the zeta function ζ ∈ I(Π) defined by

ζ(x, y) :=

{
1 if x � y,
0 otherwise.

For the time being, the power of zeta functions lies in their powers.

Proposition 2.1.3. Let Π be a finite poset and x, y ∈ Π. Then ζn(x, y)
equals the number of multichains

x = x0 � x1 � · · · � xn = y

of length n.

Proof. For n = 1, we have ζ(x, y) = 1 if and only if x = x0 � x1 = y.
Arguing by induction, we assume that ζn−1(x, y) is the number of multichains
of length n− 1 for all x, y ∈ Π, and we calculate

ζn(x, z) = (ζn−1 ∗ ζ)(x, z) =
∑

x�y�z
ζn−1(x, y) ζ(y, z) .

Each summand on the right is the number of multichains of length n − 1
ending in y that can be extended to z. �

x1

x2 x3 x4

x5

Figure 2.1. A sample poset.

As an example, the zeta function for the poset in Figure 2.1 is given in
matrix form as 



1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1



.
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We encourage you to see Proposition 2.1.3 in action by computing powers of
this matrix.

As a first milestone, Proposition 2.1.3 implies the following representation
of the order polynomial of Π which we introduced in Section 1.3.

Corollary 2.1.4. For a finite poset Π, let ζ be the zeta function of J (Π),
the lattice of order ideals in Π. The order polynomial associated with Π is
given by

ΩΠ(n) = ζn(∅,Π) .

Identifying ΩΠ(n) with the evaluation of a power of ζ does not stipulate
that ΩΠ(n) is the restriction of a polynomial (which we know to be true from
Exercise 1.20) but this impression is misleading: let η ∈ I(Π) be defined by

η(x, y) :=

{
1 if x ≺ y,
0 otherwise.

(2.1.2)

Then ζ = δ + η and hence, using the binomial theorem (Exercise 2.1),

ζn(x, y) = (δ + η)n(x, y) =
n∑

k=0

(
n

k

)
ηk(x, y) . (2.1.3)

Exercise 2.5 asserts that the sum on the right stops at the index k = |Π| and
is thus a polynomial in n of degree ≤ |Π|.

The arguments in the preceding paragraph are not restricted to posets
formed by order ideals, but hold more generally for every poset Π that has
a minimum 0̂ and a maximum 1̂, i.e., 0̂ and 1̂ are elements in Π that
satisfy 0̂ � x � 1̂ for all x ∈ Π. (For example, the Birkhoff lattice J (Π) has
minimum ∅ and maximum Π.) This gives the following.

Proposition 2.1.5. Let Π be a finite poset with minimum 0̂, maximum 1̂,
and zeta function ζ. Then ζn(0̂, 1̂) is a polynomial in n.

To establish the reciprocity theorem for ΩΠ(n) (Theorem 1.3.2), we
would like to evaluate ζn(∅,Π) at negative integers n, so we first need to
understand when an element α ∈ I(Π) is invertible. To this end, we pause
and make the incidence algebra a bit more tangible.

Choose a linear extension of Π, that is, we label the d = |Π| elements
of Π by p1, p2, . . . , pd such that pi � pj implies i ≤ j. (That such a labeling
exists is the content of Exercise 2.2.) This allows us to identify I(Π) with a
subalgebra of the upper triangular (d× d)-matrices by setting

α := (α(pi, pj))1≤i,j≤d .

For example, for the poset D10 given in Figure 1.12, a linear extension is
given by (p1, p2, . . . , p10) = (1, 5, 2, 3, 7, 10, 4, 6, 9, 8) and the incidence algebra
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consists of matrices of the form




1 5 2 3 7 10 4 6 9 8

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
7 ∗

10 ∗
4 ∗ ∗
6 ∗
9 ∗
8 ∗




,

where the stars are the possible nonzero entries for the elements in I(Π). This
linear-algebra perspective affords a simple criterion for when α is invertible;
see Exercise 2.4.

Proposition 2.1.6. An element α ∈ I(Π) is invertible if and only if

α(x, x) 6= 0 for all x ∈ Π .

2.2. The Möbius Function and Order Polynomial
Reciprocity

We now return to the stage set up by Corollary 2.1.4, namely,

ΩΠ(n) = ζnJ (Π)(∅,Π) .

We would like to use this identity to compute ΩΠ(−n); thus we need to invert
the zeta function of J (Π). Such an inverse exists by Proposition 2.1.6, and
we call µ := ζ−1 the Möbius function. For example, the Möbius function
of the poset in Figure 2.1 is given in matrix form as




1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1



.

It is apparent that one can compute the Möbius function recursively, and
in fact, unravelling the condition that (µ ∗ ζ)(x, z) = δ(x, z) for all x, z ∈ Π
gives

µ(x, z) = −
∑

x≺y�z
µ(y, z) = −

∑

x�y≺z
µ(x, y) for x ≺ z, and

µ(x, x) = 1 .

(2.2.1)
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As a notational remark, the functions ζ, δ, µ, and η depend on the
underlying poset Π, so we will sometimes write ζΠ, δΠ, etc., to make this
dependence clear. For an example, we consider the Möbius function of the
Boolean lattice Bd, the partially ordered set of all subsets of [d] ordered
by inclusion. For two subsets S ⊆ T ⊆ [d], we have µBd(S, T ) = 1 whenever
S = T and µBd(S, T ) = −1 whenever |T \ S| = 1. Although this provides
little data, we venture that

µBd(S, T ) = (−1)|T\S|. (2.2.2)

We dare you to prove this from first principles, or to appeal to the results in
Exercise 2.6 after realizing that Bd is the d-fold product of a 2-chain.

Towards proving the combinatorial reciprocity theorem for order polyno-
mials (Theorem 1.3.2) we note the following.

Proposition 2.2.1.

ΩΠ(−n) = ζ−nJ (∅,Π) = µnJ (∅,Π) ,

where J = J (Π) is the Birkhoff lattice of Π.

This proposition is strongly suggested by our notation but nevertheless
requires a proof.

Proof. Let d = |Π|. By Exercise 2.5,

ζ−1 = (δ + η)−1 = δ − η + η2 − · · ·+ (−1)dηd.

If we now take powers of ζ−1 and again appeal to Exercise 2.5, we calculate

ζ−n =
d∑

k=0

(−1)k
(
n+ k − 1

k

)
ηk.

Thus the expression of ζn as a polynomial given in (2.1.3), together with the
fundamental combinatorial reciprocity for binomial coefficients (0.0.2) given
in the very beginning of this book, proves the claim. �

Expanding µnJ into the n-fold product of µJ with itself, the right-hand
side of the identity in Proposition 2.2.1 is

µnJ (∅,Π) =
∑

µJ (I0, I1)µJ (I1, I2) · · ·µJ (In−1, In) , (2.2.3)

where the sum is over all multichains of order ideals

∅ = I0 ⊆ I1 ⊆ · · · ⊆ In = Π

of length n. Our next goal is thus to understand the evaluation µJ (K,M),
where K ⊆M ⊆ Π are order ideals. This evaluation depends only on

[K,M ] := {L ∈ J : K ⊆ L ⊆M} ,
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the interval from K to M in the Birkhoff lattice J . Moreover, we call
two posets Π and Π′ isomorphic (and write Π ∼= Π′) if there is a bijection
φ : Π→ Π′ that satisfies x �Π y ⇐⇒ φ(x) �Π′ φ(y).

Theorem 2.2.2. Let Π be a finite poset and K ⊆ M order ideals in J =
J (Π). Then

µJ (K,M) =

{
(−1)|M\K| if M \K is an antichain,

0 otherwise.

In the proof we want to use induction—not on the number of elements
but on the length of Π. A chain in Π is a collection of elements C =
{c0, c1, . . . , ck} such that c0 ≺Π c1 ≺Π · · · ≺Π ck. The length of the chain C
is k − 1. The chain C is saturated or unrefineable if ci−1 ≺ ci is a cover
relation for all i = 1, . . . , k. The chain is maximal if c0 and ck are minimal
and maximal elements of Π. The length of a poset is the maximal length of
a (maximal) chain in Π.

Proof. We first consider the (easier) case that M \K is an antichain. In
this case K ∪ A is an order ideal for all A ⊆ M \K. In other words, the
interval [K,M ] is isomorphic to the Boolean lattice Br for r = |M \K| and
hence, with (2.2.2), we conclude µJ (K,M) = (−1)r.

The case that M \K contains comparable elements is a bit more tricky.
We argue by induction on the length of the interval [K,M ]. The base case
is given by the situation that M \ K consists of exactly two comparable
elements a ≺ b. Hence, [K,M ] = {K ≺ K ∪ {a} ≺M} and we compute

µJ (K,M) = −µJ (K,K)− µJ (K,K ∪ {a}) = −1− (−1) = 0 .

For the induction step we use (2.2.1), i.e.,

µJ (K,M) = −
∑

µJ (K,L) ,

where the sum is over all order ideals L such that K ⊆ L ⊂ M . By the
induction hypothesis, µJ (K,L) is zero unless L \K is an antichain and thus

µJ (K,M) = −
∑{

(−1)|L\K| :
K ⊆ L ⊂M order ideal,
L \K is an antichain

}
,

where we have used the already-proven part of the theorem. Now let m ∈
M \K be a minimal element. The order ideals L in the above sum can be
partitioned into those containing m and those that do not. Both parts of this
partition have the same size: if m 6∈ L, then L ∪ {m} is also an order ideal;
if m ∈ L, then L \ {m} is an admissible order ideal as well. (You should
check this.) Hence, the positive and negative terms cancel each other and
µJ (K,M) = 0. �
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With this we can give a (purely combinatorial) proof of Theorem 1.3.2,
the reciprocity theorem for order polynomials.

Proof of Theorem 1.3.2. By Theorem 2.2.2, the right-hand side of (2.2.3)

equals (−1)|Π| times the number of multichains

∅ = I0 ⊆ I1 ⊆ · · · ⊆ In = Π

of order ideals such that Ij \ Ij−1 is an antichain for j ∈ [n]. By Proposi-

tion 2.1.2 this is exactly (−1)|Π|Ω◦Π(n), and this proves Theorem 1.3.2. �

Our proof gives us some additional insights into the structure of ΩΠ(n).

Corollary 2.2.3. Let Π be a finite poset. Then ΩΠ(−k) = 0 for all 0 < k <
m if and only if Π contains an m-chain.

Proof. Since Ω◦Π(k) is weakly increasing, it suffices to assume that m is
the length of Π. Let C = {c1 ≺ · · · ≺ cm+1} be a chain in Π of maximal
length. Then i 7→ ci defines a strictly order-preserving injection [m+ 1] ↪→ Π.
We can compose this injection with a given strictly order-preserving map
Π→ [k] to create a strictly order-preserving injection [m+ 1] ↪→ [k]; however,
such an injection exists only if k ≥ m+ 1.

To show that Ω◦Π(m+1) > 0, set I0 := ∅ and define a sequence I0 ⊂ I1 ⊂
· · · ⊂ Ir = Π by the following rule. Define Ij := Ij−1∪Mj , where Mj consists
of the minimal elements of Π \ Ij−1. You should convince yourself that this
is a sequence of order ideals and that Ij \ Ij−1 is a nonempty antichain
for all j ≥ 1. In particular C ∩ (Ij \ Ij−1) = {cj} and hence r = m + 1.
Proposition 2.1.2 now implies that there is a strictly order-preserving map
Π→ [m+ 1], which completes the proof. �

2.3. Zeta Polynomials, Distributive Lattices, and Eulerian
Posets

We now take a breath and see how far we can generalize Theorem 1.3.2 (by
weakening the assumptions). Our starting point is Proposition 2.1.5: for a
poset Π that has a minimum 0̂ and maximum 1̂, the evaluation

ZΠ(n) := ζn(0̂, 1̂)

is a polynomial in n, the zeta polynomial of Π. For example, if we
augment the poset D10 in Figure 1.12 by a maximal element (think of the
number 0, which is divisible by all positive integers), Exercise 2.10 gives the
accompanying zeta polynomial as

ZΠ(n) = 1
24n

4 + 13
12n

3 + 23
24n

2 − 13
12n . (2.3.1)

In analogy with the combinatorial reciprocity theorem for order polynomials
(Theorem 1.3.2)—which are, after all, zeta polynomials of posets formed by
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order ideals—we now seek interpretations for evaluations of zeta polynomials
at negative integers. Analogous to Proposition 2.2.1,

ZΠ(−n) = ζ−n(0̂, 1̂) = µn(0̂, 1̂) ,

where µ is the Möbius function of Π. Our sample zeta function (2.3.1) illus-
trates that the quest for interpretations at negative evaluations is nontrivial:
here we compute

ZΠ(−1) = 1 and ZΠ(−2) = −2

and so any hope of a simple counting interpretation of ZΠ(−n) or −ZΠ(−n)
is shattered. On a more optimistic note, we can repeat the argument
behind (2.2.3) for a general poset Π:

ZΠ(−n) = µn(0̂, 1̂) =
∑

µ(x0, x1)µ(x1, x2) · · · µ(xn−1, xn) , (2.3.2)

where the sum is over all multichains

0̂ = x0 � x1 � · · · � xn = 1̂

of length n. The key property that put (2.2.3) to work in our proof of
Theorem 2.2.2 (and subsequently, our proof of Theorem 1.3.2) was that each
summand on the right-hand side of (2.2.3) was either 0 or the same constant.
We thus seek a class of posets where a similar property holds in (2.3.2).

For two elements x and y in a poset Π, consider all least upper bounds
of x and y, i.e., all z ∈ Π such that x � z and y � z and there is no w ≺ z
with the same property. If such a least upper bound of x and y exists and is
unique, we call it the join of x and y and denote it by x ∨ y. Dually, if a
greatest lower bound of x and y exists and is unique, we call it the meet of
x and y and denote it by x ∧ y.

A lattice3 is a poset in which meets and joins exist for any pair of
elements. Note that every finite lattice will necessarily have a minimum 0̂
and a maximum 1̂. A lattice Π is distributive if meets and joins satisfy the
distributive laws

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) and (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
for all x, y, z ∈ Π. The reason we are interested in distributive lattices is
the following famous result, often called Birkhoff’s theorem, whose proof is
subject to Exercise 2.13.

Theorem 2.3.1. Every finite distributive lattice is isomorphic to the poset
of order ideals of some poset.

3This lattice is not to be confused with the integer lattice Z2 that made an appearance in
Section 1.4 and whose higher-dimensional cousins will play a central role in later chapters. Both

meanings of lattice are well furnished in the mathematical literature; we hope that they will not
be confused in this book.
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Next we consider some of the consequences of this theorem. Given a finite
distributive lattice Π, we now know that the Möbius-function values on the
right-hand side of (2.3.2) can be interpreted as stemming from the poset of
order ideals of some other poset. But this means that we can apply Theorem
2.2.2 in precisely the same way we used it in our proof of Theorem 1.3.2: the
right-hand side of (2.3.2) becomes (−1)|Π| times the number of multichains
0̂ = x0 � x1 � · · · � xn = 1̂ such that the corresponding differences of order
ideals are all antichains. A moment’s thought reveals that this last condition
is equivalent to the fact that each interval [xj , xj+1] is a Boolean lattice.
What we have just proved is a combinatorial reciprocity theorem which, in a
sense, generalizes that of order polynomials (Theorem 1.3.2).

Theorem 2.3.2. Let Π be a finite distributive lattice. Then (−1)|Π|ZΠ(−n)
equals the number of multichains 0̂ = x0 � x1 � · · · � xn = 1̂ such that each
interval [xj , xj+1] is a Boolean lattice.

There is another class of posets that comes with a combinatorial reci-
procity theorem stemming from (2.3.2). To introduce it, we need a few more
definitions. A finite poset Π is graded if every maximal chain in Π has
the same length r, which we call the rank of Π. The length lΠ(x, y) of
two elements x, y ∈ Π is the length of a maximal chain in [x, y]. A graded
poset that has a minimal and a maximal element is Eulerian if its Möbius
function is

µ(x, y) = (−1)lΠ(x,y).

We have seen examples of Eulerian posets earlier, for instance, Boolean
lattices; another important class of Eulerian posets are formed by faces of
polyhedra, which we will study in the next chapter.

What happens with (2.3.2) when the underlying poset Π is Eulerian? In
this case, the Möbius-function values on the right-hand side are determined
by the interval length, and so each summand on the right is simply (−1)r,
where r is the rank of Π. But then (2.3.2) says that ZΠ(−n) equals (−1)r

times the number of multichains of length n, which is ζn(0̂, 1̂) = ZΠ(n). This
argument yields a reciprocity theorem that relates the zeta polynomial of Π
to itself.

Theorem 2.3.3. Let Π be a finite Eulerian poset of rank r. Then

ZΠ(−n) = (−1)r ZΠ(n) .

We will return to this result in connection with the combinatorial struc-
ture of polytopes.

2.4. Inclusion–Exclusion and Möbius Inversion

Our approach to Möbius functions in the proof of Theorem 1.3.2 is a bit
uncommon. Usually, Möbius functions are introduced as a sophisticated
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version of overcounting and correcting. We too follow this approach by
starting with what is known as the principle of inclusion–exclusion.

Let A and B be two finite sets. Then

|A ∪B| = |A|+ |B| − |A ∩B| .
If we have n finite sets A1, A2, . . . , An, then using the fact that ∪ is associative
and ∩ distributes over ∪ gives

|A1 ∪A2 ∪ · · · ∪An| =
∑

∅6=J⊆[n]

(−1)|J |−1 |AJ | , (2.4.1)

where we set AJ :=
⋂
j∈J Aj ; see Exercise 2.16. If A1, . . . , An are subsets of

some ground set A, then we can go one step further:

|A \ (A1 ∪ · · · ∪An)| = |A| − |A1 ∪ · · · ∪An| =
∑

J⊆[n]

(−1)|J | |AJ | , (2.4.2)

where A∅ := A. The simple identities (2.4.1) and (2.4.2) form the basis for
the principle of inclusion–exclusion and the theory of Möbius functions.

The typical scenario in which we use (2.4.1) or (2.4.2) is the following:
Imagine that A is a set of combinatorial objects and Aj ⊆ A is the collection
of objects having the property j. Then (2.4.2) gives a formula for the number
of objects having none of the properties 1, 2, . . . , n. This is of value provided
we can write down |AJ | explicitly.

Here is an example involving the chromatic polynomial χG(n) of a graph
G = (V,E), which we introduced in Section 1.1. For a finite set T , let sG(T )
be the number of proper colorings of G with colors in T such that each color
is used at least once. In other words, sG(T ) is the number of surjective maps
c : V � T such that c(u) 6= c(v) for all uv ∈ E. Now, for t ∈ T , let At be
the collection of proper colorings c : V → T that miss at least the color t,
i.e., t 6∈ c(V ). Since the number of colorings with colors in T depends only
on the number of colors, |AJ | = χG(|T | − |J |) for all J ⊆ T , and so

sG(T ) =
∑

J⊆T
(−1)|J ||AJ | =

∑

J⊆T
(−1)|J |χG(|T | − |J |)

=

|T |∑

r=0

(|T |
r

)
(−1)rχG(|T | − r) .

Here is another example: Let A be the collection of all d-multisubsets
of [n] and let Ai be the collection of multisubsets such that the element i

appears at least twice. Then |A∅| = |A| =
(
n+d−1

d

)
and, since we can remove

two copies of i from each multisubset in Ai,

|Ai| =

(
n+ (d− 2)− 1

d− 2

)
.
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Consequently |AJ | =
(n+d−2|J |−1

d−2|J |
)

for each J ⊆ [n]. The principle of inclusion–

exclusion (2.4.2) leads to
(
n

d

)
= |A \ (A1 ∪ · · · ∪An)| =

n∑

i=0

(−1)i
(
n+ d− 2i− 1

d− 2i

)(
n

i

)
.

Depending on your personal preference, this might not be a pretty formula,
but it certainly gives a nontrivial relation among binomial coefficients which
is tricky to prove by other means. See Exercise 2.18 for one further prominent
application of (2.4.2).

In both examples, the key was that it was easy enough to write down the
number of objects having at least property j whereas the number of objects
having only property j is hard. Moreover, if we are only concerned about
counting objects, we can abstract away the collection of objects AJ and only
work with numbers. We recall that Bn is the Boolean lattice consisting of all
subsets of [n] partially ordered by inclusion. Let f= : Bn → C be a function.
We can then define a new function f≥ : Bn → C by

f≥(J) :=
∑

K⊇J
f=(K)

for all J ⊆ [n]. Can we recover f= from the knowledge of f≥? To relate
to the setting above, we had f≥(I) := |AI | and (2.4.2) gave us a way to
compute f=(∅) = |A \ (A1 ∪ · · · ∪An)|.
Proposition 2.4.1. For I ⊆ [n],

f=(I) =
∑

J⊇I
(−1)|J\I|f≥(J) .

Proof. The proof is a simple computation. We insert the definition of f≥(K)
into the right-hand side of the sought-after identity:

∑

J⊇I
(−1)|J\I|f≥(J) =

∑

J⊇I
(−1)|J\I|

∑

K⊇J
f=(K) .

The sets K in the second sum are supersets of I, and so we may change the
order of summation to obtain∑

J⊇I
(−1)|J\I|f≥(J) =

∑

K⊇I
f=(K)

∑

I⊆J⊆K
(−1)|J\I|.

In Exercise 2.19 you will show that the interior sum on the right-hand side
equals 1 if I = K and 0 if I ( K. �

The natural next step is to generalize the setup to an arbitrary finite
poset Π. For a function f= : Π→ C, we define f≥ : Π→ C by

f≥(b) :=
∑

c�b
f=(c) . (2.4.3)
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Analogously to our question in the Boolean lattice case, we can now ask if
we can recover f= from the knowledge of f≥. The right context in which to
ask this question is that of the incidence algebra.

Let CΠ = {f : Π → C} be the C-vector space of functions on Π. The
incidence algebra I(Π) operates on CΠ as follows: for f ∈ CΠ and α ∈ I(Π),
we define a new function αf ∈ CΠ by

(αf)(b) :=
∑

c�b
α(b, c)f(c) . (2.4.4)

That is, I(Π) is a ring of operators on CΠ, and

f≥ = ζΠ f= ,

where ζΠ ∈ I(Π) is the zeta function of Π. Hence, the question of recover-
ability of f= from f≥ is that of the invertibility of ζΠ. That, however, we
sorted out in Proposition 2.1.6, and we obtain what is referred to as Möbius
inversion.

Theorem 2.4.2. Let Π be a poset with Möbius function µΠ. Then for any
two functions f=, f≥ ∈ CΠ,

f≥(b) =
∑

c�b
f=(c) if and only if f=(a) =

∑

b�a
µΠ(a, b)f≥(b) .

Likewise,

f≤(b) =
∑

a�b
f=(a) if and only if f=(c) =

∑

b�c
f≤(b)µΠ(b, c) .

Proof. It is instructive to do the yoga of Möbius inversion at least once: if
f≥ satisfies the left-hand side of the first statement, then
∑

b�a
µΠ(a, b)f≥(b) =

∑

b�a
µΠ(a, b)

∑

c�b
f=(c) =

∑

c�a
f=(c)

∑

a�b�c
µΠ(a, b) .

By (2.2.1), the last inner sum equals 1 if a = c and 0 otherwise. �

In a nutshell, Möbius inversion is what we implicitly used in our treatment
of Ehrhart theory for lattice polygons in Section 1.4. The subdivision of a
lattice polygon P into triangles, edges, and vertices is a genuine poset under
inclusion. The function f=(P) is the number of lattice points in P ⊆ R2 and
we were interested in the evaluation of f=(P) = (µf≤)(P).4

We conclude this section with a nontrivial application of Möbius inversion.
Let G = (V,E) be a simple graph. A flat of G is a set of edges F ⊆ E such
that for any e ∈ E \ F , the number of connected components of the graph

4 You might notice, upon re-reading Section 1.4, that we used a µ with only one argument,

but that was simply for ease of notation: we give the full picture in our proof of Theorem 5.2.3 in
Chapter 5.
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G[F ] := (V, F ) is strictly larger than that of G[F ∪ {e}]. Let L(G) be the
collection of flats of G ordered by inclusion; Figure 2.2 shows an example.

a

b d
c

e
∅

{a} {b} {c} {d} {e}

{a, b, c} {a, d} {b, e} {a, e} {b, d} {c, d, e}

{a, b, c, d, e}

Figure 2.2. A sample graph and its flats.

Let c : V → [n] be a (not necessarily proper) coloring of G, and define

FG(c) := {uv ∈ E : c(u) = c(v)} . (2.4.5)

Then FG(c) is a flat and, as you will prove in Exercise 2.20, every flat
F ∈ L(G) arises that way. We observe that c is a proper coloring precisely
when FG(c) = ∅.

For n ≥ 1, we define the function fn= : L(G) → Z such that fn=(F ) is
the number of n-colorings c with FG(c) = F . In particular, the chromatic
polynomial of G is χG(n) = fn=(∅). This number is not so easy to determine.
However, by defining

fn≥(F ) :=
∣∣{c ∈ [n]V : F ⊆ FG(c)

}∣∣ ,
we can say more.

Proposition 2.4.3. Let G = (V,E) be a simple graph and F ∈ L(G). Then

fn≥(F ) = nκ(G[F ]),

where κ(G[F ]) is the number of connected components of G[F ].

Proof. Let c : V → [n] be a coloring. Then F ⊆ FG(c) if and only if c is
constant on every connected component of G[F ]. Hence, fn≥(F ) equals the
number of choices of one color per connected component. �

By Theorem 2.4.2,

χG(n) = fn=(∅) =
∑

F∈L(G)

µL(G)(∅, F )nκ(G[F ]).

This shows again that χG(n) is a polynomial and, since F = ∅ maximizes the
number of connected components of G[F ], the polynomial is of degree |V |,
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and so we obtain another (completely different) proof of Proposition 1.1.1.
We will return to the Möbius function of L(G) in Section 7.2.

The original setup for inclusion–exclusion furnishes a natural class of
posets. For a collection A1, A2, . . . , An ⊆ A of sets, the intersection poset
is

L = L(A1, . . . , An;A) :=

{
AI :=

⋂

i∈I
Ai : I ⊆ [n]

}
,

partially ordered by reverse containment. So the maximum of L is 1̂ =
A[n] = A1 ∩ · · · ∩ An whereas the minimum is 0̂ = A∅ = A. Of course, it
would be natural to order the subsets AI ⊆ A by inclusion. However, by
using reverse inclusion we have that for I, J ⊆ [n],

I ⊆ J implies AI �L AJ

and hence the map I 7→ AI is an order-preserving map from Bn to L. The
reverse implication does not hold in general—the collection of sets I that
give rise to the same AI = S ∈ L can be quite complicated. But there is
always a canonical set: for S ∈ L, we define

JS := {i ∈ [n] : S ⊆ Ai} .
We call a set J ⊆ [n] closed if J = JS for some S ∈ L. The proof of the
following simple but useful properties is outsourced to Exercise 2.22.

Lemma 2.4.4. Let L = L(A1, . . . , An;A) and S ∈ L. If AI = S for I ⊆ [n],
then I ⊆ JS. Moreover, for T ∈ L,

S � T ⇐⇒ JS ⊆ JT .

In particular, Lemma 2.4.4 implies that L is isomorphic to the subposet
of Bn given by closed subsets.

For intersection posets, the principle of inclusion–exclusion gives a pedes-
trian way to compute the Möbius function.

Theorem 2.4.5. Let L = L(A1, . . . , An;A) be an intersection poset. Then

µL(S, T ) =
∑

J⊆[n]
AJ=T

(−1)|J\JS |

for all S �L T .

Proof. Let f= : L → C be an arbitrary function on L and let f≥ : L → C
be given by

f≥(S) =
∑

T�S
f=(T ) .
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We can use f= to define a map F= : Bn → C by setting

F=(I) :=

{
f=(S) if I = IS for S ∈ L,
0 if I is not a closed set.

Now define F≥ : Bn → C by F≥(I) :=
∑

J⊇I F=(J). The second part of

Lemma 2.4.4 implies that f≥(S) = F≥(JS) for any S ∈ L. We can use
Proposition 2.4.1 to compute

F=(I) =
∑

J⊇I
(−1)|J\I|F≥(J) .

The first part of Lemma 2.4.4 implies that F≥(J) = f≥(AJ) for all J ⊆ [n].
For S ∈ L,

f=(S) = F=(JS) =
∑

J⊇JS
(−1)|J\JS |f≥(AI) =

∑

T�LS
f≥(T )

∑

J⊆[n]
AJ=T

(−1)|J\JS | .

In contrast, we can also apply Theorem 2.4.2 to f≥ to obtain

∑

T�LS
f≥(T )µL(S, T ) = f=(S) =

∑

T�LS
f≥(T )

∑

J⊆[n]
AJ=T

(−1)|J\JS | .

Since f= was chosen arbitrarily and since the Möbius function of a poset is
unique, this establishes the claim. �

We finish this section with one more way to compute the Möbius function
of a poset Π, Philip Hall’s theorem. Recall that the length of the chain
a0 ≺ a1 ≺ · · · ≺ ak is k, the number of links. We denote by ck(a, b) the
number of chains of length k of the form a = a0 ≺ a1 ≺ · · · ≺ ak = b.

Theorem 2.4.6. Let Π be a finite poset and a ≺Π b. Then

µΠ(a, b) = − c1(a, b) + c2(a, b)− c3(a, b) + · · · . (2.4.6)

Proof. A short and elegant proof can be given via the incidence algebra.
Recall that η ∈ I(Π) is given by η(a, b) = 1 if a ≺ b and 0 otherwise. Then
ζ = δ + η and we compute

µ(a, b) = ζ−1(a, b) = (δ + η)−1(a, b) = δ(a, b)− η1(a, b) + η2(a, b)− · · · .

By Exercise 2.5, the sum on the right-hand side is finite and ck(a, b) =
ηk(a, b). �
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Notes

Posets and lattices originated in the nineteenth century and became subjects
in their own right with the work of Garrett Birkhoff, who proved Theo-
rem 2.3.1 [31], and Philip Hall [80], whose Theorem 2.4.6 concluded our
chapter.

The oldest type of Möbius function is the one studied in number theory,
which is the Möbius function (in a combinatorial sense) of the divisor lattice
(see Exercise 2.7). The systematic study of Möbius functions of general
posets was initiated by Gian–Carlo Rota’s famous paper [146] which arguably
started modern combinatorics. Rota’s paper also put the idea of incidence
algebras on firm ground, but it can be traced back much further to Richard
Dedekind and Eric Temple Bell [170, Chapter 3]. Our proof of Theorem 2.2.2
implicitly makes use of Rota’s crosscut theorem. Determining the Möbius
function of a poset is difficult in general. Many techniques (including Rota’s
crosscut theorem) are explained in [107, Chapter 3] or [170].

As we already mentioned in Chapter 1, order polynomials were introduced
by Richard Stanley [160,166] as chromatic-like polynomials for posets and
we will see them again in Chapter 6 in geometric guise. Stanley introduced
the zeta polynomial of a poset in [162], the paper that inspired the title of
our book, and Theorem 2.3.3 appears as a side remark. Stanley also initiated
the study of Eulerian posets in [165], though, in his own words, “they had
certainly been considered earlier”.

For (much) more on posets, lattices, and Möbius functions, we recommend
[159] and [170, Chapter 3], which contains numerous open problems; we
mention one representative: let Πn be the set of all partitions (whose definition
is given in (4.4.1) in Chapter 4) of a fixed positive integer n. We order the
elements of Πn by refinement, i.e., given two partitions (a1, a2, . . . , aj) and
(b1, b2, . . . , bk) of n, we say that

(a1, a2, . . . , aj) � (b1, b2, . . . , bk)

if the parts a1, a2, . . . , aj can be partitioned into blocks whose sums are
b1, b2, . . . , bk. Find the Möbius function of Πn.

Exercises

2.1 D Let (R,+, ·) be a ring with unit 1. For every r ∈ R and d ≥ 0 verify
the binomial theorem

(1 + r)d =

d∑

j=0

(
d

j

)
rj .
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Show how this, in particular, implies (2.1.3).

2.2 D Show that every finite poset Π has a linear extension. (Hint: You
can argue graphically by reading the Hasse diagram or, more formally,
by induction on |Π|.)

2.3 A finite poset Π in which the meet of any two elements exists is called
a meet semilattice. Show that if a meet semilattice Π has a maximal
element, then Π is even a lattice.

2.4 D For α ∈ I(Π) with α(x, x) 6= 0 for all x ∈ Π, explicitly construct the
inverse α−1 ∈ I(Π).

2.5 D Let Π be a finite poset and recall that ζ = δ + η, where δ and η are
defined by (2.1.1) and (2.1.2), respectively.
(a) Show that for x � y,

ηk(x, y) = |{x = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xk−1 ≺ xk = y}| ,
the number of strict chains of length k in the interval [x, y].

(b) Infer that η is nilpotent, that is, ηk+1 ≡ 0 for k the length of Π.
(c) For x, y ∈ Π, do you know what (2δ − ζ)−1(x, y) counts?
(d) Show that ηnJ (Π)(∅,Π) equals the number of surjective order-pre-

serving maps Π→ [n].

2.6 D For posets (Π1,�1) and (Π2,�2), we define their (direct) product
with underlying set Π1 ×Π2 and partial order

(x1, x2) � (y1, y2) :⇐⇒ x1 �1 y1 and x2 �2 y2 .

(a) Show that every interval [(x1, x2), (y1, y2)] of Π1×Π2 is of the form
[x1, y1]× [x2, y2].

(b) Show that µΠ1×Π2((x1, x2), (y1, y2)) = µΠ1(x1, y1)µΠ2(x2, y2).
(c) Show that the Boolean lattice Bn is isomorphic to the n-fold product

of the chain [2], and conclude that for S ⊆ T ⊆ [n]

µBn(S, T ) = (−1)|T\S|.

2.7 (a) Let Π = [d], the d-chain. Show that for 1 ≤ i < j ≤ d

µ[d](i, j) =





1 if i = j,

−1 if i+ 1 = j,

0 otherwise.

(b) Write out the statement that Möbius inversion gives in this explicit
case and interpret it along the lines of the Fundamental Theorem
of Calculus.

(c) The Möbius function in number theory is the function µ : Z>0 →
Z defined for n ∈ Z>0 through µ(1) = 1, µ(n) = 0 if n is not
squarefree, that is, if n is divisible by a proper prime power, and
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µ(n) = (−1)r if n is the product of r distinct primes. Show that
for given n ∈ Z>0, the partially ordered set Dn of divisors of n is
isomorphic to a direct product of chains and use Exercise 2.6 to
verify that µ(n) = µDn(1, n).

2.8 Consider the poset Πd on 2d elements a1, a2, . . . , ad, b1, b2, . . . , bd, de-
fined by the relations

a1 ≺ a2 ≺ · · · ≺ ad and aj � bj for 1 ≤ j ≤ d ,
depicted in Figure 2.3.

ad

ad−1

a3

a2

a1

bd

bd−1

b3

b2

b1

Figure 2.3. The poset of Exercise 2.8.

(a) Show that the number of linear extensions of Πd is

(2d− 1)!! := (2d− 1)(2d− 3) · · · 3 · 1 .
(b) Show that the order polynomial satisfies the relation

ΩΠd+1
(n+ 1) = ΩΠd(n) + (n+ 1) ΩΠd−1

(n) .

(c) The Stirling numbers of the second kind S(n, k) count the
number of partitions of n objects into k nonempty, unordered parts.
Show that the following well-known recurrence holds:

S(n+ 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1) .

(d) Conclude that ΩΠd(n) = S(n+ d, n).
(e) The Stirling numbers of the first kind c(n, k) count the number

of permutations of n objects having k cycles and they satisfy the
recursion

c(n+ 1, k) = n c(n, k) + c(n, k − 1) .

Show that Ω◦Πd(n) = c(n, n− d).
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2.9 For fixed k, n ∈ Z>0 consider the map g : Bk → Z>0 given by

g(T ) = |T |n.
Show that

k!S(n, k) = (g µBk)([k]) ,

where S(n, k) is the Stirling number of the second kind. (Hint: k!S(n, k)
counts surjective maps [n]→ [k].)

2.10 D Compute the zeta polynomial of the poset D10 in Figure 1.12, ap-
pended by a maximal element.

2.11 Show that the zeta polynomial of the Boolean lattice Bd is ZBd(n) = nd.

2.12 D Given a poset Π with 0̂ and 1̂, show that ZΠ(n+ 1)− ZΠ(n) equals
the number of multichains

0̂ = x0 � x1 � · · · � xn ≺ 1̂ .

(Hint: Any multichain of length n yields a multichain of length n+ 1
by appending 1̂.)

2.13 D Prove Theorem 2.3.1: Every finite distributive lattice is isomorphic
to a poset of order ideals of some poset. (Hint: Given a distributive
lattice Π, consider the subposet Π′ consisting of all join irreducible
elements, i.e., those elements a 6= 0̂ that are not of the form a = b ∨ c
for some b, c ≺Π a. Show that Π is isomorphic to J (Π′).)

2.14 State and prove a result analogous to Corollary 2.2.3 for distributive
lattices.

2.15 Let Π be a finite graded poset that has a minimum 0̂ and a maximum
1̂, and define the rank rkΠ(x) of x ∈ Π to be the length of [0̂, x], that
is, the length of a saturated chain from 0̂ to x.
(a) Convince yourself that if y covers x, then rkΠ(y) = rkΠ(x) + 1.
(b) Prove that Π is Eulerian if and only if for all x ≺ y the interval

[x, y] has as many elements of even rank as of odd rank.

2.16 D Prove (2.4.1): If A1, A2, . . . , An are finite sets, then

|A1 ∪A2 ∪ · · · ∪An| =
∑

∅6=J⊆[n]

(−1)|I|−1|AJ | ,

where AJ :=
⋂
j∈J Aj .

2.17 Show that (2.4.4) defines a right action of I(Π) on CΠ. That is, I(Π)
gives rise to a vector space of linear transformations on CΠ and (α∗β)f =
β(αf), for every α, β ∈ I(Π).

2.18 In this example you will encounter a prime application of the principle
of inclusion–exclusion. Let Sd be the set of bijections τ : [d]→ [d]. An
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element i ∈ [n] is a fixed point of τ if τ(i) = i and let

Fix(τ) := {i : τ(i) = i}
be the set of fixed points of τ . We wish to determine d(n), the number of
τ ∈ Sd such that are fixed-point free. This is called the derangement
number. If Ai = {τ : i ∈ Fix(τ)}, then

d(n) := |Sd \ (A1 ∪ · · · ∪Ad)| .
Determine |AI | for I ⊆ [d] and use (2.4.2) to find a compact formula
for d(n).

2.19 D Let S be a finite set. Show that

∑

T⊆S
(−1)|T | =

{
1 if S = ∅,
0 otherwise.

Use this to complete the proof of Proposition 2.4.1.

2.20 D Let G = (V,E) be a simple graph and let c : V → [n] be a coloring.
Prove that FG(c) defined in (2.4.5) is a flat and that, conversely, for
each flat F there is a coloring c such that FG(c) = F .

2.21 For a function f : Bn → C define the multivariate polynomial

Pf (x1, . . . , xn) =
∑

I⊆[n]

f(I)
∏

i∈I
xi .

Show that

Pf≥(x1, . . . , xn) = Pf=(1 + x1, 1 + x2, . . . , 1 + xn) .

2.22 D Prove Lemma 2.4.4: Let L = L(A1, . . . , An;A) and S ∈ L. If AI = S
for I ⊆ [n], then I ⊆ JS . Moreover, for T ∈ L

S � T ⇐⇒ JS ⊆ JT .





Chapter 3

Polyhedral Geometry

One geometry cannot be more true than another; it can only be more convenient.
Jules Henri Poincaré

In this chapter we define the most convenient geometry for the combinatorial
objects from Chapter 1. To give a first impression of how geometry naturally
enters our combinatorial picture, we return to the problem of counting
multisubsets of size d of [n+ 1]. Every such multiset corresponds to a d-tuple
(m1 + 1,m2 + 1, . . . ,md + 1) ∈ Zd such that

0 ≤ m1 ≤ m2 ≤ · · · ≤ md ≤ n .

Forgetting about the integrality of the mj gives a genuine geometric object
containing the solutions to this system of d+ 1 linear inequalities:

n4 =
{

x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd ≤ n
}
.

The d-multisubsets correspond exactly to the integer lattice points n4∩ Zd.
The set n4 is a polyhedron: it is defined by finitely many linear inequalities.
Polyhedra constitute a rich class of geometric objects—rich enough to capture
much of the enumerative combinatorics that we pursue in this book.

Besides introducing machinery to handle polyhedra, our main emphasis in
this chapter is on the faces of a given polyhedron. They form a poset that is
naturally graded by dimension, and counting the faces in each dimension gives
rise to the famous Euler–Poincaré formula. This identity is at play (often
behind the scenes) in practically every combinatorial reciprocity theorem
that we will encounter in later chapters.

51
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3.1. Inequalities and Polyhedra

To help you ease into a geometric (rather than an algebraic) way of thinking,
let’s start over. A linear equation is of the form

a1 x1 + · · ·+ ad xd = b (3.1.1)

for some a1, . . . , ad, b ∈ R and, as you will know, an integral part of Linear
Algebra is to determine the set of solutions to systems of linear equations

a1,1 x1 + · · ·+ a1,d xd = b1

a2,1 x1 + · · ·+ a2,d xd = b2

...

ak,1 x1 + · · ·+ ak,d xd = bk .

(3.1.2)

More compactly, we may write A x = b, where A ∈ Rk×d is the matrix of
coefficients and b ∈ Rk collects the right-hand sides. The objects of interest
in this chapter are the sets of solutions to finitely many linear inequalities : a
polyhedron Q ⊆ Rd is the set of solutions to a system

a1,1 x1 + · · ·+ a1,d xd ≤ b1

a2,1 x1 + · · ·+ a2,d xd ≤ b2

...

ak,1 x1 + · · ·+ ak,d xd ≤ bk

(3.1.3)

for some aij , bi ∈ R for 1 ≤ i ≤ k and 1 ≤ j ≤ d. In compact form we can
write

Q =
{

x ∈ Rd : A x ≤ b
}
.

Note that an inequality involving ≥ still fits into the above form by simply
multiplying both sides with −1. In particular A x = b is equivalent to
A x ≤ b and −A x ≤ −b, and so solution sets to linear equations partake in
this endeavor. For example, for n = 1 and d = 3, the polyhedron 4 from
the chapter prelude is the set of solutions to




−1
1 −1

1 −1
1


 x ≤




0
0
0
1


 . (3.1.4)

This is illustrated in Figure 3.1. There are many systems of linear inequalities
that yield the same polyhedron Q. We call Q a rational polyhedron if A
and b can be chosen over the rational numbers.

What you might not be as familiar with is a geometric perspective on
linear systems of equations. Borrowing from our geometric intuition in
three dimensions, we call the set of solutions H ⊂ Rd to a single linear
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x1

x2

x3

Figure 3.1. The polyhedron 4 given in (3.1.4).

equation (3.1.1) an (affine) hyperplane, provided ai 6= 0 for some i. That
is,

H :=
{

x ∈ Rd : 〈a,x〉 = b
}

(3.1.5)

for some normal a ∈ Rd \ {0} and displacement b ∈ R. Here 〈 , 〉 denotes
the standard inner product on Rd, but any other one works just as well. We
call H a linear hyperplane if 0 ∈ H or, equivalently, b = 0. Hence, every
affine hyperplane is of the form H = p + H0, where H0 is a linear hyperplane
and p is a base point. Thus, the set of solutions L ⊆ Rd to (3.1.2), called an
affine subspace, is of the form

L = H1 ∩ H2 ∩ · · · ∩ Hk ,

where Hi is the hyperplane defined by the i-th linear equation. By Exercise 3.1,
either L = ∅ or L = p+L0, where L0 is a linear subspace, i.e., an intersection
of linear hyperplanes, and p is a suitable translation.

The presentation of a hyperplane H given in (3.1.5) actually defines an
oriented hyperplane, in the following sense. The two connected components
of Rd \ H are called (open) halfspaces and we can use the orientation to
distinguish the closed halfspaces associated with H as

H≥ :=
{

x ∈ Rd : 〈a,x〉 ≥ b
}
,

H≤ :=
{

x ∈ Rd : 〈a,x〉 ≤ b
}
.

(3.1.6)

Hence, a polyhedron Q ⊆ Rd is the intersection of finitely many closed
halfspaces

Q = H≤1 ∩ · · · ∩ H≤k =
{

x ∈ Rd : 〈ai,x〉 ≤ bi for 1 ≤ i ≤ k
}
, (3.1.7)

such as the one shown in Figure 3.2. We remark that, trivially, all affine
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Figure 3.2. A bounded polyhedron in the plane. The arrows indicate
the orientation of the hyperplanes.

subspaces, including Rd and ∅, are polyhedra. We call a polyhedron Q
proper if it is not an affine space. For example,





x ∈ R3 :




1 1 0
−1 −1 0
−1 0 0

0 −1 0
0 0 −1
0 0 1






x1

x2

x3


 ≤




1
−1

0
0
0
1








(3.1.8)

is a square embedded in R3 which is pictured in Figure 3.3.

x2

x3

x1

1

1

1

Figure 3.3. The square defined by (3.1.8).
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A halfspace H≤j (or linear inequality) is irredundant if

⋂

i 6=j
H≤i 6= Q .

You are welcome to verify that the four inequalities for 4 given in (3.1.4)
are all irredundant. Of course, discarding redundant halfspaces one at a time
leaves us with an irredundant presentation of a given polyhedron. Exercise 3.2
shows that, in general, the number of necessary halfspaces can depend on
the order in which the given halfspaces are inspected. This is just one of the
many situations that sets apart the study of linear inequalities systems from
that of systems of linear equations.

Figure 3.4. Two polyhedral cones, one of which is line free.

A polyhedron C ⊆ Rd is a polyhedral cone if µp ∈ C for any p ∈ C and
µ ≥ 0. See Figure 3.4 for two examples. In particular, every linear subspace
is a polyhedral cone and Exercise 3.3 asks you to prove the following result.

Proposition 3.1.1. A polyhedron Q ⊆ Rd is a polyhedral cone if and only
if it is of the form

Q = {x ∈ Rd : A x ≤ 0}
for some matrix A ∈ Rk×d, that is, Q is the intersection of finitely many
linear halfspaces.

Except for C = {0}, polyhedral cones are examples of unbounded
polyhedra.

The recession cone rec(Q) of a polyhedron Q ⊆ Rd is the collection of
directions in which to escape to infinity. More formally,

rec(Q) :=
{

u ∈ Rd : p + R≥0 u ⊆ Q for some p ∈ Q
}
.
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Q rec(Q)

Figure 3.5. An unbounded 2-dimensional polyhedron Q and its reces-
sion cone.

Here and in the future, we write R≥0u for the set {λu : λ ≥ 0}. Figure 3.5
shows an unbounded polyhedron and its recession cone.

That rec(Q) is a polyhedral cone and that, in fact, p + rec(Q) ⊆ Q for
all p ∈ Q is the content of Exercise 3.4. As per Exercise 3.5, the following
holds.

Proposition 3.1.2. A nonempty polyhedron Q ⊆ Rd is bounded if and only
if rec(Q) = {0}.

The relationship between general polyhedra and polyhedral cones is
similar to that of affine and linear subspaces. For polyhedral cones as well
as linear subspaces, the origin plays a distinguished role. Moreover, there is
a natural construction that allows us to pass from polyhedra to polyhedral
cones and back. For a closed set S ⊂ Rd, we define its homogenization
hom(S) as the closure of the set

{
(x, λ) ∈ Rd+1 : λ ≥ 0, x ∈ λS

}
. (3.1.9)

In particular, the homogenization of a nonempty polyhedron Q = {x ∈ Rd :
A x ≤ b} is the polyhedral cone

hom(Q) =
{

(x, t) ∈ Rd+1 : t ≥ 0, A x− tb ≤ 0
}
.

For example, the homogenization of a pentagon is shown in Figure 3.6, and
the homogenization of 4 in (3.1.4) is

hom(4) =
{

(x, t) ∈ R4 : 0 ≤ x1 ≤ x2 ≤ x3 ≤ t
}
.

We can recover our polyhedron Q from its homogenization as the set
of those points y ∈ hom(Q) for which yd+1 = 1 and rec(Q) is linearly
isomorphic to hom(Q) ∩ {yd+1 = 0}. (Two polyhedra Q and Q′ are linearly
isomorphic if there is an invertible affine transformation mapping Q to Q′.)
Homogenization seems like a simple construction but it will come in quite
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x2

x3

x1

Figure 3.6. The homogenization of a pentagon.

handy in this and later chapters. For example, let

T =
{
y ∈ R3 : y ≥ 0, y1 + y2 + y3 ≤ 1

}
.

Then

R4
≥0
∼= hom(T) ∼= hom(4) ,

where we write R≥0 := {a ∈ R : a ≥ 0}. Related to the recession cone is the
lineality space lineal(Q) of a polyhedron Q. It is the inclusion-maximal
linear subspace L ⊆ Rd such that p + L ⊆ Q for some p ∈ Q. You are invited
to prove the following proposition in Exercise 3.8.

Proposition 3.1.3. Let Q = {x ∈ Rd : A x ≤ b} be a nonempty polyhedron.
Then

lineal(Q) = rec(Q) ∩ (− rec(Q)) =
{

x ∈ Rd : A x = 0
}
.

In particular p + lineal(Q) ⊆ Q for all p ∈ Q.

For example,


x ∈ R3 :

[
1 −1 −1
−1 −1 1

]

x1

x2

x3


 ≤

[
0
0

]


is a wedge with lineality space {x ∈ R3 : x1 = x3, x2 = 0}, which is a
line. (A picture of this wedge, which we encourage you to draw, should
look a bit like the left side of Figure 3.4.) We call a polyhedron line free if
lineal(Q) = {0}. Exercise 3.10 yields that a polyhedral cone C is line free
if and only if p,−p ∈ C implies p = 0. Hence, Q is line free if and only if
hom(Q) is line free.
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As in all geometric disciplines, a fundamental invariant of an object
is its dimension. For a linear subspace L we know how to define dim L—
courtesy of Linear Algebra—and, since the dimension should be independent
of translation, this yields the dimension of any affine subspace L = p + L0. If
L = ∅, then we set dim L := −1. For a set S ⊆ Rd, we define its affine hull
aff(S) as the inclusion-minimal affine subspace of Rd that contains S

aff(S) =
⋂{

H hyperplane in Rd : S ⊆ H
}
. (3.1.10)

We define the dimension of a polyhedron Q as dimQ := dim aff(Q). When
dimQ = n, we call Q an n-polyhedron. For example, the square defined by
(3.1.8) has affine hull {x ∈ R3 : x1 +x2 = 1} and so (surprise!) its dimension
is 2.

To justify this convention, we note in Exercise 3.11 that the (topological)
interior of a polyhedron Q given in the form (3.1.7) is

{
x ∈ Rd : 〈ai,x〉 < bi for all 1 ≤ i ≤ k

}
. (3.1.11)

However, this notion of interior is not intrinsic to Q but makes reference
to the ambient space Rd. For example, a triangle might or might not have
an interior depending on whether we embed it in R2 or R3. Luckily, every
polyhedron comes with a canonical embedding into its affine hull and we
can define the relative interior of Q as the set of points of Q that are in
the interior of Q relative to its embedding into aff(Q). Thus, aff(Q) is the
affine subspace relative to which Q has a nonempty interior and this explains
our definition of dimension. We will denote the relative interior of Q by
Q◦.1 When Q is full dimensional, Q◦ is given by (3.1.11). In the case that
Q is not full dimensional, we have to be a bit more careful (the details are
the content of Exercise 3.12): assuming Q is given in the form (3.1.7), let
I := {i ∈ [k] : 〈ai,x〉 = bi for all x ∈ Q}. Then

Q◦ = {x ∈ Q : 〈ai,x〉 < bi for all i 6∈ I}

= aff(Q) ∩
{

x ∈ Rd : 〈ai,x〉 < bi for all i 6∈ I
}
.

(3.1.12)

For instance, our running example, the square defined by (3.1.8), has relative
interior




x ∈ R3 : x1 + x2 = 1,




−1 0 0
0 −1 0
0 0 −1
0 0 1






x1

x2

x3


 <




0
0
0
1







.

1A note on terminology: A polyhedron is, by definition, closed. However, we will sometimes
talk about an open polyhedron, by which we mean the relative interior of a polyhedron. In a few

instances we will simultaneously deal with polyhedra and open polyhedra, in which case we may
use the superfluous term closed polyhedron to distinguish one from the other.
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The (relative) boundary of Q is

∂Q := Q \ Q◦ .
With these definitions at hand, you will discover that many objects through-
out mathematics turn out to be polyhedra. This is obvious for the unit
cube

[0, 1]d =
{

x ∈ Rd : 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ d
}

or its centrally-symmetric counterpart [−1, 1]d = 1− 2[0, 1]d. The latter is
the unit ball in the `∞-norm and Exercise 3.13 concerns the `1-norm unit
ball, the cross polytope

3d :=
{

x ∈ Rd : ‖x‖1 = |x1|+ · · ·+ |xd| ≤ 1
}
. (3.1.13)

The 3-dimensional instance is pictured in Figure 3.7.

x1

x2

x3

1

1

1

Figure 3.7. The 3-dimensional cross polytope.

You might have also noticed that the ideas from the prelude to this
chapter can be generalized. For example, k-subsets S of [n] not containing
two consecutive numbers correspond precisely to the lattice points x ∈ Zk
satisfying

0 < x1 and xi + 1 < xi+1 (for all 1 ≤ i < k) and xk < n+ 1 ,

which are the lattice points in the interior of a bounded polyhedron in Rk.
This yields the geometric perspective that this book is set out to promote
but, so far, it gives a description only in geometric terms. In the following
section, we will see that polyhedra also yield a generative description, a way
to intrinsically describe points in polyhedra, akin to presenting points in
linear subspaces as linear combinations.
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3.2. Polytopes, Cones, and Minkowski–Weyl

The term polyhedron appears in many parts of mathematics, unfortunately
with different connotations. We should have been more careful in the previous
section where we actually defined convex polyhedra. A set S ⊆ Rd is
convex if for every p,q ∈ S, the line segment

[p,q] := {(1− λ) p + λq : 0 ≤ λ ≤ 1}
with endpoints p and q is contained in S. The intersection of any collection
of convex sets is again convex and since halfspaces are convex, our polyhedra
Q as defined via (3.1.7) are closed convex sets. As we won’t be dealing with
nonconvex polyhedra, we can safely drop the adjective convex and continue
to refer to Q as a polyhedron.

For any set S ⊆ Rd, there is a unique inclusion-minimal convex set
conv(S) containing S, called the convex hull of S. The convex hull is simply
the intersection of all convex sets containing S which, by Exercise 3.14, can
be written as

conv(S) =



λ1v1 + · · ·+ λkvk :

k ≥ 0, v1, . . . ,vk ∈ S
λ1, . . . , λk ≥ 0

λ1 + · · ·+ λk = 1



 . (3.2.1)

We will be mostly interested in the situation when S is finite: a convex
set P is a (convex) polytope if P = conv(S) for some finite set S ⊂ Rd.
Figure 3.8 illustrates the concept. We call P a rational polytope or lattice
polytope whenever we can choose S in Qd or Zd, respectively.

v1

v2

v3

v4

v5

v6

Figure 3.8. The convex hull of six points in the plane.

Analogously to the situation with polyhedra, we call a point v ∈ S
a vertex of P = conv(S) if conv(S \ {v}) 6= P. Exercise 3.15 helps you
to conclude that there is a unique inclusion-minimal set V ⊆ S such that
P = conv(V ). We call V the vertex set of P and write vert(P) := V .

A convex cone is a nonempty convex set C ⊆ Rd such that µC ⊆ C
for all µ ≥ 0. Equivalently, a nonempty set C is a convex cone provided
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µp + λq ∈ C for all p,q ∈ C and µ, λ ∈ R≥0. Again, convex cones form a
family of sets that is closed under intersection and we are therefore led to
define the conical hull cone(S) of a set S, which is the inclusion-minimal
convex cone containing S. We call a convex cone C finitely generated
provided C = cone(S) for some finite set S. If S = {s1, s2, . . . , sk}, we will
also write

cone(S) = R≥0 s1 + R≥0 s2 + · · ·+ R≥0 sk

in accordance with Exercise 3.19. We call a finitely generated cone C rational
if we can choose S ⊂ Qd or, equivalently, S ⊂ Zd. An inclusion-minimal set
U ⊆ S such that C = cone(U) is called a set of generators for C. Similar to
the case of polyhedra, U is typically not unique; see Exercise 3.17. However,
there is an important class of cones for which we have uniqueness up to
scaling.2 A finitely generated convex cone C is pointed if there is some
w ∈ Rd such that

〈w,p〉 > 0 for all p ∈ C \ {0} . (3.2.2)

Proposition 3.2.1. Let C ⊂ Rd be a finitely generated convex cone. If C is
pointed, then C has a unique set of generators up to scaling.

Proof. Set H := {x ∈ Rd : 〈w,x〉 = 1}. For every p ∈ C, there is a
unique µp > 0 such that µpp ∈ H. Hence, every nonzero point in C has a
representative in the convex set P := C ∩ H or, said differently, C = cone(P).

Now let C = R≥0 s1 + · · ·+ R≥0 sk for some s1, . . . , sk ∈ C \ {0}. We can
assume that 〈w, si〉 = 1 for all i and hence P = conv(s1, . . . , sk) is a polytope.
It follows that every set of generators contains the vertices of P up to scaling
and the claim follows. �

The link between finitely generated pointed cones and polytopes is
reminiscent of polyhedra and polyhedral cones. Exercise 3.18 yields that the
homogenization of a polytope P ⊂ Rd is the pointed cone

hom(P) = cone(P× {1}) = cone {(v, 1) : v ∈ vert(P)} . (3.2.3)

In particular {(v, 1) : v ∈ vert(P)} is a set of generators for hom(P) and, as
above, the polytope P ⊂ Rd can be recovered by intersecting hom(P) ⊂ Rd+1

with the hyperplane {x ∈ Rd+1 : xd+1 = 1}.
We can extend the notion of lineality space from polyhedra to gen-

eral convex sets and to (finitely generated) convex cones. In particular, if
lineal(C) 6= {0}, then C cannot be pointed. Indeed, if p ∈ lineal(C) \ {0},
then ±p ∈ C and hence (3.2.2) cannot hold. In fact, the converse also holds.

Proposition 3.2.2. Let C ⊂ Rd be a convex cone. Then C is pointed if and
only if C is line free.

2Naturally, if C = cone(s1, . . . , sk), then C = cone(µ1s1, . . . , µksk) for any µ1, . . . , µk > 0.
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The key is the following central separation theorem from convex
geometry.

Theorem 3.2.3. Let K ⊂ Rd be a closed convex set and p ∈ Rd \ K. Then
there is a hyperplane H = {x ∈ Rd : 〈w,x〉 = δ} such that K ⊂ H< := H≤ \H
and p ∈ H>.

Such a hyperplane H is called a separating hyperplane. We defer the
not-that-difficult proof to Exercise 3.21.

Proof of Proposition 3.2.2. Let C = cone(s1, . . . , sk). By Exercise 3.20,
C is line free if and only if the point (0, 1) is not contained in hom(C). By
Theorem 3.2.3, this is equivalent to the existence of (w, wd+1) ∈ Rd+1 and
δ ∈ R such that 〈(w, wd+1), (0, 1)〉 = wd+1 < δ and

〈(w, wd+1), (si, 1)〉 > δ

⇐⇒ 〈w, si〉 > δ − wd+1 > 0

for all i = 1, . . . , k. This implies that C is pointed. �

We observe what we have actually done in the proof of Proposition 3.2.2.
To a finitely generated cone C = cone(s1, . . . , sk), we have associated a
polyhedral cone

C∨ :=
{

w ∈ Rd : 〈si,w〉 ≥ 0 for i = 1, . . . , k
}
.

The statement that we have shown is that C is line free if and only if C∨ is
full dimensional (and hence has a nonempty interior). The polyhedral cone
C∨ is called the cone polar to C and Exercise 3.22 explores more of this.

We pause for a second to compare (bounded) polyhedra and polytopes
to each other. Both are defined in terms of finite data; inequalities for the
one, points for the other class. The fundamental difference is that (3.2.1)
gives a direct mean to access all points in a polytope. This is quite different
for polyhedra. On the other hand, the description of a polyhedron Q ⊂ Rd
in terms of inequalities gives a simple way to check if a given point q ∈ Rd is
contained in Q or not; for polytopes, this is by far not as straightforward
(and, in fact, requires us to determine if a system of linear inequalities has
a solution). We will soon see that these are the two sides of the same coin,
but first we look at an example: considering the bounded polyhedron

4 =
{

x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd ≤ 1
}
,
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we define
u0 = (1, 1, 1, . . . , 1) ,

u1 = (0, 1, 1, . . . , 1) ,

u2 = (0, 0, 1, . . . , 1) ,

...

ud = (0, 0, 0, . . . , 0) .

It is evident that u0, . . . ,ud ∈ 4 and, by virtue of convexity, it follows that
conv(u0, . . . ,ud) ⊆ 4. We claim that this is actually an equality. Indeed,
for a point p = (p1, p2, . . . , pd) ∈ 4, we define λi := pi+1 − pi for 0 ≤ i ≤ d,
where we set p0 := 0 and pd+1 = 1. With this, we observe that λ0, . . . , λd ≥ 0
and

p =
d∑

i=0

λiui and
d∑

i=0

λi = pd+1 − p0 = 1 . (3.2.4)

Thus, 4 is both a polyhedron and a (lattice) polytope. In fact, 4 belongs
to a particular family of polytopes which we now introduce.

We recall that a collection of points p0,p1, . . . ,pk is affinely indepen-
dent if one of the following equivalent conditions holds:

i) if µ0, µ1, . . . , µk ∈ R satisfy

k∑

i=0

µi pi = 0 and

k∑

i=0

µi = 0 ,

then µ0 = µ1 = · · · = µk = 0;

ii) the vectors (
p0

1

)(
p1

1

)
· · ·
(

pk
1

)

are linearly independent;

iii) the vectors p1 − p0, . . . ,pk − p0 are linearly independent.

Exercise 3.23 asks you to verify these equivalences and Exercise 3.24 gives
a bit of context. If p0, . . . ,pk ∈ Rd are affinely independent points, then
P = conv(p0, . . . ,pk) is called a simplex. For k = 0, 1, 2, 3, this is a point, a
segment, a triangle, and a tetrahedron, respectively. Using the affine hull, we
can extend the notion of dimension to polytopes which helps us verify that
conv(p0, . . . ,pk) is a polytope of dimension k. We can characterize simplices
also in terms of their homogenizations: we call a cone C = cone(s1, . . . , sk)
simplicial if its set of generators s1, . . . , sk are linearly independent. In
particular, it follows from (3.2.3) that P is a simplex if and only if hom(P) is
simplicial. Exercise 3.16 together with the fact that 4 is a polytope as well
as a polyhedron proves the next result.
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Proposition 3.2.4. Every simplex is a polyhedron. Likewise, every simpli-
cial cone is a polyhedron.

Polyhedra can be unbounded and thus it cannot be true that every
polyhedron is also a polytope. To fix this, we need the following notion: the
Minkowski sum of two convex sets K1,K2 ⊆ Rd is

K1 + K2 := {p + q : p ∈ K1, q ∈ K2} .
An example is depicted in Figure 3.9.

+ =

Figure 3.9. A Minkowski sum.

That K1 + K2 is again convex is the content of Exercise 3.25. Minkowski
sums are key to the following fundamental theorem of polyhedral geometry,
often called the Minkowski–Weyl theorem.

Theorem 3.2.5. A set Q ⊆ Rd is a polyhedron if and only if there exist a
polytope P and a finitely generated cone C such that

Q = P + C .

In particular, C is the recession cone of Q and polytopes are precisely the
bounded polyhedra.

Figure 3.10 illustrates Theorem 3.2.5 on the example from Figure 3.5.
The Minkowski–Weyl theorem highlights the special role of polyhedra among

P + C = Q

Figure 3.10. A decomposition of a polyhedron into a polytope and a cone.

all convex bodies. It states that polyhedra possess a discrete intrinsic
description in terms of finitely many vertices and generators of P and C,
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respectively, as well as a discrete extrinsic description in the form of finitely
many linear inequalities.

We already did much of the leg work towards a proof of Theorem 3.2.5.
Exercise 3.26 reduces the claim to the statement that C is a finitely generated
cone if and only if C is a polyhedral cone. Using Exercise 3.22, we see that it
suffices to show that if C is a polyhedral cone, then C is a finitely generated
convex cone.

Proposition 3.2.6. If C = {x ∈ Rd : 〈ai,x〉 ≤ 0 for i = 1, . . . , k} is a
nonempty polyhedral cone, then C is a finitely generated cone.

Proof. We prove the claim by induction on dimC with the base cases d ≤ 2
left to you (Exercise 3.29). We may assume that C ⊂ Rd is full dimensional.
By induction, the cones

Ci := {x ∈ C : 〈ai,x〉 = 0} ⊆ C

are finitely generated cones of dimension < d for all i = 1, . . . , k, and we
let Si be the set of generators of Ci. We claim that C = cone(

⋃
i Si). To

see this, let p ∈ C. If p ∈ Ci, we are done. Otherwise let s ∈ ⋃i Si be
arbitrary. Both p and s are in C; let λ > 1 be the smallest number such that
r := (1 − λ)s + λp satisfies one linear inequality defining C with equality.
We note that p ∈ cone(s, r) and r ∈ Ci for some i. Thus, p ∈ cone({s} ∪ Si),
which proves the claim. �

The converse statement, that every finitely generated cone is a polyhedral
cone, will be a byproduct of our considerations in Section 5.3, which even
yield a practical algorithm. We close this section by reaping some of the nice
consequences that the Minkowski–Weyl Theorem 3.2.5 entails.

It is clear from the definition that the image of a polytope or a finitely
generated cone under a linear map T : Rd → Re is a polytope or finitely
generate cone, respectively. This is not so clear for polyhedra. Likewise,
it is not easy to prove that the intersection of a polytope with an affine
subspace is again a polytope. However, these become almost trivial (and left
to Exercise 3.28).

Corollary 3.2.7. Let Q ⊆ Rd be a polyhedron and φ(x) = A x + b an affine
projection Rd → Re. Then φ(Q) is a polyhedron. If P ⊂ Rd is a polytope,
then P ∩ Q is a polytope.

3.3. Faces, Partially Ordered by Inclusion

In Proposition 3.2.6, we used the idea to focus on those points of a polyhedron
Q that satisfy some linear inequality with equality. This leads to the notion
of faces of a polyhedron, which we will study in depth in this section.

We call a hyperplane H = {x ∈ Rd : 〈w,x〉 = δ} admissible for a
polyhedron Q ⊆ Rd if Q ⊆ H≤. A face of Q is a subset of the form F = Q∩H,
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where H is an admissible hyperplane. We also decree that F = ∅ and F = Q
are faces of Q. The reason for the former is that, unless Q = Rd, there is
at least one admissible hyperplane H with Q ∩ H = ∅. The reason for the
latter is that the notion of face is then independent of the embedding: if
we embed Q× {1} ⊂ Rd+1, then Q is contained in a hyperplane and hence
a face of itself. We call those faces that are neither empty nor Q itself the
proper faces of Q. Admissible hyperplanes that yield nonempty faces are
called supporting hyperplanes; Figure 3.11 shows two examples.

H

H

Figure 3.11. Two supporting lines, defining a vertex and an edge.

Every face F of Q is a polyhedron in its own right (Exercise 3.30) and
comes with a dimension. Hence, we call F a k-face if F is a face of Q of
dimension k. Some faces have special names: 0-faces are called vertices,
bounded 1-faces are called edges, and unbounded 1-faces isomorphic to R≥0

are called rays. Exercise 3.31 shows that calling 0-faces vertices is consistent
with our earlier definition and in light of Theorem 3.2.5, we call a polyhedron
Q pointed if it has a vertex. If Q is a d-polyhedron, then faces of dimensions
d− 2 and d− 1 are called ridges and facets, respectively. For F = ∅, we
have aff(F) = ∅ and hence ∅ is the unique face of Q of dimension −1.

As a polyhedron on its own, a face F itself has faces. The following result
shows that being a face of is a transitive relation.

Proposition 3.3.1. Let Q be a polyhedron and F ⊆ Q a face. Then every
face of F is also a face of Q.

Proof. We only prove the statement in the case that Q is a polytope and
leave the general case to Exercise 3.33. Let F ⊂ Q be a proper face. There is
a supporting hyperplane H = {x : 〈a,x〉 = b} such that F = Q ∩ H. Now
let H′ = {x : 〈a′,x〉 = b′} be an admissible hyperplane for F such that
G = H′ ∩ F is a face of F. Note that H′ is only admissible for F and may as
well meet Q in its interior. For ε > 0, we define w := a + εa′ and δ := b+ ε b′.
We now verify that 〈w,x〉 ≤ δ is satisfied for all points in Q and with equality
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precisely for the points in G. This proves the proposition. In fact, we only
need to verify this for the vertices v ∈ vert(Q).

If v ∈ F, then 〈a,v〉 = b and, since H′ is supporting for F, both claims
are true. If v 6∈ F, then b − 〈a,v〉 ≥ η for some η > 0. Now, if we choose
ε > 0 sufficiently small (see Exercise 3.34), then 〈w,x〉 < δ will hold for all
v ∈ vert(Q) \ F. Hence {x : 〈w,x〉 = δ} is supporting for Q and meets Q
precisely in G. �

Figure 3.12. The face lattice of a square pyramid.

The collection Φ(Q) of faces of a polyhedron Q (including ∅ and Q)
is partially ordered by inclusion and we call the poset (Φ(Q),⊆) the face
lattice of Q. Figure 3.12 gives an example of the face lattice of a square
pyramid. To distinguish faces from arbitrary subsets of Q, we will often write
F � Q. Before we justify the further qualification of being a lattice, we note
that Proposition 3.3.1 yields the following.

Corollary 3.3.2. Let Q be a polyhedron and F ⊆ Q a face. Then Φ(F)
corresponds to the interval [∅,F] ⊆ Φ(Q).

What this corollary implies, in turn, is that the face lattice of a polyhedron
is a graded poset; see Exercise 3.35.

Corollary 3.3.3. The face lattice of a polyhedron is a graded poset. If Q is
a pointed polyhedron, then the rank of a face F is dimF + 1.

In particular, a pointed d-polyhedron has a face of dimension k for every
k ≤ d. This is not true for general polyhedra, however, it is not hard to see
that a lineality space does not complicate things too much. For a polyhedron
Q ⊆ Rd with lineality space L = lineal(Q), we write F/L for the projection
of a face F ⊆ Q in Rd/L. If you are not keen on quotient spaces, we can
also identify F/L with F∩ L⊥ or, equivalently, with the orthogonal projection
of F onto L⊥. In either case Q/L is a pointed polyhedron of dimension
dimQ− dim L and the following result shows that the face lattice is retained;
see Exercise 3.36.
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Lemma 3.3.4. Let Q be a polyhedron with lineality space L. The map
Φ(Q)→ Φ(Q/L) given by F 7→ F/L is an isomorphism of face lattices.

If Q is an affine subspace, then Q/ lineal(Q) is a point. We call a
polyhedron proper if Q is not an affine subspace.

A natural combinatorial statistic associated to a polytope (or any graded
poset) is the number of elements of each rank. For a d-polyhedron Q, we
define the face numbers

fk = fk(Q) := number of faces of Q of dimension k

for −1 ≤ k ≤ d. The face numbers are often recorded in the f-vector

f(Q) := (f−1, f0, f1, . . . , fd) .

We notice that for every nonempty d-polyhedron Q, we always have f−1 =
fd = 1 and thus we take the liberty of omitting these entries from the f -vector
whenever convenient.

The following proposition shows that Φ(Q) is a meet semilattice, that
is, the meet of any two elements exists. Since every face is a subset of Q,
Exercise 2.3 yields that Φ(Q) is indeed a lattice.

Proposition 3.3.5. Let Q be a polyhedron and F,F′ � Q two faces. Then
F ∩ F′ is a face of both F and F′.

Proof. Let H = {x : 〈a,x〉 = b} and H′ = {x : 〈a′,x〉 = b′} be admissible
hyperplanes for F and F′, respectively. Then

H′′ := {x : 〈a + a′,x〉 = b+ b′}
is admissible for Q, and Q ∩ H′′ = F ∩ F′. �

For a polytope, every face is a polytope as well and is uniquely determined
by its set of vertices. In poset-speak, we may also say that every face of
a polytope is the join of vertices. Conversely, we want to show that every
face is the intersection (or meet) of facets. The following result makes the
connection between irredundant halfspaces and facets.

Proposition 3.3.6. Let Q = H≤1 ∩ · · · ∩ H≤m ⊂ Rd be a full-dimensional
polyhedron given by irredundant halfspaces. Then Q ∩ Hi is a facet of Q for
every i = 1, . . . ,m. Conversely, if F is a facet of Q, then F = Q ∩ Hi for
some i.

We call a supporting hyperplane H facet defining for Q if Q ∩ H is a
facet.

Proof. It is clear that F = Q ∩ Hi is a face and we only have to show
that dimF = d − 1. Consider Q′ :=

⋂
j 6=iH

≤
j . Since Hi is irredundant,

Q ( Q′. In particular Hi meets Q′ in its interior and Exercise 3.37 shows
that dimF = d− 1.
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For the second statement, assume that F is a facet. Pick any point p in
the relative interior of F. Then p ∈ ∂Q and hence p ∈ Hi for some i. Since
Hi is supporting for Q, it follows that F ⊆ Hi. Since aff(F) is a hyperplane,
it follows that F = Q ∩ Hi. �

Proposition 3.3.7. Let Q be a polyhedron and F ⊂ Q a face. Then F is the
intersection of all facets containing it.

Proof. We prove the claim by induction on dimQ−dimF. If dimQ−dimF =
1, then F is a facet of Q and the statement is true. Now if dimF < dimQ− 1,
then there is a facet G ⊂ Q containing F. In particular dimG − dimF <
dimQ − dimF and hence F is an intersection of facets of G. However, an
irredundant halfspace description of G can be obtained from that of Q and
since G is an intersection of facets of Q, it follows from Proposition 3.3.6 that
F is an intersection of facets of Q. �

With the ideas used in the proof of Proposition 3.3.6, we obtain a natural
decomposition of Q into relatively open faces, illustrated in Figure 3.13.

Figure 3.13. The face decomposition of Lemma 3.3.8.

Lemma 3.3.8. Let Q be a polyhedron. For every point p ∈ Q there is a
unique face F of Q such that p ∈ F◦. Equivalently, we have the disjoint
union3

Q =
⊎

F�Q
F◦.

Proof. The inclusion ⊇ is clear, so we have to argue ⊆ and that the union
is disjoint. Suppose Q is given as the intersection of irredundant halfspaces

Q =
m⋂

j=1

H≤j ,

and p ∈ Q. After possibly renumbering the halfspaces, we may assume

p ∈ H=
1 , . . . ,H

=
k and p ∈ H<k+1, . . . ,H

<
m ,

3We use the symbol ] to denote disjoint unions.
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where 0 ≤ k < m. Thus

F :=
k⋂

j=1

H=
j ∩

m⋂

j=k+1

H≤j

is a face of Q whose interior (see (3.1.12))

F◦ =
k⋂

j=1

H=
j ∩

m⋂

j=k+1

H<j

contains p. The uniqueness of F follows from Exercise 3.38 and the fact that
F is, by construction, inclusion minimal. �

There is another reason for including the empty face in Φ(P). We recall
that a homogenization of a polytope P ⊂ Rd is the finitely generated cone
hom(P) = cone(P× {1}). The hyperplane H = {y : yd+1 = 1} meets hom(P)
in the interior and recovers P. In fact, H meets every face F 6= {0} of hom(P)
in the relative interior and Exercise 3.37 yields the following.

Proposition 3.3.9. Let P be a nonempty polytope. Then as posets

Φ(P) ∼= Φ(hom(P)) \ {∅} .

It is high time for an example. Let T be a (d− 1)-dimensional simplex.
The face lattice is clearly invariant under affine transformations and, by
Exercise 3.16, we may assume that

T = conv(e1, . . . , ed) =
{

x ∈ Rd≥0 : x1 + · · ·+ xd = 1
}
.

Using Proposition 3.3.9, we may as well determine the nonempty faces of
hom(T) = Rd≥0, which shows that the face lattice of a (d− 1)-dimensional

simplex is isomorphic to the Boolean lattice on d elements. Hence fi−1(T) =(
d
i

)
for i ≥ 0. An attractive class of polytopes—as we will see shortly—is

given by the following definition: a polytope P is simplicial if every proper
face of P is a simplex. In Exercise 3.39 you are asked to verify that the cross
polytopes are simplicial polytopes.

There is a general construction technique that can be distilled from
simplices. Let P ⊂ Rd be a (possibly empty) polytope of dimension < d. For
a point v ∈ Rd \ aff(P), we define

v ∗ P := conv(P ∪ {v})
and call it the pyramid with apex v and base P. It is not hard to show
that v ∗ P is linearly isomorphic to v′ ∗ P for any other v′ ∈ Rd \ aff(P). The
following result shows that taking pyramids is a combinatorial construction
in the sense that it is independent of the choice of v or the geometry of P,
and you are asked to show this in Exercise 3.40.
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Proposition 3.3.10. Let P′ = v ∗P be a pyramid. For each face F � P, the
polytope v ∗ F is a face of P′. Conversely, every face F′ � P′ is either a face
of P or is of the form F′ = v ∗ F for some face F � P.

In particular, every simplex is obtained by taking iterated pyramids
starting with a point: if T = conv(v1, . . . ,vk) is a simplex, then F =
conv(v1, . . . ,vk−1) is a simplex and T = vk ∗F. A more general construction,
the join of polyhedra, is discussed in Exercise 3.44.

As a final example, we consider the face lattice of the cube

[−1, 1]d =
{

x ∈ Rd : −1 ≤ xi ≤ 1 for i = 1, . . . , d
}
.

We already know that every face is the intersection of facets and, since the
above presentation is irredundant, the facets are of the form

F−i :=
{

x ∈ [−1, 1]d : xi = −1
}
,

F+
i :=

{
x ∈ [−1, 1]d : xi = 1

}

for i = 1, . . . , d. In particular, F−i ∩ F+
i = ∅. In fact, we can encode

intersections of facets by setting, for σ ∈ {−, 0,+}d,
Fσ :=

⋂

i :σi 6=0

Fσii .

Then Fσ is linearly isomorphic to [−1, 1]k, where k = |{i : σi = 0}|, and
Fσ = Fσ′ if and only if σ = σ′. This suggests a combinatorial model for the
face lattice of a d-dimensional cube. We can turn {−, 0,+} into a partially
ordered set by setting − ≺ 0 and + ≺ 0. Then {−, 0,+}d is a direct product
of posets (see Exercise 2.6) and we obtain the following (Exercise 3.45).

Proposition 3.3.11. Let d ≥ 1. Then, as posets,

(Φ([−1, 1]d) \ {∅},⊆) ∼= ({−, 0,+}d,�) .

We can view the cube as the d-fold Cartesian product

[−1, 1]d = [−1, 1]× [−1, 1]× · · · × [−1, 1]

and generalize: Exercise 3.46 shows that taking the Cartesian product Q×Q′

of two polyhedra is again a combinatorial construction.
There are plenty of similar combinatorial constructions, and some are

discussed in Exercises 3.47 and 3.48 but most constructions depend on the
actual geometry. For example, the Minkowski sum Q + Q′ of two polyhedra
depends on how Q and Q′ lie with respect to each other. However, if Q and
Q′ lie in complementary affine subspaces, then Q + Q′ is linearly isomorphic
to Q×Q′ and hence is combinatorial. In particular, if u1, . . . ,uk ∈ Rd are
linearly independent, then the parallelepiped

[0, 1]u1 + · · ·+ [0, 1]uk := {µ1 u1 + · · ·+ µ1 uk : 0 ≤ µ1, . . . , µk ≤ 1}
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is linearly isomorphic to a k-cube.

We are now well equipped to model counting problems in terms of
polyhedra and manipulate them geometrically. In order to obtain results
this way, we will next investigate the combinatorial structure of polyhedra,
that is, face lattices of polyhedra.

3.4. The Euler Characteristic

We now come to an important notion that will allow us to relate geometry
to combinatorics, the Euler characteristic. Our approach to the Euler
characteristics of convex polyhedra is by way of sets built up from polyhedra.
A set S ⊆ Rd is polyconvex if it is the union of finitely many relatively
open polyhedra:

S = P◦1 ∪ P◦2 ∪ · · · ∪ P◦k ,

where P1, . . . ,Pk ⊆ Rd are polyhedra. For example, a polyhedron is poly-
convex: according to Lemma 3.3.8, we can write it as the (disjoint) union
of its relatively open faces. Note, however, that our definition entails that
polyconvex sets are not necessarily convex, not necessarily connected, and
not necessarily closed. As we will see, they form a nice bag of sets to
draw from, but not every reasonable set—e.g., the unit disc in the plane
(Exercise 3.49)—is a polyconvex set.

We denote by PCd the collection of polyconvex sets in Rd. This is an
infinite(!) poset under inclusion with minimal and maximal elements ∅ and
Rd, respectively. The intersection and the union of finitely many polyconvex
sets are polyconvex, which renders PCd a distributive lattice.

A map φ from PCd to some Abelian group is a valuation if φ(∅) = 0
and

φ(S ∪ T ) = φ(S) + φ(T )− φ(S ∩ T ) (3.4.1)

for all S, T ∈ PCd. Here’s what we’re after.

Theorem 3.4.1. There exists a valuation χ : PCd → Z such that χ(P) = 1
for every nonempty closed polytope P ⊂ Rd.

This is a nontrivial statement, as we cannot simply define χ(S) = 1
whenever S 6= ∅. Indeed, if P ⊂ Rd is a d-polytope and H = {x ∈ Rd :
〈a,x〉 = b} is a hyperplane such that H ∩ P◦ 6= ∅, then

P1 := {x ∈ P : 〈a,x〉 < b} and P2 := {x ∈ P : 〈a,x〉 ≥ b}
are nonempty polyconvex sets such that P1 ∩ P2 = ∅ and thus

χ(P) = χ(P1) + χ(P2) .

Therefore, if χ is a valuation satisfying the conditions of Theorem 3.4.1, then
necessarily χ(P1) = 0.
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The goal of this section is to construct a valuation χ satisfying the
properties dictated by Theorem 3.4.1. The valuation property (3.4.1) will be
the key to simplifying the computation of χ(S) for arbitrary polyconvex sets:
if S = P1 ∪P2 ∪ · · · ∪Pk, where each Pi ⊆ Rd is a relatively open polyhedron,
then by iterating (3.4.1) we obtain the inclusion–exclusion formula (for which
we recall (2.4.1))

χ(S) =
∑

i

χ(Pi)−
∑

i<j

χ(Pi ∩ Pj) + · · ·

=
∑

∅6=I⊆[k]

(−1)|I|−1 χ(PI) , (3.4.2)

where PI :=
⋂
i∈I Pi. In particular, the value of χ(S) does not depend on

the presentation of S as a union of relatively open polyhedra.

Here is a way to construct polyconvex sets. Let H = {H1,H2, . . . ,Hn}
be an arrangement (i.e., a finite set) of (oriented) hyperplanes4

Hi =
{

x ∈ Rd : 〈ai,x〉 = bi

}

in Rd. An example of an arrangement of six hyperplanes (here: lines) in the
plane is shown in Figure 3.14.

H1

H2

H3

H4

H5

H6

Figure 3.14. An arrangement of six lines in the plane.

Continuing our definitions in (3.1.6), for a hyperplane Hi we denote by

H>i :=
{

x ∈ Rd : 〈ai,x〉 > bi

}

4As you will see, reorienting a hyperplane will leave all results unchanged.
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the open positive halfspace bounded by Hi. We analogously define H<i
and H=

i := Hi. For each σ ∈ {<,=, >}n, we obtain a (possibly empty)
relatively open polyhedron

Hσ := Hσ1
1 ∩ Hσ2

2 ∩ · · · ∩ Hσnn , (3.4.3)

and these relatively open polyhedra partition Rd. For example, the line
arrangement in Figure 3.14 decomposes R2 into 57 relatively open polyhedra:
19 of dimension two, 28 of dimension one, and 10 of dimension zero. For
a point p ∈ Rd, let σ(p) ∈ {<,=, >}n record the position of p relative to
the n hyperplanes; that is, Hσ(p) is the unique relatively open polyhedron
among the Hσ’s containing p.

For a fixed hyperplane arrangement H in Rd, we define the class of
H-polyconvex sets PC(H) ⊂ PCd to consist of those sets that are finite
unions of relatively open polyhedra of the form Hσ given by (3.4.3). That is,
every S ∈ PC(H) \ {∅} has a representation

S = Hσ1 ] Hσ2 ] · · · ] Hσk (3.4.4)

for some σ1, σ2, . . . , σk ∈ {<,=, >}n such that Hσj 6= ∅ for all 1 ≤ j ≤
k. Note that the relatively open polyhedra Hσj are disjoint and thus the
representation of S given in (3.4.4) is unique. For Hσ in the form (3.4.3), we
define

χ(H,Hσ) := (−1)dim(Hσ) (3.4.5)

and so, consequently, for S ∈ PC(H) in the form (3.4.4),

χ(H, S) :=
k∑

j=1

(−1)dim(H
σj

) .

The next result, whose proof we leave as Exercise 3.52, states that this
function, together with χ(H,∅) := 0, is a valuation.

Proposition 3.4.2. The function χ(H, ·) : PC(H)→ Z is a valuation.

We can consider χ(H, S) as a function in two arguments, the arrangement
H and the set S ⊆ Rd; note that a set S is typically polyconvex with respect
to various arrangements. It is a priori not clear how the value of χ(H, S)
changes when we change the arrangement. The power of our above definition
is that it doesn’t.

Lemma 3.4.3. Let H1,H2 be two hyperplane arrangements in Rd and let
S ∈ PC(H1) ∩ PC(H2). Then

χ(H1, S) = χ(H2, S) .

Proof. It is sufficient to show that

χ(H1, S) = χ(H1 ∪ {H}, S) , where H ∈ H2 \ H1 . (3.4.6)
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Iterating this yields χ(H1, S) = χ(H1 ∪ H2, S) and, similarly, χ(H2, S) =
χ(H1 ∪H2, S), which proves the claim.

As a next simplifying measure, we observe that it suffices to show (3.4.6)
for S = Hσ for some σ. Indeed, from the representation in (3.4.4) and the
inclusion–exclusion formula (3.4.2), we then obtain

χ (H1, S) = χ (H1,Hσ1) + χ (H1,Hσ2) + · · ·+ χ (H1,Hσk) .

Thus suppose that S = Hσ ∈ PC(H1) and H ∈ H2 \ H1. There are three
possibilities how S can lie relative to H. The easy cases are S ∩ H = S and
S ∩H = ∅. In both cases S is a relative open polyhedron Hσ with respect to
H1 ∪ {H} and

χ (H1 ∪ {H}, S) = (−1)dimS = χ(H1, S) .

The only interesting case is ∅ 6= S ∩ H 6= S. Since S is relatively open,
S< := S ∩ H< and S> := S ∩ H> are both nonempty, relatively open
polyhedra of dimension dimS, and S= := S ∩ H= is relatively open of
dimension dimS − 1 (Exercise 3.37). Therefore,

S = S< ] S= ] S>

is a presentation of S as an element of PC(H1 ∪ {H}), and so

χ(H1 ∪ {H}, S)

= χ(H1 ∪ {H}, S<) + χ(H1 ∪ {H}, S=) + χ(H1 ∪ {H}, S>)

= (−1)dimS + (−1)dimS−1 + (−1)dimS

= (−1)dimS = χ(H1, S) . �

The argument used in the above proof is typical when working with
valuations. The valuation property (3.4.1) allows us to refine polyconvex sets
by cutting them with hyperplanes and halfspaces. Clearly, there is no finite
set of hyperplanes H such that PCd = PC(H), but as long as we only worry
about finitely many polyconvex sets at a time, we can restrict ourselves to
PC(H) for some H.

Proposition 3.4.4. Let S ∈ PCd be a polyconvex set. Then there is a
hyperplane arrangement H such that S ∈ PC(H).

Proof. This should be intuitively clear. We can write S = P1 ∪P2 ∪ · · · ∪Pk
for some relatively open polyhedra Pi. Now for each Pi there is a finite
set of hyperplanes Hi := {H1,H2, . . . ,Hm} such that Pi =

⋂
j H

σj
j for some

σ ∈ {<,=, >}m. Thus Pi ∈ PC(Hi), and by refining we conclude S ∈
PC(H1 ∪H2 ∪ · · · ∪ Hk). �
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We can express the content of Proposition 3.4.4 more conceptually. For
two hyperplane arrangements H1 and H2,

H1 ⊆ H2 =⇒ PC(H1) ⊆ PC(H2) .

In more abstract terms then, PCd is the union of PC(H) over all arrange-
ments H.

Lemma 3.4.3 and Proposition 3.4.4 get us one step closer to Theorem 3.4.1.

Proposition 3.4.5. There is a unique valuation χ : PCd → Z such that for
all S ∈ PCd,

χ(S) = χ(H, S)

for all hyperplane arrangements H for which S ∈ PC(H).

Proof. For a given S ∈ PCd, Lemma 3.4.3 implies that the definition

χ(S) := χ(H, S) (3.4.7)

for every H such that S ∈ PC(H) is sound, and Proposition 3.4.4 ensures
that there is such an H. For uniqueness, we look back at (3.4.5) and conclude
immediately that χ(P) = (−1)dimP for every relatively open polyhedron P.
But then uniqueness follows for every polyconvex set, as we can write it as a
disjoint union of finitely many relatively open polyhedra. �

We emphasize one part of the above proof for future reference.

Corollary 3.4.6. If P is a nonempty relatively open polyhedron, then

χ(P) = (−1)dimP.

The valuation χ in Proposition 3.4.5 is the Euler characteristic, and
for the rest of this book we mean the Euler characteristic of P when we write
χ(P).

What is left to show to finish our proof of Theorem 3.4.1 is that χ(P) = 1
whenever P is a (nonempty) polytope. We first note that (3.4.5) gives us an
effective way to compute the Euler characteristic of a polyhedron via face
numbers: if Q is a polyhedron, then Lemma 3.3.8 states

Q =
⊎

F�Q
F◦,

where we recall that our notation F � Q means F is a face of Q. The
inclusion–exclusion formula (3.4.2) and Corollary 3.4.6 give

χ(Q) =
∑

∅≺F�Q
(−1)dimF =

dimQ∑

i=0

(−1)ifi(Q) . (3.4.8)

This is the Euler–Poincaré formula.
Now let P ⊂ Rd be a nonempty polytope. To compute χ(P), we may

assume that the origin is contained in the relative interior of P. (Any other
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point in the relative interior would work, but the origin is just too convenient.)
For a nonempty face F � P, let

C0(F) :=
⋃

t>0

tF◦ =
{

p ∈ Rd : 1
tp ∈ F◦ for some t > 0

}

and C0(∅) := {0}. Figures 3.15 and 3.16 illustrate the following straightfor-
ward facts whose proofs we leave as Exercise 3.53.

P
0

v

C0(v)

e

C0(e)

Figure 3.15. Cones over two faces of a polytope.

P
0

Figure 3.16. The decomposition given in Proposition 3.4.7.

Proposition 3.4.7. Let P be a nonempty polytope with 0 ∈ P◦. For each
proper face F ≺ P, the set C0(F) is a relatively open polyhedral cone of
dimension dimF + 1. Furthermore,

C0(P) = aff(P) =
⊎

F≺P
C0(F) .

We can now finally complete the proof of Theorem 3.4.1.
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Proof of Theorem 3.4.1. We will show that the Euler characteristic χ
satisfies the properties stated in Theorem 3.4.1. Let P be a nonempty closed
polytope of dimension d. By the Euler–Poincaré formula (3.4.8), the Euler
characteristic is invariant under translation and thus we may assume that 0
is in the relative interior of P.

Proposition 3.4.7 yields two representations of the affine subspace aff(P),
and computing the Euler characteristic using the two different representations
gives

χ(C0(P)) = χ(aff(P)) =
∑

F≺P
χ(C0(F)) = 1 +

∑

∅≺F≺P
(−1)dimF+1.

Both P◦ and C0(P) = aff(P) are relatively open polyhedra of the same
dimension and hence χ(C0(P)) = χ(P◦) = (−1)d, by Corollary 3.4.6. Thus

1 =
∑

∅≺F�P
(−1)dimF = χ(P) . �

We do not know yet the Euler characteristic of an unbounded polyhe-
dron Q. It turns out that this depends on whether Q is pointed or not. We
start with the easier case.

Corollary 3.4.8. If Q is a polyhedron with lineality space L = lineal(Q),
then

χ(Q) = (−1)dim L χ(Q/L) .

This is pretty straightforward considering the relationship between faces
and their dimensions of Q and Q/L given by Lemma 3.3.4; we leave the
details to Exercise 3.54. In preparation for the case of a general pointed
unbounded polyhedron, we first treat pointed cones.

Proposition 3.4.9. If C ⊂ Rd is a pointed cone, then χ(C) = 0.

Proof. Let C = cone(u1, . . . ,um) for some u1, . . . ,um ∈ Rd \ {0}. Since C
is pointed, there is a supporting hyperplane

H0 :=
{

x ∈ Rd : 〈a,x〉 = 0
}

such that C ⊆ H≥0 and C∩H0 = {0}. In particular, this means that 〈a,ui〉 > 0
for all i and by rescaling, if necessary, we may assume that 〈a,ui〉 = δ for
some δ > 0. Let Hδ := {x ∈ Rd : 〈a,x〉 = δ} and consider

C := C ∩ H≤δ and

C∞ := C ∩ Hδ .

(See Figure 3.17 for an illustration.) By construction, C is a polytope and
C∞ is a face of C (and thus also a polytope). Moreover, each unbounded face
of C (here this means every nonempty face F 6= {0}) meets Hδ. Thus, each
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H0

Hδ

C

C∞

C

Figure 3.17. The polytopes C and C∞.

k-face F of C gives rise to a k-face of C and, if F is unbounded, a (k− 1)-face
of C∞. These are all the faces of C and C∞ (Exercise 3.55). We thus compute

χ(C) =
∑

F�C
(−1)dimF =

∑

F�C
(−1)dimF +

∑

F�C∞
(−1)dimF+1

= χ(C)− χ(C∞) = 0 ,

(3.4.9)

where the last equality follows from Theorem 3.4.1. �

The general case of a pointed unbounded polyhedron is not much differ-
ent from that of pointed cones. We recall from Theorem 3.2.5 that every
polyhedron Q is of the form Q = P + C, where P is a polytope and C is a
polyhedral cone. Exercise 3.32 says that for each nonempty face F � Q there
are unique faces F′ � P and F′′ � C such that F = F′ + F′′. In particular, F is
an unbounded face of Q if and only if F′′ is an unbounded face of C.

Corollary 3.4.10. If Q is a pointed unbounded polyhedron, then χ(Q) = 0.

Proof. We extend the idea of the proof of Proposition 3.4.9: we will find
a hyperplane H such that H is disjoint from any bounded face but the
intersection of H with an unbounded face F � Q yields a polytope of dimension
dimF− 1.

Let Q = P + C, where P is a polytope and C is a pointed cone. Let
Hδ = {x : 〈a,x〉 = δ} be the hyperplane constructed for the cone C in the
proof of Proposition 3.4.9. This time we choose δ > 0 sufficiently large so
that P ∩ Hδ = ∅. Thus, if F ≺ Q is a bounded face, then F = F′ + {0} for
some face F′ of P, and F ∩ Hδ = ∅. See Figure 3.18 for an illustration.
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Hδ

Q∞

F
=
F

′ +
F

′′

F∞

F ′ F ′′

P + C = Q

Figure 3.18. “Compactifying” a polyhedron.

Let F = F′ + F′′ be an unbounded face of Q for some F′ � P and F′′ � C,
and let F∞ := F ∩ Hδ. Note that F∞ is bounded, since otherwise there exist
p ∈ F∞ and u 6= 0 such that p + tu ∈ F∞ ⊆ F for all t ≥ 0; this implies that
u ∈ F′′, but by construction 〈a,u〉 > 0 and thus there is only one t for which
p + tu ∈ Hδ.

As for the dimension of F∞, we only have to show the impossibility of
dimF∞ < dimF− 1. This can only happen if Hδ meets F in the boundary.
But for each p ∈ F′ and u ∈ F′′ \ {0} we have that p + 0 and p + tu are
points in F, and for t > 0 sufficiently large they lie on different sides of Hδ.

Hence, Q := Q ∩ H≤δ and Q∞ := Q ∩ Hδ are both polytopes such that

each k-face of Q yields a k-face of Q and a (k − 1)-face of Q∞, provided it
was unbounded. A computation exactly analogous to (3.4.9) then gives

χ(Q) =
∑

F�Q
(−1)dimF =

∑

F�Q
(−1)dimF +

∑

F�Q∞
(−1)dimF+1

= χ(Q)− χ(Q∞) = 0 . �

We summarize the contents of Theorem 3.4.1 and Corollaries 3.4.8
and 3.4.10 as follows.

Theorem 3.4.11. Let Q = P+C+ L be a polyhedron, where P is a polytope,
C is a pointed cone, and L = lineal(Q). Then

χ(Q) =

{
(−1)dim L if C = {0} ,
0 otherwise.
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3.5. Möbius Functions of Face Lattices

The Euler characteristic is a fundamental concept throughout mathematics.
In the context of geometric combinatorics it ties together the combinatorics
and the geometry of polyhedra in an elegant way. First evidence of this is
provided by the central result of this section: the Möbius function of the face
lattice of a polyhedron can be computed in terms of the Euler characteristic.

Theorem 3.5.1. Let Q be a polyhedron with face lattice Φ = Φ(Q). For
faces F,G ∈ Φ with ∅ ≺ F � G,

µΦ(F,G) = (−1)dimG−dimF,

and µΦ(∅,G) = (−1)dimG+1χ(G) for G 6= ∅.

Towards a proof of this result, let ψ : Φ× Φ→ Z be the map stipulated
in Theorem 3.5.1, i.e.,

ψ(F,G) :=

{
(−1)dimG−dimF if ∅ ≺ F � G ,

(−1)dimG+1χ(G) if ∅ = F ≺ G .

We recall from Section 2.2 that the Möbius function µΦ is the inverse of the
zeta function ζΦ and hence is unique. Thus, to prove the claim in Theorem
3.5.1, namely, that µΦ(F,G) = ψ(F,G), it is sufficient to show that ψ satisfies
the defining relations (2.2.1) for the Möbius function. That is, we have to
show that ψ(F,F) = 1 and, for F ≺ G,

∑

F�K�G
ψ(K,G) = 0 . (3.5.1)

That ψ(F,F) = 1 is evident from the definition, so the meat lies in (3.5.1).
Here is a first calculation which shows that we are on the right track by
thinking of Euler characteristics: for F = ∅, we compute

∑

∅�K�G
ψ(K,G) = ψ(∅,G) +

∑

∅≺K�G
(−1)dimG−dimK

= ψ(∅,G) + (−1)dimGχ(G)

= 0 .

For the general case ∅ ≺ F � G � Q, we would like to make the same
argument but unfortunately we do not know if the interval [F,G] ⊆ Φ is
isomorphic to the face lattice of a polyhedron (see, however, Exercise 3.57).
We will do something else instead and take a route that emphasizes the
general geometric idea of modelling geometric objects locally by simpler ones.
Namely, we will associate to each face F a polyhedral cone that captures the
structure around F. We already used this idea in the proof of Theorem 3.4.1.
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Let Q ⊆ Rd be a polyhedron and q ∈ Rd. The tangent cone of Q at q
is defined by

Tq(Q) := {q + u : q + εu ∈ Q for all ε > 0 sufficiently small} .
See Figure 3.19 for examples.

q

q

q

q

q ∈ Q◦ q ∈ ∂Q q /∈ Q

Figure 3.19. Sample tangent cones of a quadrilateral.

By definition Tq(Q) = ∅ if q /∈ Q and Tq(Q) = aff(Q) if q ∈ Q◦. More
generally, the following result says that Tq(Q) is the translate of a polyhedral
cone, which justifies the name tangent cone.

Proposition 3.5.2. Let Q = {x ∈ Rd : 〈ai,x〉 ≤ bi, i ∈ [n]} be a polyhedron
and let q ∈ ∂Q. Then

Tq(Q) =
{

x ∈ Rd : 〈ai,x〉 ≤ bi for all i with 〈ai,q〉 = bi

}
. (3.5.2)

In particular, if p and q are both contained in the relative interior of a face
F � Q, then Tq(Q) = Tp(Q).

Proof. We observe that Tq(Q) = Tq−r(Q− r) for all r ∈ Rd, and so we may
assume that q = 0. Let I := {i ∈ [n] : bi = 0}; note that, since 0 ∈ Q, we
have bi > 0 for i /∈ I.

By definition, u ∈ T0(Q) if and only if

ε 〈ai,u〉 = 〈ai, εu〉 ≤ bi for i /∈ I and

ε 〈ai,u〉 ≤ 0 for i ∈ I ,
for sufficiently small ε > 0. The latter condition just says 〈ai,u〉 ≤ 0 for
i ∈ I, and the former condition can always be satisfied for a given u, since
bi > 0 for i /∈ I. This proves the first claim.

For the second claim, we note from Lemma 3.3.8 that p ∈ Q is contained
in the relative interior of the same face as q = 0 if and only if I = {i ∈ [n] :
〈ai,p〉 = bi}. Hence (3.5.2) gives Tp(Q) = Tq(Q). �
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Proposition 3.5.2 prompts the definition of tangent cones of faces: for a
nonempty face F � Q we define the tangent cone of Q at F as

TF(Q) := Tq(Q)

for any point q ∈ F◦. We set T∅(Q) = Q and refer to Exercise 3.58 for a
justification.

The next result solidifies our claim that the tangent cone of Q at F models
the facial structure of Q around F.

Lemma 3.5.3. Let Q be a polyhedron and F � Q a nonempty face. The
tangent cone TF(Q) is the translate of a polyhedral cone of dimension dimQ
with lineality space parallel to TF(F) = aff(F). The faces of Q that contain F
are in bijection with the nonempty faces of TF(Q) via

G 7→ TF(G) .

Proof. The claims follow from the representation (3.5.2) and what we learned
about polyhedra in Section 3.1. We may assume that

Q =
{

x ∈ Rd : 〈ai,x〉 ≤ bi for all i ∈ [n]
}

is a full-dimensional polyhedron. Let p ∈ F◦ and I = {i ∈ [n] : 〈ai,p〉 = bi}.
Then from (3.5.2) it follows that TF(Q) is given by a subset of the inequalities
defining Q and hence Q ⊆ TF(Q); in particular, TF(Q) is full dimensional.
When we translate TF(Q) by −p, we obtain

TF−p(Q− p) =
{

x ∈ Rd : 〈ai,x〉 ≤ 0 for all i ∈ I
}
,

a polyhedral cone with lineality space

L =
{

x ∈ Rd : 〈ai,x〉 = 0 for all i ∈ I
}

= aff(F)− p .

For the last claim, we use Exercise 3.50, which says that for each face
G � Q that contains F, there is an inclusion-maximal subset J ⊆ I such that

G = {x ∈ Q : 〈ai,x〉 = bi for all i ∈ J} .
In particular, J defines a face of TF(Q), namely,

{x ∈ TF(Q) : 〈ai,x〉 = bi for all i ∈ J} ,
which, by Proposition 3.5.2, is exactly TF(G). To see that the map G 7→ TF(G)

is a bijection, we observe that the map that sends a face Ĝ � TF(Q) to Ĝ∩Q
is an inverse. �

The gist of Lemma 3.5.3 is that for ∅ ≺ F � G � Q, the posets [F,G]
(considered as an interval in Φ(Q)) and Φ(TF(G))\{∅} are isomorphic. With
these preparations at hand, we can prove Theorem 3.5.1.
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Proof of Theorem 3.5.1. Let F ≺ G be two faces of Q. We already treated
the case F = ∅, so we may assume that F is nonempty. To show that ψ
satisfies (3.5.1), we use Lemma 3.5.3 to replace the sum in (3.5.1) over faces
in the interval [F,G] in Φ(Q) by the nonempty faces of TF(G):

∑

F�K�G
ψ(K,G) =

∑

TF(F)�TF(K)�TF(G)

(−1)dimG−dimK. (3.5.3)

By Lemma 3.5.3, the tangent cone TF(G) is the translate of a polyhedral
cone with lineality space L = aff(F)− p for p ∈ F◦. Furthermore, we claim
that TF(G)/L is unbounded. Indeed, otherwise TF(G) = aff(F) = TF(F),
which would imply, using again Lemma 3.5.3, that F = G, contradicting our
assumption F ≺ G.

Hence, we can continue our computation by noting that the right-hand
side of (3.5.3) equals the Euler characteristic of the line-free polyhedral cone
TF(G)/L, and so, by Corollary 3.4.8,

∑

TF(F)�TF(K)�TF(G)

(−1)dimG−dimK = (−1)dimGχ(TF(G)/L) = 0 . �

We will use tangent cones again in Chapter 5 to compute the Möbius
function of (seemingly) more complicated objects. Yet another application
of tangent cones is given in Section 3.7.

We finish this section by returning to a theme of Section 2.3, from which
we recall the notion of an Eulerian poset Π, i.e., one that comes with Möbius
function

µΠ(x, y) = (−1)lΠ(x,y),

where lΠ(x, y) is the length of the interval [x, y]. The length of an interval
[F,G] in a face lattice is dimG − dimF, and so with Theorem 3.5.1 we
conclude:

Corollary 3.5.4. The face lattice Φ(P) of a polytope P is Eulerian.

This allows us to derive an important corollary to Theorem 2.3.3, the
reciprocity theorem for zeta polynomials of Eulerian posets, which we will
apply to face lattices of a special class of polytopes. We will compute the zeta
polynomial ZΦ(P)(n) of the face lattice of a d-polytope P via Proposition 2.1.3,
for which we have to count multichains

∅ = F0 � F1 � · · · � Fn = P (3.5.4)

formed by faces of P. It is useful to consider the difference5

∆ZΦ(P)(n) := ZΦ(P)(n+ 1)− ZΦ(P)(n) ,

5 The difference operator ∆ will play a prominent role in Chapter 4.
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because Exercise 2.12 implies that ∆ZΦ(P)(n) equals the number of multi-
chains

∅ = F0 � F1 � · · · � Fn ≺ P . (3.5.5)

We recall that a polytope is simplicial if all of its proper faces are
simplices (equivalently, if all of its facets are simplices). If P is simplicial,
the multichains in (3.5.5) are of a special form, namely, F1,F2, . . . ,Fn are all
simplices, and consequently (Exercise 3.59)

∆ZΦ(P)(n) = 1 +
∑

∅≺F≺P
ndim(F)+1 =

d∑

k=0

fk−1(P)nk, (3.5.6)

where we set f−1(P) := 1, accounting for the empty face ∅. In conjunction
with Corollary 3.5.4, Theorem 2.3.3 now implies

(−1)d∆ZΦ(P)(−n) = (−1)d
(
ZΦ(P)(−n+ 1)− ZΦ(P)(−n)

)

= −ZΦ(P)(n− 1) + ZΦ(P)(n)

= ∆ZΦ(P)(n− 1) . (3.5.7)

Via (3.5.6) this yields relations among the face numbers. Namely, since

∆ZΦ(P)(n− 1) =
d∑

k=0

fk−1 (n− 1)k =
d∑

k=0

fk−1

k∑

j=0

(−1)k−j
(
k

j

)
nj

=

d∑

j=0

nj
d∑

k=j

(−1)k−j
(
k

j

)
fk−1 ,

we can rephrase (3.5.7) as follows.

Theorem 3.5.5. For a simplicial d-polytope P and 0 ≤ j ≤ d,

fj−1(P) =

d∑

k=j

(−1)d−k
(
k

j

)
fk−1(P) .

These face-number identities for simplicial polytopes are the Dehn–
Sommerville relations. The case j = 0 recovers the Euler–Poincaré
formula (3.4.8).

3.6. Uniqueness of the Euler Characteristics and Zaslavsky’s
Theorem

It is a valid question if the Euler characteristic is the unique valuation on
PCd with the properties of Theorem 3.4.1, i.e.,

χ(P) = 1 (3.6.1)

for every nonempty closed polytope P ⊂ Rd. The answer is no: as we will see
shortly, (3.6.1) does not determine χ(Q) for an unbounded polyhedron Q.
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Here is the situation on the real line: the building blocks for polyconvex
sets are points {p} with p ∈ R and open intervals of the form (a, b) with
a, b ∈ R∪ {±∞}. Let χ be a valuation on polyconvex sets in R that satisfies
the properties of Theorem 3.4.1. We need to define χ({p}) = 1 and from

1 = χ([a, b]) = χ((a, b)) + χ({a}) + χ({b})
for finite a and b, we infer that χ((a, b)) = −1. The interesting part now
comes from unbounded intervals. For example, we can set χ((a,∞)) =
χ((−∞, a)) = 0 and check that this indeed defines a valuation: the value of
χ on a closed unbounded interval [a,∞) is

χ([a,∞)) = χ({a}) + χ((a,∞)) = 1 ,

in contrast to χ([a,∞)) = 0 (by Proposition 3.4.9). What about the value
on R = (−∞,∞)? It is easy to see (Exercise 3.60) that χ(R) = 1.

This was a proof (crawling on hands and knees) for the case d = 1 of the
following important result.

Theorem 3.6.1. There is a unique valuation χ : PCd → Z of polyconvex
sets in Rd such that χ(Q) = 1 for every closed polyhedron Q 6= ∅.

We can prove this theorem using the same arguments as in Section 3.4
by way of H-polyconvex sets and, in particular, Lemma 3.4.3. However, as
in Section 3.4, we will need to make a choice for the value of χ on relatively
open polyhedra. On the other hand, if χ is unique, then there isn’t really a
choice for χ(Q◦).

Proposition 3.6.2. Suppose that χ is a valuation such that χ(Q) = 1 for
all nonempty closed polyhedra Q. If Q is a closed polyhedron with lineality
space L = lineal(Q), then

χ(Q◦) =

{
(−1)dim(Q/L) if Q/L is bounded,

0 otherwise.

Proof. Let Q be a nonempty polyhedron. We can think of χ as a function
on the face lattice Φ = Φ(Q) given by

χ(G) =
∑

F�G
χ(F◦) (3.6.2)

and χ(∅) = 0. We apply Möbius inversion (Theorem 2.4.2) to (3.6.2) to
obtain

χ(G◦) =
∑

F�G
χ(F)µΦ(F,G) =

∑

∅≺F�G
µΦ(F,G) = −µΦ(∅,G) .

The result now follows from Theorem 3.5.1. �
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Proof of Theorem 3.6.1. To show that χ is a valuation on PCd, we revisit
the argumentation of Section 3.4 by way of H-polyconvex sets. The value of
χ on relatively open polyhedra is given by Proposition 3.6.2. We explicitly
give the crucial step (analogous to Lemma 3.4.3), namely: let Q be a
relatively open polyhedron and H a hyperplane such that Q ∩ H 6= ∅.
Define the three nonempty polyhedra Q<,Q=,Q> as the intersection of Q
with H<,H=,H>, respectively. If Q is bounded, then we are exactly in the
situation of Lemma 3.4.3. Now let Q be unbounded. The closure of Q= is a
face of the closure of both Q< and Q>. Hence, if one of them is bounded,
then so is Q=. Thus

χ(Q) = χ(Q<) + χ(Q=) + χ(Q>) .

That χ(Q) = 1 for all closed polyhedra Q follows from (3.6.2). This
also shows uniqueness: by Proposition 3.6.2, the value on relatively open
polyhedra is uniquely determined. By Proposition 3.4.4, for every polyconvex
set S there is a hyperplane arrangement H such that S is H-polyconvex and
hence can be represented as a union of disjoint relatively open polyhedra. �

Table 3.1. Evaluations of χ and χ at a polyhedron Q = P + C + L,
where P is a polytope, C is a pointed cone, and L = lineal(Q).

χ χ

Q = P + C + L with C 6= {0} 0 1

Q = P + L (−1)dim L 1

Q◦ = (P + C + L)◦ with C 6= {0} (−1)dimQ 0

Q◦ = (P + L)◦ (−1)dimQ (−1)dimP

Table 3.1 compares the two “Euler characteristics” we have established
in this chapter. There is merit in having several “Euler characteristics”. We
will illustrate this in the remainder of this section with one of the gems of
geometric combinatorics—Zaslavsky’s theorem, Theorem 3.6.4 below. To
state it, we need the notion of characteristic polynomials.

Let Π be a graded poset with minimum 0̂. The characteristic polyno-
mial of Π is

χΠ(n) :=
∑

x∈Π

µΠ

(
0̂, x
)
nrk(Π)−rk(x),

where rk(x) = l(0̂, x), the rank of x ∈ Π. In many situations, the character-
istic polynomial captures interesting combinatorial information about the
poset. Here is a simple example.
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Proposition 3.6.3. Let P be a polytope and χΦ(n) the characteristic poly-

nomial of the face lattice Φ = Φ(P). Then (−1)dim(P)+1χΦ(−1) equals the
number of faces of P and χΦ(1) = 1− χ(P) = 0.

Proof. We recall from Theorem 3.5.1 that the Möbius function of Φ is given
by µΦ(F,G) = (−1)dimG−dimF whenever F � G are faces of P. The rank of a
face G is given by rk(G) = dim(G) + 1. Hence

χΦ(n) =
∑

∅�F�P
(−1)dimF+1 ndimP−dimF. (3.6.3)

Thus, the evaluation of (−1)dimP+1χΦ(n) at n = −1 simply counts the
number of faces and for n = 1, equation (3.6.3) reduces to 1− χ(P) via the
Euler–Poincaré formula (3.4.8). �

R2

H1 H2 H3 H4 H5 H6

Figure 3.20. The intersection poset for the line arrangement in Figure 3.14.

Let H = {H1,H2, . . . ,Hk} be an arrangement of hyperplanes in Rd. A
flat of H is a nonempty affine subspace F ⊂ Rd of the form

F = Hi1 ∩ Hi2 ∩ · · · ∩ Hik

for some 1 ≤ i1, . . . , ik ≤ n. The intersection poset L(H) of H is the
collection of flats of H ordered by reverse inclusion. That is, for two flats
F,G ∈ L(H), we have F � G if G ⊆ F. (Figure 3.20 shows the intersection
poset of the arrangement of six lines in Figure 3.14.) The minimal element
is the empty intersection given by 0̂ = Rd. There is a maximal element
precisely if all hyperplanes have a point in common, in which case we may
assume that all hyperplanes pass through the origin and call H central.
An example of a central arrangement (consisting of the three coordinate
hyperplanes x1 = 0, x2 = 0, and x3 = 0) is given in Figure 3.21. Let LH ⊆ Rd
be the inclusion-maximal linear subspace that is parallel to all hyperplanes,
that is, Hi + LH ⊆ Hi for all 1 ≤ i ≤ k. We call LH the lineality space
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R3

x1 = 0 x2 = 0 x3 = 0

x1 = x3 = 0 x1 = x2 = 0 x2 = x3 = 0

x1 = x2 = x3 = 0

Figure 3.21. An arrangement of three coordinate hyperplanes and its
intersection poset.

of H. The arrangement H is essential if LH = {0}. If LH 6= {0}, then
H′ := {H′i := Hi ∩ L⊥H : i = 1, . . . , k} is essential and L(H′) ∼= L(H).

The characteristic polynomial of H is

χH(n) :=
∑

F∈L(H)

µL(H)

(
Rd,F

)
ndimF = ndim LHχL(H)(n) ,

where the last equality follows from rkL(H)(F) = d− dimF. For example, the
characteristic polynomial of the arrangement of six lines in Figure 3.14 is
χH(n) = n2 − 6n+ 12.

As mentioned in Section 3.4, the hyperplane arrangement H decomposes
Rd into relatively open polyhedra: for each point p ∈ Rd there is a unique
σ ∈ {<,=, >}k such that

p ∈ Hσ = Hσ1
1 ∩ Hσ2

2 ∩ · · · ∩ Hσkk .

A (closed) region of H is (the closure of) a full-dimensional open polyhedron
in this decomposition. A region can be unbounded or relatively bounded,
that is, Hσ has lineality space LH and Hσ ∩ L⊥H is bounded. In particular, if
H is essential, then the regions are bounded or unbounded.

We define r(H) to be the number of all regions and b(H) to be the
number of relatively bounded regions of H. For example, the arrangement in
Figure 3.14 has 19 regions, seven of which are bounded. Exercises 3.65–3.68
give a few more examples. Our proof of the following famous theorem makes
use of the fact that we have two “Euler characteristics” at our disposal.

Theorem 3.6.4. Let H be a hyperplane arrangement in Rd. Then

r(H) = (−1)d χH(−1) and b(H) = (−1)d−dim LH χH(1) .

Proof. We denote by
⋃H = H1 ∪ · · · ∪ Hk the union of all hyperplanes.

Then Rd \⋃H = R1 ]R2 ] · · · ]Rm, where R1, . . . , Rm are the regions of H.
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This is a polyconvex set, and since every region is a d-dimensional open
polyhedron with the same lineality space LH,

r(B) = (−1)d χ
(
Rd \

⋃
H
)

and b(B) = (−1)d−dim LH χ
(
Rd \

⋃
H
)
,

by Corollary 3.4.6 and Proposition 3.6.2. Let φ : PCd → R be a valuation.
Then

φ
(
Rd \

⋃
H
)

= φ(Rd)− φ (H1 ∪ H2 ∪ · · · ∪ Hk) =
∑

I⊆[k]

(−1)|I| φ (HI)

=
∑

F∈L(H)

µL(H)

(
0̂,F
)
φ(F) , (3.6.4)

where the penultimate equation is the inclusion–exclusion formula (3.4.2)
with HI :=

⋂
i∈I Hi, and the last equation follows from Theorem 2.4.5. Since

each F ∈ L(H) is an affine subspace and hence a closed polyhedron, we
have χ(F) = 1, and so for φ = χ in (3.6.4) we obtain the evaluation χH(1).
Similarly, for φ = χ, we have χ(F) = (−1)dimF and hence (3.6.4) for φ = χ
yields χH(−1). �

3.7. The Brianchon–Gram Relation

In this final section we want to once again allure to Euler characteristics to
prove an elegant result in geometric combinatorics, the Brianchon–Gram
relation—Theorem 3.7.1 below. This is a simple geometric equation that
can be thought of as a close relative to the Euler–Poincaré formula (3.4.8).
It is best stated in terms of indicator functions: for a subset S ⊆ Rd, the
indicator function of S is the function [S] : Rd → Z defined by

[S](p) :=

{
1 if p ∈ S,
0 otherwise.

Theorem 3.7.1. Let P ⊂ Rd be a polytope. Then

[P] =
∑

∅≺F�P
(−1)dimF [TF(P)] . (3.7.1)

Here TF(P) is the tangent cone of P at a face F, a notion that we
popularized in Section 3.5 in connection with the Möbius function of a face
lattice. The Brianchon–Gram relation is a simple truth which we will see
in action in Section 5.4. We devote the remainder of this section to its
verification.

We first note that Lemma 3.5.3 implies P ⊆ TF(P) for all F 6= ∅. Hence,
for a point p ∈ P, we compute

∑

∅≺F�P
(−1)dimF [TF(P)](p) =

∑

∅≺F�P
(−1)dimF = χ(P) = 1 ,
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by Theorem 3.4.1 and the Euler–Poincaré formula (3.4.8). Thus it remains
to prove that the right-hand side of (3.7.1) evaluates to 0 for all p 6∈ P. This
is clear when p 6∈ aff(P), and so we may assume that P is full dimensional.

We call a point p ∈ Rd beneath a face F of the polyhedron P if p ∈ TF(P)
and beyond F otherwise. From the definition of tangent cones, it follows
that p is beyond F if and only if

[p,q] ∩ P = {q} for all q ∈ F
(Exercise 3.62). In this situation we also say that (the points in) F is (are)
visible from p. Figure 3.22 shows two examples.

0 0

Figure 3.22. Two edges of a hexagon, one that is visible from 0 and
one that is not.

We collect the points in P belonging to faces that p is beyond—equiva-
lently, those points visible from p—in the set6

|Visp(P)| :=
⋃
{F◦ : p is beyond F ≺ P} . (3.7.2)

Since P is full dimensional, there is no point beyond P and thus |Visp(P)| is
a subset of the boundary.

We remark that |Visp(P)| is a polyconvex set, and for p ∈ Rd \ P the
right-hand side of (3.7.1) equals

∑

F�P
p beneath F

(−1)dimF =
∑

F�P
(−1)dimF −

∑

F≺P
p beyond F

(−1)dimF

= χ(P)− χ(|Visp(P)|) .
We thus want to show that |Visp(P)| has Euler characteristic 1 whenever
p 6∈ P. By translating both the point p and the polytope P by −p, we may
assume that p = 0. Let C := cone(P); see Figure 3.23 for a sketch. Since

6 The maybe-funny-looking notation |Visp(P)| will be explained in Chapter 5.



92 3. Polyhedral Geometry

0

P

C

Figure 3.23. The cone C = cone(P) and the faces of P beyond 0. Note
that these contain (visibly!) precisely the points in P that are visible

from 0.

0 6∈ P, the cone C is pointed. The following construction is reminiscent of
our proof of Theorem 3.4.1 in Section 3.4; it is illustrated in Figure 3.24.

0

C

Figure 3.24. The decomposition of Proposition 3.7.2.

Proposition 3.7.2. Let P be a full-dimensional polytope and C := cone(P).
Then

C \ {0} =
⊎
{cone(F)◦ : 0 is beyond F ≺ P} .

Proof. A point u ∈ Rd is contained in C\{0} if and only if λu ∈ P for some
λ > 0. Since P is compact, there are a minimal such λ and a unique face F
such that λu ∈ F◦, by Lemma 3.3.8. Checking the definition shows that 0 is
beyond F. �
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Now to finish the proof of Theorem 3.7.1, if F ≺ P is a proper face such
that 0 is beyond F, then cone(F)◦ is a relatively open polyhedral cone of
dimension dimF + 1. Hence, with Proposition 3.7.2,

χ(C) = χ({0}) +
∑

F≺P
06∈TF(P)

(−1)dimF+1 = 1− χ(|Vis0(P)|) .

Since C is pointed, we conclude, with the help of Proposition 3.4.9, that
χ(|Vis0(P)|) = 1, which was the missing piece to finish the proof of Theo-
rem 3.7.1.

We will encounter the set |Visp(P)| again in Section 5.3.

Notes

Three-dimensional polyhedra, i.e., three-dimensional convex geometric ob-
jects bounded by planes, have been admired since the dawn of time. They
have been intensively studied by the ancient Greeks, including Plato and
Archimedes, but they have been thought about even earlier. The algebraic
perspective with linear inequalities allows for a generalization to arbitrary di-
mensions. This was initiated by Hermann Minkowski [124], who was also the
first to systematically investigate separation theorems such as Theorem 3.2.3.
The classical approach to separation is via nearest-point maps, which are
implicit in Exercise 3.21.

Linear inequalities are very versatile, and polyhedra constitute the geomet-
ric perspective on linear programming. A linear program is an optimization
problem of the form

max 〈c,x〉
subject to 〈ai,x〉 ≤ bi for i = 1, . . . , k.

(3.7.3)

Linear programming and hence polyhedra are of utmost importance in the
field of operations research. Polyhedral combinatorics is the field (or, we
think, the art) of modelling a combinatorial optimization problem as a linear
program (3.7.3). To give a trivial example, assume that the elements in [d]
have a weight or cost ci ∈ R for i = 1, . . . , d. For a given k ≥ 1, how do we
find a k-subset of [d] that minimizes the total weight/cost? Well, we simply
maximize the linear function −c = (−c1, . . . ,−cn) over the polytope

4(d, k) :=
{

x ∈ [0, 1]d : x1 + · · ·+ xd = k
}
.

It is not difficult to see that the maximum is attained at a vertex v ∈ Zd that
decodes a k-subset of minimum total weight/cost. Since this is independent
of c, this shows that 4(d, k) is a lattice polytope. We will have more to
say about 4(d, k) in Section 5.7. For more on the fascinating subject of
polyhedral combinatorics, we refer to [152] and [153].
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Theorem 3.2.5 is due to Minkowski [124]. It perfectly matches our
intuition in three dimensions but, as you can see, the (algebraic) proof is
quite nontrivial. A formal proof was given by Weyl [182]. The passage from
linear inequalities to vertices and generators and back can be done effectively:
in Section 5.3 we will outline an algorithm to compute the facet-defining
inequalities of P = conv(V ) for given V . We have to be careful with what
we mean by effectively. Complexity theoretically, this is bad and it is easy
to write down simple inequalities that will bring any computer to its knees.
Nevertheless, it is amazing how well the algorithm works in practice, and
we invite you to try it out with the computer systems polymake [68] or
SAGE [55].

Polarity for convex cones as in Exercise 3.22 saved us from proving
both directions of Theorem 3.2.5 independently. Polarity for polyhedra and
general convex sets is a powerful tool that (sadly) does not play much of a
role for this book. For much more on polyhedra, we refer to [78,190] for
the combinatorial side as well as [15,76] for a more metric touch.

The 3-dimensional case of the Euler–Poincaré formula (3.4.8) was proved
by Leonard Euler in 1752 [61,62]. The full (i.e., higher-dimensional) version
of (3.4.8) was discovered by Ludwig Schläfli in 1852 (though published only
in 1902 [150]), but Schläfli’s proof implicitly assumed that every polytope is
shellable (as did numerous proofs of (3.4.8) that followed Schläfli’s), a fact
that was established only in 1971 by Heinz Bruggesser and Peter Mani [41].
The first airtight proof of (3.4.8) (in 1893, using tools from algebraic topology)
is due to Henri Poincaré [137] (see also, e.g., [81, Theorem 2.44]). Despite
its simplicity, the Euler characteristic is a very powerful valuation that brings
together the geometry of polyconvex sets and their combinatorics; see [99].
Our approach to the Euler characteristic was inspired by [112].

There is a shorter path to the Möbius function of polyhedra hinted
at in Exercises 3.56 and 3.57, but tangent cones will be important for us
throughout. For example, there is no Brianchon–Gram relation without
them.

It is interesting to note that the Euler–Poincaré formula (3.4.8) is the
only linear relation, up to scaling, satisfied by all f -vectors of d-dimensional
polytopes; see, e.g., [78, Section 8.1]. This is in stark contrast to f -vectors
of simplicial polytopes and the Dehn–Sommerville relations (Theorem 3.5.5),
named after Max Dehn, who proved their 5-dimensional instance in 1905 [52],
and D. M. Y. Sommerville, who established the general case in 1927 [158].
That the Dehn–Sommerville relations follow from the reciprocity theorem for
the zeta polynomial of the face lattice of a simplicial polytope was realized
by Richard Stanley in [162] at the inception of zeta polynomials.
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As already mentioned in Chapter 1, classifying face numbers is a major
research problem. In dimension 3 this question is answered by Steinitz’s the-
orem [176]: the f -vectors of 3-polytopes are the lattice points in a (translate
of) a 2-dimensional polyhedral cone; see [190, Lecture 4]. The classification
question in dimension 4 is still open. For special classes, such as the class
of simplicial polytopes, there is a complete characterization of f -vectors.
This is the g-Theorem, which was conjectured by Peter McMullen [119] and
proved by Louis Billera and Carl Lee [30] and Stanley [164]; see also [121].
A main part in this characterization is a description of the conical hull of the
set of f -vectors of simplicial d-polytopes. The Dehn–Sommerville relations
in terms of h-vectors, defined in Section 5.6, turn out to be very important
for that.

Theorem 3.6.4 was part of Thomas Zaslavsky’s Ph.D. thesis, which
started the modern theory of hyperplane arrangements [187]. An approach
to characteristic polynomials of hyperplane arrangements and, more generally,
subspace arrangements by way of valuations is [56]. A nice survey article on
the combinatorics of hyperplane arrangements is [169]. The study of complex
hyperplane arrangement, that is, arrangements of codimension-1 subspaces
in Cd, gives rise to numerous interesting topological considerations [130];
for starters, a complex hyperplane does not separate Cd into two connected
components.

The 3-dimensional case of the Brianchon–Gram relation (Theorem 3.7.1)
was discovered by Charles Julien Brianchon in 1837 [38] and—as far as
we know—independently reproved by Jørgen Gram in 1874 [73]. It is not
clear who first proved the general d-dimensional case of the Brianchon–Gram
relation; the oldest proofs we could find were from the 1960s [78,100,134,
155].

Exercises

3.1 D Show that every nonempty affine subspace L ⊆ Rd is of the form
L = p + L0 for some linear subspace L0 ⊆ Rd and p ∈ Rd.

3.2 D Let Q =
⋂m
i=1 H

≤
i be a (possibly empty) polyhedron. An irredundant

presentation is a set I ⊆ [m] such that Q =
⋂
i∈I H

≤
i .

(a) Find a polyhedron Q that has two irredundant presentations I, I ′

with |I| 6= |I ′|. (Hint: Even a point in the plane will do.)
(b) For Q ⊆ Rd an affine subspace of dimension k, can you determine

the possible sizes |I|?
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3.3 D Prove that a polyhedron Q ⊆ Rd is a polyhedral cone if and only if

Q =
{

x ∈ Rd : A x ≤ 0
}

for some matrix A.

3.4 D Let Q = {x : Ax ≤ b} be a nonempty polyhedron.
(a) Show that

rec(Q) = {x : Ax ≤ 0} .
(b) Infer that p + Ru ⊆ Q for all p ∈ Q.
(c) What goes wrong if Q is empty?

3.5 D Use Exercises 3.4 to prove Proposition 3.1.2.

3.6 What is the homogenization of an affine subspace?

3.7 Let Q,Q′ ⊆ Rd.
(a) Show that if Q ∼= Q′, then hom(Q) ∼= hom(Q′).
(b) Show that the converse is not true.
(c) Let A ∈ Rd×d be invertible, b, c ∈ Rd, and δ ∈ R such that

(c, δ) 6= 0. A projective transformation T is defined as

T (x) :=
A x + b

〈c,x〉+ δ
.

Thus, T is defined and invertible outside the hyperplane H∞ :=
{x : 〈c,x〉+ δ = 0}. A projective transform T is admissible for a
polyhedron Q if Q◦ ∩ H∞ = ∅. A polyhedron Q′ is projectively
isomorphic to Q if there is an admissible projective transformation
T such that T (Q) = Q′. Show that Q′ is projectively isomorphic to
Q if and only if hom(Q′) is linearly isomorphic to hom(Q).

3.8 D Let Q = {x ∈ Rd : A x ≤ b} be a nonempty polyhedron. Show that
lineal(Q) = ker(A). Infer that p + lineal(Q) ⊆ Q for all p ∈ Q.

3.9 The definition of lineality spaces makes sense for arbitrary convex sets
K in Rd. Show that in this more general situation, convexity implies
that p + lineal(K) ⊆ K for all p ∈ K.

3.10 D Show that a polyhedral cone C is pointed if and only if p,−p ∈ C
implies p = 0.

3.11 D Let Q = {x ∈ Rd : 〈ai,x〉 ≤ bi for i = 1, . . . , k} be a polyhedron.
For p ∈ Rd and ε > 0, let B(p, ε) be the ball of radius ε centered at p.
A point p ∈ Q is an interior point of Q if B(p, ε) ⊆ Q for some ε > 0.
Show that (3.1.11) equals the set of interior points of Q.

3.12 D Let Q = {x ∈ Rd : 〈ai,x〉 ≤ bi for i ∈ [k]} be a polyhedron, and
define I := {i ∈ [k] : 〈ai,p〉 = bi for all p ∈ Q}.
(a) Show that aff(Q) = {x ∈ Rd : 〈ai,x〉 = bi for all i ∈ I}.
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(b) Let L = aff(Q). Show that a point p is in the relative interior of Q
if and only if

B(p, ε) ∩ L ⊆ Q ∩ L

for some ε > 0. (Hint: Exercise 3.11.)
(c) Show that Q◦ = {x ∈ Q : 〈ai,x〉 < bi for all i 6∈ I}.

3.13 D Show that the unit ball in the `1-norm is a bounded polyhedron.

3.14 D Let S ⊂ Rd.
(a) Show that

K =



λ1v1 + · · ·+ λkvk :

k ≥ 0, v1, . . . ,vk ∈ S
λ1, . . . , λk ≥ 0

λ1 + · · ·+ λk = 1





is a convex set containing S.
(b) Show that if K′ is a convex set containing S, then K ⊆ K′. Conclude

the validity of (3.2.1).

3.15 D Let P = conv(S) ⊂ Rd be a polytope.
(a) Let p,q ∈ S. Show that if P = conv(S \{p}) = conv(S \{q}), then

P = conv(S \ {p,q}).
(b) Conclude there is a unique inclusion-minimal set V ⊆ S such that

P = conv(V ).

3.16 D Show that if 4,4′ are two simplices of the same dimension, then
there is an affine transformation T with T (4) = 4′.

3.17 Show that every linear subspace is a finitely generated convex cone.
What are the possible sizes of inclusion-minimal sets of generators?

3.18 D Let S ⊂ Rd be a compact and convex set. Show that

hom(S) = cone(S × {1}) .
3.19 D Let s1, . . . , sk ∈ Rd. Show that

cone(s1, . . . , sk) = {µ1s1 + · · ·+ µksk : µ1, . . . , µk ≥ 0} .
3.20 D Let C = cone(u1, . . . ,uk).

(a) Show that lineal(C) 6= {0} if and only if there is some p ∈ C \ {0}
with −p ∈ C.

(b) Show that there is some p 6= 0 with ±p ∈ C if and only if there are
µ1, . . . , µk ≥ 0 not all zero such that

0 = µ1 u1 + · · ·+ µkuk .

3.21 D Let K ⊂ Rd be a closed convex set and p ∈ Rd \ K.
(a) Show that there is a unique point q ∈ K such that ‖q − p‖2 ≤
‖q′−p‖2 for all q′ ∈ K. (Hint: Reduce to the case that K is bounded
(and hence compact) for existence and convexity for uniqueness.)
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(b) Show that

H :=
{

x ∈ Rd : ‖x− q‖2 = ‖x− p‖2
}

is a hyperplane.
(c) Conclude that H is a separating hyperplane, which then proves the

Separation Theorem 3.2.3.

3.22 D For S ⊆ Rd, we define the cone polar of S as

S∨ := {y ∈ Rd : 〈y,x〉 ≤ 0 for all x ∈ S} .

(a) Show that S∨ is a closed convex cone.
(b) Show that if C = cone(u1, . . . ,uk), then

C∨ =
{

y ∈ Rd : 〈ui,y〉 ≤ 0 for i = 1, . . . , k
}
.

(c) Show that if C is a closed convex cone, then (C∨)∨ = C. (Hint: Use
the Separation Theorem 3.2.3 and modify the hyperplane so that it
passes through the origin.)

(d) Assume the following statement: If C is a polyhedral cone, then C
is a finitely generated cone. Show that the converse then also holds:
If C is a finitely generated cone, then C is a polyhedral cone.

3.23 D Verify that the three conditions for affine independence on page 63
are equivalent.

3.24 Recall that an affine subspace is of the form L = p + L0, where L0 is a
linear subspace.
(a) Let p1, . . . ,pk ∈ L and α1, . . . , αk ∈ R such that α1 + · · ·+ αk = 1.

Show that α1p1 + · · ·+ αkpk ∈ L. This is called an affine linear
combination.

(b) For p1, . . . ,pk ∈ Rd, show that aff(p1, . . . ,pk), the intersection of
all affine subspaces containing p1, . . . ,pk, is exactly the set of affine
linear combinations of p1, . . . ,pk.

(c) Show that if L is of dimension k, then there are points p0, . . . ,pk
such that every point in L can be expressed by a unique affine linear
combination of p0, . . . ,pk.

3.25 D Show that if K1,K2 ⊆ Rd are convex, then so is the Minkowski sum
K1 + K2. Show that if K1,K2 are polytopes, then K1 + K2 is a polytope.

3.26 D Let Q = P + C ⊂ Rd, where P = conv(v1, . . . ,vr) is a polytope
and C = cone(u1, . . . ,us) is a finitely generated cone. Show that the
homogenization Q is given by

hom(Q) = cone

{(
v1

1

)
, . . . ,

(
vr
1

)
,

(
u1

0

)
, . . . ,

(
us
0

)}
.
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3.27 Show that if Q = {x ∈ Rd : 〈ai,x〉 ≤ bi} is a full-dimensional polyhe-
dron, then it has a unique irredundant description, up to scaling.

3.28 D Prove Corollary 3.2.7: Let Q ⊂ Rd be a polyhedron and φ(x) =
A x + b an affine projection Rd → Re. Then φ(Q) is a polyhedron. If
P ⊂ Rd is a polytope, then P ∩ Q is a polytope.

3.29 D Show that every polyhedral cone of dimension at most 2 is finitely
generated.

3.30 D Prove that a face of a (bounded) polyhedron is again a (bounded)
polyhedron.

3.31 D Let V ⊂ Rd be a finite set and P = conv(V ) the associated polytope.
Let v ∈ V be arbitrary.
(a) Show that if {v} is a face of P, then P 6= conv(V \ v).
(b) Show that if P 6= conv(V \ v), then {v} is a face of P. (Hint: Use

Exercise 3.21 and modify the hyperplane to be supporting at v.)

3.32 D Recall from Theorem 3.2.5 that every polyhedron Q is of the form
Q = P + C, where P is a polytope and C is a polyhedral cone. Prove
that for each nonempty face F � Q, there are unique faces F′ � P and
F′′ � C such that F = F′ + F′′.

3.33 D Prove Proposition 3.3.1 for the general case that Q is a polyhedron.

3.34 D In the proof of Proposition 3.3.1, let

ν := max
({
〈a′,v〉 − b′ : v ∈ vert(Q) \ F

}
∪ {0}

)
.

Show that it suffices to choose

0 < ε <
η

ν
.

(In case ν = 0, H′ is already supporting for Q and there is no restriction
on ε.)

3.35 D Prove Corollary 3.3.3: The face lattice of a polyhedron is a graded
poset. If Q is a pointed polyhedron, then the rank of a face F is dimF+1.

3.36 D Prove Lemma 3.3.4: Let Q be a polyhedron with lineality space L.
The map Φ(Q)→ Φ(Q/L) given by F 7→ F/L is an isomorphism of face
lattices.

3.37 D Let Q ⊂ Rd be a nonempty full-dimensional polyhedron and H a
hyperplane such that Q◦ ∩H 6= ∅. Show that dim(Q◦ ∩H) = dimQ− 1.
(Hint: Show that aff(Q◦ ∩ H) = H.)

3.38 D Prove that, if F and G are faces of a polyhedron Q that are unrelated
in the face lattice (i.e., F 6⊆ G and G 6⊆ F), then

F◦ ∩ G◦ = ∅ .

3.39 Show that cross-polytopes are simplicial polytopes.
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3.40 D Prove Proposition 3.3.10: Let P′ = v ∗P be a pyramid. For each face
F � P, the polytope v ∗ F is a face of P′. Conversely, every face F′ � P′

is either a face of P or is of the form F′ = v ∗ F for some face F � P.

3.41 Let P = conv(p1, . . . ,pm) be a polytope. Show that a point q is in the
relative interior of P if there are λ1, . . . , λm > 0 such that

q = λ1p1 + · · ·+ λmpm and λ1 + · · ·+ λm = 1.

When is this an if and only if condition?

3.42 Prove that, if C = cone(s1, s2, . . . , sm) (written in an irredundant form),
then

C◦ = {λ1s1 + λ2s2 + · · ·+ λmsm : λ1, λ2, . . . , λm > 0} .
3.43 Let vert(Q1) = {u1,u2, . . . ,um} and vert(Q2) = {v1,v2, . . . ,vn}, and

consider a point s+t ∈ Q1+Q2. Then there are coefficients λ1, . . . , λm ≥
0 and µ1, . . . , µn ≥ 0 such that

∑
i λi =

∑
j µj = 1 and

s + t =
m∑

i=1

λiui +
n∑

j=1

µjvj .

Now set αij = λi µj ≥ 0 for (i, j) ∈ [m]× [n]. Prove that

s + t =
∑

(i,j)∈[m]×[n]

αij(ui + vj) .

3.44 Recall that two affine subspaces L, L′ ⊂ Rd are skew if L and L are not
parallel (equivalently, dim L + L′ = dim L + dim L′) and L ∩ L = ∅. Let
Q,Q′ ⊂ Rd such that aff(Q) and aff(Q′) are skew. We define the join
as

Q ∗ Q′ := conv(Q ∪ Q′) .

Show that

Φ(Q ∗ Q′) ∼= Φ(Q)× Φ(Q′) ,

where the latter is the direct product of face posets; see Exercise 2.6.
Deduce that

fi(Q ∗ Q′) =
∑

k,l≥−1
k+l=i−1

fk(Q) fl(Q
′) .

3.45 D Verify Proposition 3.3.11: (Φ([−1, 1]d) \ {∅},⊆) ∼= ({−, 0,+}d,�) .

3.46 D Let Q ⊂ Rd, Q′ ⊂ Re be two polyhedra.
(a) Show that Q× Q′ is a polyhedron.
(b) Show that

Φ(Q× Q′) \ {∅} ∼= (Φ(Q) \ {∅})× (Φ(Q′) \ {∅}) .
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(c) Deduce that

fi(Q× Q′) =
∑

k,l≥0
k+l=i

fk(Q) fl(Q
′) .

3.47 Let Q,Q′ ⊂ Rd be polyhedra such that Q◦ ∩ (Q′)◦ = {p} for some
p ∈ Rd. We define the direct sum or free sum

Q⊕ Q′ := conv(Q ∪ Q′) .

(a) Show that Q⊕ Q′ is a polyhedron.
(b) Show that

Φ(Q⊕ Q′) \ {Q⊕ Q′} ∼= (Φ(Q) \ {Q})× (Φ(Q′) \ {Q′}) .
(c) Show that the convex hull of

Q× {0} × {−1} ∪ {0} × Q′ × {+1}
is a join in the sense of Exercise 3.44. Can you find a relation
between Q ∗ Q′, Q× Q′, and Q⊕ Q′?

3.48 Let Q = {x : A x ≤ b} be a nonempty polyhedron and let H = {x :
〈w,x〉 = δ} be a supporting hyperplane with face F. We define the
wedge of Q at F as the polyhedron

wedge(Q,F) := {(x, t) : A x ≤ b, 0 ≤ t ≤ δ − 〈w,x〉} .
Show that this is a combinatorial construction and determine the face
lattice of wedge(Q,F).

3.49 D Show that the unit disc {(x, y) ∈ R2 : x2+y2 ≤ 1} is not a polyconvex
set.

3.50 D Let F be a nonempty face of the polyhedron

Q =
{

x ∈ Rd : 〈ai,x〉 ≤ bi for i ∈ [k]
}

and let G be a face of Q that contains F. There is a subset I ⊆ [k] of
indices such that

F = {x ∈ Q : 〈ai,x〉 = bi for i ∈ I} .
Show that there exists an inclusion-maximal subset J ⊆ I such that

G = {x ∈ Q : 〈ai,x〉 = bi for i ∈ J} .
3.51 Suppose V is the set of vertices of the polytope P, and F is a face of P.

Prove that F is the convex hull of V ∩ F.

3.52 D Let H be an arrangement of hyperplanes in Rd and PC(H) the
collection of H-polyconvex sets.
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(a) Let G be some fixed Abelian group. Let φ be a map that assigns
any nonempty relatively polyhedron Hσ a value φ(Hσ) ∈ G. For
S ∈ PC(H) define

φ(S) := φ(Hσ1) + φ(Hσ2) + · · ·+ φ(Hσk)

through (3.4.4). Show that φ : PC(H)→ G is a valuation on PC(H).
(b) Conclude that the function χ(H, ·) : PC(H)→ Z is a valuation.

3.53 D Prove Proposition 3.4.7: Let P be a nonempty polytope with 0 ∈ P◦.
For every proper face F ≺ P, the set C0(F) is a relatively open polyhedral
cone of dimension dimF + 1. Furthermore,

C0(P) = aff(P) =
⊎

F≺P
C0(F) .

3.54 D Prove Corollary 3.4.8: If Q is a polyhedron with lineality space
L = lineal(Q), then

χ(Q) = (−1)dim L χ(Q/L) .

3.55 D Verify our assertions about faces in the proof of Proposition 3.4.9,
namely, that each k-face F of C gives rise to a k-face of C and, if F is
unbounded, a (k − 1)-face of C∞, and that these are all the faces of C
and C∞.

3.56 Let Q ⊂ Rd be a pointed polyhedron of dimension d. Let v be a vertex
of Q and H = {x ∈ Rd : 〈a,x〉 = δ} a hyperplane such that Q ⊆ H≤

and {v} = Q ∩ H. For ε > 0, define Hε = {x ∈ Rd : 〈a,x〉 = δ − ε}.
(a) For every sufficiently small ε > 0, show that the polytope

P(H,v) := Q ∩ Hε

has the following property: There is a bijection between the k-
faces of P(H,v) and the (k + 1)-faces of Q containing v, for all
k = −1, . . . , d− 1.

This shows that the face lattice Φ(P(H,v)) is isomorphic to the interval
[v,Q] in Φ(Q) and, in particular, independent of the choice of H. We
call any such polytope P(H,v) the vertex figure of Q at v and denote
it by Q/v.
(b) Use Exercise 3.7 to prove that P(H,v) and P(H′,v) are projectively

isomorphic for any two supporting hyperplanes H,H′ for v. (This
justifies calling Q/v the vertex figure of Q at v.)

(c) Show that Φ(Q/v) is isomorphic to the interval [v,Q] in Φ(Q).

3.57 Continuing Exercise 3.56, we call a polytope P a face figure of Q at
the face G if Φ(P) is isomorphic to the interval [G,Q] in Φ(Q). We
denote any such polytope by Q/G.
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(a) Verify that the following inductive construction yields a face figure:
If dimG = 0, then Q/G is the vertex figure of Exercise 3.56. If
dimG > 0, pick a face F ≺ G of dimension dimG − 1. Then Q/F
exists and, in particular, there is a vertex vG of Q/F corresponding
to G. We define the face figure Q/G as the vertex figure (Q/F)/vG.

(b) As an application of face figures, show that the Möbius function of
a polyhedron is given by µΦ(F,G) = χ((G/F)◦).

3.58 D Let Q ⊆ Rd be a polyhedron and F � Q a face. Show that

hom(TF(Q)) = Thom(F)(hom(Q)) .

3.59 D Show (3.5.6): if P is simplicial, then

∆ZΦ(P)(n) = 1 +
∑

∅≺F≺P
ndim(F)+1 =

d∑

k=0

fk−1 n
k.

3.60 D Show that χ(R) = 1.

3.61 Real-valued valuations φ : PCd → R on Rd form a vector space Val
and valuations that satisfy the properties of Theorem 3.4.1 constitute a
vector subspace U ⊆ Val. For the real line, what is the dimension of U?

3.62 D Prove that p ∈ Rd is beyond the face F of a given polyhedron if and
only if all points in F are visible from p.

3.63 Let P ⊂ Rd be a full-dimensional polytope. Show that for every p ∈ Rd,
there is at least one facet F such that p is beneath F.

3.64 D Prove that L(H) is a meet semilattice, that is, any two elements in
L(H) have a meet. Furthermore, show that L(H) is a lattice if and
only if H is central.

3.65 Let H = {xj = 0 : 1 ≤ j ≤ d}, the d-dimensional Boolean arrange-

ment consisting of the coordinate hyperplanes in Rd. (Figure 3.21
shows an example.) Show that r(H) = 2d.

3.66 Let H = {xj = xk : 1 ≤ j < k ≤ d}, the d-dimensional real braid
arrangement. Show that r(H) = d!.

3.67 Let H be an arrangement in Rd consisting of k hyperplanes in general
position, i.e., each j-dimensional flat of H is the intersection of exactly
d−j hyperplanes, and any d−j hyperplanes intersect in a j-dimensional
flat. (One example is pictured in Figure 3.25.) Then

r(H) =

(
k

d

)
+

(
k

d− 1

)
+ · · ·+

(
k

1

)
+

(
k

0

)
.

What can you say about b(H)?
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Figure 3.25. An arrangement of four lines in general position and its
intersection poset.

3.68 Let H be an arrangement in Rd consisting of k hyperplanes. Show that

r(H) ≤
(
k

d

)
+

(
k

d− 1

)
+ · · ·+

(
k

1

)
+

(
k

0

)
,

that is: the number of regions of H is bounded by the number of regions
created by k hyperplanes in Rd in general position.

3.69 Let P ⊂ Rd be a full-dimensional polytope, v ∈ Rd \ P, and F1, . . . ,Fm
the facets of P.
(a) Assuming that Fi = P ∩ {x : 〈ai,x〉 = bi} and 〈ai,p〉 ≤ bi for all

p ∈ P, show that v is beyond Fi if and only if 〈ai,v〉 > bi.
(b) Show that v is beyond a face F of P if and only if v is beyond some

facet Fi containing F.

3.70 Give an elementary proof for the Brianchon–Gram relation (Theo-
rem 3.7.1) for simplices.



Chapter 4

Rational Generating
Functions

The mathematical phenomenon always develops out of simple arithmetic, so useful in
everyday life, out of numbers, those weapons of the gods: the gods are there, behind
the wall, at play with numbers.
Le Corbusier

We now return to a theme started in Chapter 1: counting functions that
are polynomials. Before we can ask about possible interpretations of these
counting functions at negative integers—the theme of this book—, we need
structural results such as Proposition 1.1.1, which says that the chromatic
polynomial is indeed a polynomial. We hope that we conveyed the message
in Chapter 1 that such a structural result can be quite nontrivial for a given
counting function. Another example is given by the zeta polynomials of
Section 2.3—their definition ZΠ(n) := ζnΠ(0̂, 1̂) certainly does not hint at the
fact that ZΠ(n) is indeed a polynomial. One of our goals in this chapter is
to develop machinery that allows us to detect and study polynomials. We
will do so alongside introducing several families of counting functions and,
naturally, we will discover a number of combinatorial reciprocity theorems
along the way.

4.1. Matrix Powers and the Calculus of Polynomials

To warm up, we generalize in some sense the zeta polynomials from Section 2.3.
A matrix A ∈ Cd×d is unipotent if A = I + B, where I is the d× d identity
matrix and there exists a positive integer k such that Bk = 0 (that is,
B is nilpotent). The zeta functions from Chapter 2 are our motivating
examples of unipotent matrices. We recall that, thinking of the zeta function

105
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of a poset Π as a matrix, the entry ζΠ(0̂, 1̂) was crucial in Chapter 2—the
analogous entry in powers of ζΠ gave rise to the zeta polynomial (emphasis
on polynomial !)

ZΠ(n) = ζnΠ
(
0̂, 1̂
)
.

We obtain a polynomial the same way from any unipotent matrix.

Proposition 4.1.1. Let A ∈ Cd×d be a unipotent matrix, fix indices i, j ∈ [d],
and consider the sequence f(n) := (An)ij formed by the (i, j)-entries of the
n-th powers of A. Then f(n) agrees with a polynomial in n.

Proof. We essentially repeat the argument behind (2.1.3) which gave rise
to Proposition 2.1.5. Suppose A = I + B, where Bk = 0. Then

f(n) = ((I + B)n)ij =

n∑

m=0

(
n

m

)
(Bm)ij =

k−1∑

m=0

(
n

m

)
(Bm)ij ,

which is a polynomial in n. Here the second equality is the binomial theorem;
see Exercise 2.1. �

At the heart of the above proof is the fact that
(
n
m

)
is a polynomial in

n, and in fact, viewing this binomial coefficient as a polynomial in the “top
variable” lies at the core of much of the enumerative side of combinatorics,
starting with (0.0.1)—the very first sample counting function in this book.
Our proof also hints at the fact that the binomial coefficients

(
n
m

)
form a

basis for the space of polynomials. Much of what we will do in this chapter
can be viewed as switching bases in one way or another. Here are the key
players:

(M)-basis: {xm : 0 ≤ m ≤ d} ,

(γ)-basis:
{
xm(1− x)d−m : 0 ≤ m ≤ d

}
,

(∆)-basis:
{(

x
m

)
: 0 ≤ m ≤ d

}
,

(h∗)-basis:
{(

x+m
d

)
: 0 ≤ m ≤ d

}
.

The (∆)-basis is intimately related (via (4.1.3) below) to the ∆-operator
which we will introduce momentarily. Our terminology for the (M)-basis
simply stands for monomials; that of the (γ)- and (h∗)-bases are standard
in the combinatorics literature. The latter will play a prominent role in
Section 5.5.

Proposition 4.1.2. The sets (M), (γ), (∆), and (h∗) are bases for the
vector space C[x]≤d := {f ∈ C[x] : deg(f) ≤ d}.
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Proof. The set (M) is the canonical basis of C[x]≤d. An explicit change
of basis from (∆) to (M) is given in (1.3.1) and (4.1.2) below. For (γ), we
observe that

1 = (x+ (1− x))d =
d∑

i=0

(
d

i

)
xi(1− x)d−i (4.1.1)

gives an explicit linear combination of x0. You will pursue this idea further in
Exercise 4.2. Finally, for (h∗), it is sufficient to show that its d+1 polynomials
are linearly independent; see Exercise 4.2. �

Looking back once more to Chapter 1, a geometric passage from (h∗) to
(∆) is implicit in (1.4.4). This will be much clearer after Section 4.6.

Our proof of Proposition 4.1.1 is even closer to the principal structures
of polynomials than one might think. To this end, we consider three linear
operators on the vector space {(f(n))n≥0} of all complex-valued sequences:

(If)(n) := f(n) (identity operator),

(∆f)(n) := f(n+ 1)− f(n) (difference operator),

(Sf)(n) := f(n+ 1) (shift operator).

They are naturally related through S = I + ∆. Aficionados of calculus will
anticipate the following result; we would like to emphasize the analogy of its
proof with that of Proposition 4.1.1.

Proposition 4.1.3. A sequence f(n) is given by a polynomial of degree ≤ d
if and only if (∆mf)(0) = 0 for all m > d.

Proof. We start by noting that f(n) = (Snf)(0). If (∆mf)(0) = 0 for all
m > d, then

f(n) = ((I + ∆)nf) (0)

=
n∑

m=0

(
n

m

)
(∆mf)(0) =

d∑

m=0

(
n

m

)
(∆mf)(0) ,

(4.1.2)

a polynomial of degree ≤ d.

Conversely, if f(n) is a polynomial of degree ≤ d, then we can express it in

terms of the (∆)-basis, i.e., f(n) =
∑d

m=0 αm
(
n
m

)
for some α0, α1, . . . , αd ∈ C.

Now, observe that

∆

(
n

m

)
=

(
n

m− 1

)
(4.1.3)

and hence ∆f =
∑d

m=1 αm
(

n
m−1

)
is a polynomial of degree ≤ d−1. Induction

shows that ∆mf = 0 for m > d. �
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The numbers (∆mf)(0) play a central role in the above proof, namely,
they are the coefficients of the polynomial f(n) when expressed in terms of
the (∆)-basis. They will appear time and again in this section, and thus we
define

f (m) := (∆mf)(0) , whence f(n) =
d∑

m=0

f (m)

(
n

m

)
. (4.1.4)

We make one more observation, namely, that f(n) has degree d if and only

if f (d) 6= 0.
We now introduce the main tool of this chapter, the generating func-

tion of the sequence f(n): the formal power series

F (z) :=
∑

n≥0

f(n) zn.

The set CJzK of all such series is a vector space with the natural addition
and scalar multiplication

∑

n≥0

f(n) zn + c
∑

n≥0

g(n) zn :=
∑

n≥0

(f(n) + c g(n)) zn,

where c ∈ C. Moreover, formal power series constitute a commutative ring
with 1 under the multiplication

(∑

n≥0

f(n) zn

)
·
(∑

n≥0

g(n) zn

)
:=

∑

n≥0

( ∑

k+l=n

f(k) g(l)

)
zn,

and Exercise 4.3 says which formal power series have multiplicative inverses.
Borrowing a leaf from calculus, we can also define the derivative

d

dz

∑

n≥0

f(n) zn :=
∑

n≥1

n f(n) zn−1, (4.1.5)

and Exercise 4.4 invites you to check that the usual differentiation rules hold
in this setting.

Most of our use of generating functions is intuitively sensible but with
the above definitions also on a solid algebraic foundation. For example, our
favorite counting function comes with a generating function that is (or rather,
should be) known to any calculus student: for f(n) =

(
n
m

)
, we compute

F (z) =
∑

n≥0

(
n

m

)
zn =

1

m!
zm
∑

n≥m
n(n− 1) · · · (n−m+ 1) zn−m

=
1

m!
zm
(
d

dz

)m 1

1− z =
zm

(1− z)m+1
. (4.1.6)

A generating function, such as the above example, that can be expressed as a

proper rational function (i.e., the quotient p(z)
q(z) of two polynomials where the
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degree of p(z) is smaller than that of q(z)) is rational. Note that a proper

rational function p(z)
q(z) represents a power series if and only if q(0) 6= 0, by

Exercise 4.3.
Thanks to (4.1.4), the sample generating function (4.1.6) gives us a way

to compute the generating function for every polynomial f(n): with the
notation of (4.1.4), we obtain

F (z) =
∑

n≥0

f(n) zn =

d∑

m=0

f (m)
∑

n≥0

(
n

m

)
zn

=

d∑

m=0

f (m) zm

(1− z)m+1
(4.1.7)

=

∑d
m=0 f

(m) zm(1− z)d−m
(1− z)d+1

. (4.1.8)

The (equivalent) expressions (4.1.7) and (4.1.8) representing the rational
generating function of the polynomial f(n) allow us to develop several simple
but powerful properties of polynomials and their generating functions.

Proposition 4.1.4. A sequence f(n) is given by a polynomial of degree ≤ d
if and only if

∑

n≥0

f(n) zn =
h(z)

(1− z)d+1

for some polynomial h(z) of degree ≤ d. Furthermore, f(n) has degree d if
and only if h(1) 6= 0.

Proof. The first part of the proposition follows from (4.1.8) and by writing
f(n) in terms of the (∆)-basis and h(z) in terms of the (γ)-basis.

The second part follows from (4.1.4) which illustrates that f(n) has

degree d if and only if f (d) 6= 0. This, in turn, holds (by (4.1.8)) if and only
if h(1) 6= 0. �

Proposition 4.1.4 can be rephrased in terms of recursions for the sequence
(f(n))n≥0: given a polynomial f(n), we can rewrite the rational generating
function identity given in Proposition 4.1.4 as

h(z) = (1− z)d+1
∑

n≥0

f(n) zn =
∑

n≥0

f(n)

d+1∑

j=0

(
d+ 1

j

)
(−1)j zn+j .

Since h(z) has degree ≤ d, the coefficients of zn for n > d on the right-hand
side must be zero, that is,

d+1∑

j=0

(
d+ 1

j

)
(−1)jf(n− j) = 0 (4.1.9)
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for all n ≥ d+ 1.

Reflecting some more on (4.1.9) naturally leads one to see the full strength
of rational generating functions: a sequence (f(n))n≥0 satisfies a linear
recurrence if for some c0, . . . , cd ∈ C with c0, cd 6= 0

c0 f(n+ d) + c1 f(n+ d− 1) + · · ·+ cd f(n) = 0 (4.1.10)

for all n ≥ 0. Thus, the sequence (f(n))n≥0 is fully described by the coeffi-
cients of the linear recurrence c0, . . . , cd and the starting values f(0), . . . , f(d).

Proposition 4.1.5. Let (f(n))n≥0 be a sequence of numbers. Then (f(n))n≥0

satisfies a linear recurrence of the form (4.1.10) (with c0, cd 6= 0) if and only
if

F (z) =
∑

n≥0

f(n) zn =
p(z)

cdzd + cd−1zd−1 + · · ·+ c0

for some polynomial p(z) with deg(p) < d.

The reasoning that led to (4.1.9) also yields Proposition 4.1.5; see Exer-
cises 4.6 and 4.7.

Here is an example. The first recursion any student sees is likely that for
the Fibonacci numbers defined through

f(0) := 0 ,

f(1) = f(2) := 1 ,

f(n) := f(n− 1) + f(n− 2) for n ≥ 3 .

Proposition 4.1.5 says that the generating function for the Fibonacci numbers
is rational with denominator 1− z − z2. The starting data give

∑

n≥0

f(n) zn =
z

1− z − z2
.

Exercise 4.8 shows how we can concretely compute formulas from this rational
generating function, but its use is not limited to that—in the next section
we will illustrate how one can derive interesting identities from generating
functions.

Coming back to our setup of f(n) being a polynomial of degree d, we
claim that (4.1.9) has to hold also for n < 0. Indeed, f(−n) is, of course, a
polynomial in n of degree d and so comes with a rational generating function.
Towards computing it, we start by plugging negative arguments into (4.1.4):

f(−n) =

d∑

m=0

f (m)

(−n
m

)
=

d∑

m=0

f (m)(−1)m
(
n+m− 1

m

)
, (4.1.11)
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by our very first combinatorial reciprocity instance (0.0.2). We define the
accompanying generating function as

F ◦(z) :=
∑

n≥1

f(−n) zn. (4.1.12)

(There are several good reasons for starting this series only at n = 1, as we
will see shortly.) Note that F ◦(z) is rational, by Proposition 4.1.4. Here is a
blueprint for a formal reciprocity on the level of rational generating functions:
by (4.1.11),

F ◦(z) =
∑

n≥1

d∑

m=0

f (m)(−1)m
(
n+m− 1

m

)
zn

=
d∑

m=0

f (m)(−1)m
∑

n≥1

(
n+m− 1

m

)
zn

=

d∑

m=0

f (m)(−1)m
z

(1− z)m+1
= −

d∑

m=0

f (m) (1
z )m

(
1− 1

z

)m+1

= −F (1
z ) ,

where the third equation follows from Exercise 4.5. This is a formal rather
than a true combinatorial reciprocity, as the calculation does not tell us if
we can think of f(−n) as a genuine counting function.

If (f(n))n≥0 is a sequence satisfying a linear recurrence of the form (4.1.10),
then we can let the recurrence run backwards : for example, since we assume
that cd 6= 0, the value of f(−1) is determined by f(0), . . . , f(d− 1) by way
of (4.1.10). The sequence f◦(n) := f(−n) satisfies the linear recurrence

cd f
◦(n+ d) + cd−1 f

◦(n+ d− 1) + · · ·+ c0 f
◦(n) = 0 . (4.1.13)

For example, for the Fibonacci numbers, this gives

n 1 2 3 4 5 6 7 8 . . .

f◦(n) 1 −1 2 −3 5 −8 13 −21 . . .

The corresponding rational generating function is

F ◦(z) =
z

1 + z − z2
.

In terms of general rational generating functions, this formal reciprocity
reads as follows.

Theorem 4.1.6. Let F (z) =
∑

n≥0 f(n) zn be a rational generating function.

Then F ◦(z), defined in (4.1.12), is also rational. The two rational functions
are related as

F ◦(z) = −F (1
z ) .
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Proof. Assume that

F (z) =
p(z)

cdzd + cd−1zd−1 + · · ·+ c0
,

where c0, cd 6= 0 and p(z) is a polynomial of degree < d. It follows that

−F (1
z ) = − zd p(1

z )

c0zd + c1zd−1 + · · ·+ cd
,

also a rational generating function. The coefficients of −F (1
z ) satisfy the

linear recurrence (4.1.13). To prove Theorem 4.1.6, we thus have to only
verify that the starting data of f◦(n) is encoded in the numerator of −F (1

z ),
that is, (

c0z
d + c1z

d−1 + · · ·+ cd

)
F ◦(z) = −zd p(1

z ) .

This is left to Exercise 4.9. �

The assumption that F (z) is a rational generating function is essential—
see Exercise 4.11. On the other hand, we can tweak things, up to a point,

when F (z) evaluates to an improper rational function, i.e., F (z) = p(z)
q(z) ,

where deg(p) ≥ deg(q). In this case, we can use long division to write F (z)
as a sum of a polynomial and a proper rational function. We give a sample
result, paralleling Proposition 4.1.4, and invite you to check the details in
Exercise 4.12.

Corollary 4.1.7. A sequence f(n) is eventually polynomial1 of degree ≤ d
if and only if

∑

n≥0

f(n) zn = g(z) +
h(z)

(1− z)d+1

for some polynomials g(z) and h(z) with deg(h) ≤ d. Furthermore, f(n) has
degree d if and only if h(1) 6= 0.

We finish this section with a reciprocity theorem, analogous to (and
directly following from) Theorem 4.1.6, for improper rational generating
functions. We will see it in action in Sections 4.9 and 5.6, where g(z) will be
a constant.

Corollary 4.1.8. Let

F (z) =
∑

n≥0

f(n) zn = g(z) +
h(z)

(1− z)d+1

1 A sequence f(n) is eventually polynomial if there exist k ∈ Z≥0 and a polynomial p(n)

such that f(n) = p(n) for n > k.
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be an improper rational generating function, for some polynomials g(z) =
gkz

k + gk−1z
k−1 + · · ·+ g0 and h(z) with gk 6= 0 and deg(h) ≤ d. Let

f̃(n) :=

{
f(n)− gn if n ≤ k,
f(n) if n > k,

so that F̃ (z) :=
∑

n≥0 f̃(n) zn = h(z)
(1−z)d+1 . Then

F
(

1
z

)
= g

(
1
z

)
− F̃ ◦(z) .

4.2. Compositions

A nifty interpretation of
(
n
k

)
goes as follows: since

(
n

k

)
=
∣∣∣
{

(a1, a2, . . . , ak) ∈ Zk : 0 < a1 < a2 < · · · < ak < n+ 1
}∣∣∣ ,

we can set a0 := 0, ak+1 := n+ 1 and define bj := aj−aj−1 for 1 ≤ j ≤ k+ 1,
which gives(

n

k

)
=
∣∣∣
{

(b1, b2, . . . , bk+1) ∈ Zk+1
>0 : b1 + b2 + · · ·+ bk+1 = n+ 1

}∣∣∣ .

We call a vector (b1, b2, . . . , bk+1) ∈ Zk+1
>0 such that b1 +b2 + · · ·+bk+1 = n+1

a composition of n + 1; the b1, b2, . . . , bk+1 are called the parts of the
composition. So

(
n
k

)
equals the number of compositions of n + 1 with

k + 1 parts. This interpretation also gives an alternative reasoning for the
generating function of

(
n
k

)
given in (4.1.6). Namely,2

∑

n≥0

(
n

k

)
qn =

∑

n≥0

#(compositions of n+ 1 with k + 1 parts) qn

=
1

q

∑

n≥0

#(compositions of n+ 1 with k + 1 parts) qn+1

=
1

q

∑

b1,b2,...,bk+1≥1

qb1+b2+···+bk+1 (4.2.1)

=
1

q


∑

b1≥1

qb1




∑

b2≥1

qb2


 · · ·


 ∑

bk+1≥1

qbk+1




=
1

q

(
q

1− q

)k+1

=
qk

(1− q)k+1
.

This computation might be an overkill for the binomial coefficient, but
it hints at the powerful machinery that generating functions provide. We
give another sample of this machinery next.

2 You might wonder about our switching to the variable q starting with this generating

function. The reason will be given in Section 4.7.
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Proposition 4.2.1. Given a set A ⊆ Z>0, let cA(n) denote the number of
compositions of n with parts in A. Then its generating function is

CA(q) := 1 +
∑

n≥1

cA(n) qn =
1

1−∑m∈A q
m
.

Note that the last expression is not a rational generating function, unless
A is finite. It is the multiplicative inverse of the formal power series 1 −∑

m∈A q
m, which exists by Exercise 4.3.

Proof. Essentially by repeating the argument in (4.2.1), the generating func-

tion for all compositions with exactly j parts (all in A) equals
(∑

m∈A q
m
)j

.
Thus

CA(q) = 1 +
∑

j≥1

(∑

m∈A
qm

)j
=

1

1−∑m∈A q
m
. �

We show two pieces of art from the exhibition provided by Proposi-
tion 4.2.1. First, suppose A consists of all odd positive integers. Then

1

1−∑m≥1 odd q
m

=
1

1− q
1−q2

=
1− q2

1− q − q2
= 1 +

q

1− q − q2

—smell familiar? Now let A consist of all integers ≥ 2. Then

1

1−∑m≥2 q
m

=
1

1− q2

1−q
=

1− q
1− q − q2

= 1 +
q2

1− q − q2
.

What these two generating functions prove, in two simple lines, is the
following.

Theorem 4.2.2. The number of compositions of n using only odd parts and
the number of compositions of n− 1 using only parts ≥ 2 are both given by
the n-th Fibonacci number.

4.3. Plane Partitions

Our next counting function concerns the simplest case of a plane partition;
namely, we will count all ways of writing n = a1 + a2 + a3 + a4 such that the
integers a1, a2, a3, a4 ≥ 0 satisfy the inequalities3

a1 ≥ a2≥ ≥

a3 ≥ a4 .

(4.3.1)

3 If we relax our definition of composition just a tad by allowing parts that are 0, plane
partitions of n are special cases of compositions of n.
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(For a general plane partition, this array of inequalities can form a rectangle
of any size.) Let pl(n) denote the number of plane partitions of n of the
form (4.3.1). We will compute its generating function

Pl(q) :=
∑

n≥0

pl(n) qn =
∑

qa1+a2+a3+a4 ,

where the last sum is over all integers a1, a2, a3, a4 ≥ 0 satisfying (4.3.1),
from first principles, using geometric series:

Pl(q) =
∑

a4≥0

qa4
∑

a3≥a4

qa3
∑

a2≥a4

qa2
∑

a1≥max(a2,a3)

qa1

=
∑

a4≥0

qa4
∑

a3≥a4

qa3
∑

a2≥a4

qa2
qmax(a2,a3)

1− q

=
1

1− q
∑

a4≥0

qa4
∑

a3≥a4

qa3


qa3

a3−1∑

a2=a4

qa2 +
∑

a2≥a3

q2a2




=
1

1− q
∑

a4≥0

qa4
∑

a3≥a4

qa3

(
qa3

qa4 − qa3

1− q +
q2a3

1− q2

)

=
1

1− q
∑

a4≥0

(
q4a4

(1− q)(1− q2)
− q4a4

(1− q)(1− q3)
+

q4a4

(1− q2)(1− q3)

)

=
1 + q2

(1− q)(1− q2)(1− q3)

∑

a4≥0

q4a4

=
1 + q2

(1− q)(1− q2)(1− q3)(1− q4)

=
1

(1− q)(1− q2)2(1− q3)
. (4.3.2)

(If this computation seems lengthy, or even messy, don’t worry: we will
shortly develop theory that will simplify computations tremendously.)

Next we would like to compute an explicit formula for pl(n) from this
generating function. One way—namely, through a partial-fraction expan-
sion of Pl(q)—is outlined in Exercise 4.19. A second approach is through
expanding both numerator and denominator of Pl(q) by the same factor to
transform the denominator into a simple form:

Pl(q) =

(
q16 + q15 + 3 q14 + 4 q13 + 7 q12 + 9 q11 + 10 q10 + 13 q9

+12 q8 + 13 q7 + 10 q6 + 9 q5 + 7 q4 + 4 q3 + 3 q2 + q + 1

)

(1− q6)4
.

(4.3.3)
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The reason for this transformation is that the new denominator yields an
easy power series expansion, by Exercise 4.5:

1

(1− q6)4
=
∑

n≥0

(
n+ 3

3

)
q6n.

This suggests that the resulting plane-partition counting function pl(n) has
a certain periodic character, with period 6. Indeed, we can split up the
rational generating function Pl(q) into six parts as follows:

Pl(q) =
7 q12 + 10 q6 + 1

(1− q6)4
+

4 q13 + 13 q7 + q

(1− q6)4
+

3 q14 + 12 q8 + 3 q2

(1− q6)4

+
q15 + 13 q9 + 4 q3

(1− q6)4
+
q16 + 10 q10 + 7 q4

(1− q6)4
+

9 q11 + 9 q5

(1− q6)4

=
∑

n≥0

(
7
(
n+1

3

)
+ 10

(
n+2

3

)
+
(
n+3

3

))
q6n

+
∑

n≥0

(
4
(
n+1

3

)
+ 13

(
n+2

3

)
+
(
n+3

3

))
q6n+1

+
∑

n≥0

(
3
(
n+1

3

)
+ 12

(
n+2

3

)
+ 3
(
n+3

3

))
q6n+2

+
∑

n≥0

((
n+1

3

)
+ 13

(
n+2

3

)
+ 4
(
n+3

3

))
q6n+3

+
∑

n≥0

((
n+1

3

)
+ 10

(
n+2

3

)
+ 7
(
n+3

3

))
q6n+4

+
∑

n≥0

(
9
(
n+2

3

)
+ 9
(
n+3

3

))
q6n+5.

From this data, a quick calculation yields

pl(n) =





1
72n

3 + 1
6n

2 + 2
3n+ 1 if n ≡ 0 mod 6,

1
72n

3 + 1
6n

2 + 13
24n+ 5

18 if n ≡ 1 mod 6,
1
72n

3 + 1
6n

2 + 2
3n+ 8

9 if n ≡ 2 mod 6,
1
72n

3 + 1
6n

2 + 13
24n+ 1

2 if n ≡ 3 mod 6,
1
72n

3 + 1
6n

2 + 2
3n+ 7

9 if n ≡ 4 mod 6,
1
72n

3 + 1
6n

2 + 13
24n+ 7

18 if n ≡ 5 mod 6.

(4.3.4)

The counting function pl(n) is our first instance of a quasipolynomial, that
is, a function p : Z→ C of the form

p(n) = cd(n)nd + · · ·+ c1(n)n+ c0(n) ,

where c0(n), c1(n), . . . , cd(n) are periodic functions in n. In the case p(n) =
pl(n) of our plane-partition counting function, the coefficient c0(n) has period
6, the coefficient c1(n) has period 2, and c2(n) and c3(n) have period 1, i.e.,
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they are constants. Of course, we can also think of the quasipolynomial pl(n)
as given by the list (4.3.4) of six polynomials, which we run through cyclically
as n increases. We will say more about basic properties of quasipolynomials
in Section 4.5.

We finish our study of plane partitions by observing a simple algebraic
relation for Pl(q), namely,

Pl

(
1

q

)
= q8 Pl(q) . (4.3.5)

This suggests some relation to Theorem 4.1.6. Indeed, this theorem says

Pl

(
1

q

)
= −

∑

n≥1

pl(−n) qn. (4.3.6)

But then equating the right-hand sides of (4.3.5) and (4.3.6) yields the
following reciprocity relation for the plane-partition quasipolynomials:

pl(−n) = −pl(n− 8) . (4.3.7)

This is a combinatorial reciprocity that we are after: up to a shift by 8, the
plane-partition counting function is self-reciprocal. (We have seen another
example of self-reciprocal functions in Theorem 2.3.3.) We can think of this
reciprocity also as follows: if we count the number of plane partitions of n
for which all the inequalities in (4.3.1) are strict and all parts are strictly
positive, then this is exactly the number of quadruples (a1, a2, a3, a4) ∈ Z4

≥0

such that
a1 + 3 ≥ a2 + 2

≥ ≥

a3 + 2 ≥ a4 + 1 .

(4.3.8)

But these are just plane partitions with a1 + · · · + a4 = n − 8, which are
counted on the right-hand side of (4.3.7).

There are many generalizations of pl(n); one is given in Exercise 4.20.

4.4. Restricted Partitions

An (integer) partition of n is a sequence (a1 ≥ a2 ≥ · · · ≥ ak ≥ 1) of non-
increasing positive integers such that

n = a1 + a2 + · · ·+ ak . (4.4.1)

The numbers a1, a2, . . . , ak are the parts of this partition. For example,
(4, 2, 1) and (3, 2, 1, 1) are partitions of 7.

Our goal is to enumerate partitions with certain restrictions, which will
allow us to prove a combinatorial reciprocity theorem not unlike that for the
plane-partition counting function pl(n). (The enumeration of unrestricted
partitions is the subject of Exercise 4.27, but it will not yield a reciprocity
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theorem.) Namely, we restrict the parts of a partition to a finite set A :=
{a1 > a2 > · · · > ad} ⊂ Z>0, that is, we only allow partitions of the form

(a1, . . . , a1, a2, . . . , a2, . . . , ad, . . . , ad) .

(It is interesting—and related to topics to appear soon—to allow A to be a
multiset ; see Exercise 4.24.) The restricted partition function for A is

pA(n) :=
∣∣∣
{

(m1,m2, . . . ,md) ∈ Zd≥0 : m1a1 +m2a2 + · · ·+mdad = n
}∣∣∣ .

By now it will not come as a surprise that we will approach the counting
function pA(n) through its generating function

PA(q) :=
∑

n≥0

pA(n) qn.

One advantage of this (and any other) generating function is that it allows
us, in a sense, to manipulate the sequence (pA(n))n≥0 algebraically:

PA(q) =
∑

m1,m2,...,md≥0

qm1a1+m2a2+···+mdad

=


∑

m1≥0

qm1a1




∑

m2≥0

qm2a2


 · · ·


∑

md≥0

qmdad




=
1

(1− qa1) (1− qa2) · · · (1− qad) ,

(4.4.2)

where the last identity comes from the geometric series. To see how the
generating function of this counting function helps us understand the latter,
we look at the simplest case when A contains only one positive integer a. In
this case

P{a}(q) =
1

1− qa = 1 + qa + q2a + · · · ,

the generating function for

p{a}(n) =

{
1 if a|n,
0 otherwise

(as expected from the definition of p{a}(n)). Note that the counting function
p{a}(n) is a (simple) instance of a quasipolynomial, namely, p{a}(n) = c0(n),
where c0(n) is the periodic function (with period a) that returns 1 if n is a
multiple of a and 0 otherwise.

Next we consider the case when A has two elements. The product
structure of the accompanying generating function

P{a,b}(q) =
1

(1− qa) (1− qb)



4.4. Restricted Partitions 119

means that we can compute

p{a,b}(n) =

n∑

s=0

p{a}(s) p{b}(n− s) .

Note that we are summing a quasipolynomial here, and so p{a,b}(n) is
again a quasipolynomial by the next proposition, whose proof we leave as
Exercise 4.21.

Proposition 4.4.1. If p(n) is a quasipolynomial, so is r(n) :=
∑n

s=0 p(s).
More generally, if f(n) and g(n) are quasipolynomials, so is their convolu-
tion

c(n) :=
n∑

s=0

f(s) g(n− s) .

We invite you to explicitly compute some examples of restricted partition
functions, such as p{1,2}(n) (Exercise 4.23). Naturally, we can repeatedly
apply Proposition 4.4.1 to deduce:

Corollary 4.4.2. The restricted partition function pA(n) is a quasipolyno-
mial in n.

Since pA(n) is a quasipolynomial, we are free to evaluate it at negative
integers. We define

p◦A(n) :=
∣∣∣
{

(m1,m2, . . . ,md) ∈ Zd>0 : m1a1 +m2a2 + · · ·+mdad = n
}∣∣∣ ,

the number of restricted partitions of n such that every ai is used at least
once.

Theorem 4.4.3. If A = {a1, a2, . . . , ad} ⊂ Z>0, then

pA(−n) = (−1)d−1pA(n− a1 − a2 − · · · − ad) = (−1)d−1p◦A(n) .

Proof. We first observe that the number of partitions of n in which ai is
used at least once equals pA(n− ai). Thus, setting a := a1 + a2 + · · ·+ ad,
we see that

p◦A(n) = pA(n− a) ,

and this gives the second equality. To prove the first, we use simple algebra
on (4.4.2) to obtain

PA

(
1

q

)
=

qa1+a2+···+ad

(qa1 − 1) (qa2 − 1) · · · (qad − 1)
= (−1)dqaPA(q) . (4.4.3)

Now we use Theorem 4.1.6, which gives

PA

(
1

q

)
= −

∑

n≥1

pA(−n) qn. (4.4.4)

Equating the right-hand sides of (4.4.3) and (4.4.4) proves the claim. �
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4.5. Quasipolynomials

We have defined a quasipolynomial p(n) as a function Z→ C of the form

p(n) = cd(n)nd + · · ·+ c1(n)n+ c0(n) , (4.5.1)

where c0, c1, . . . , cd are periodic functions in n. Assuming that cd is not
the zero function, the degree of p(n) is d, and the least common pe-
riod of c0(n), c1(n), . . . , cd(n) is the period of p(n). Alternatively, for a
quasipolynomial p(n), there exist a positive integer k and polynomials
p0(n), p1(n), . . . , pk−1(n) such that

p(n) =





p0(n) if n ≡ 0 mod k,

p1(n) if n ≡ 1 mod k,
...

pk−1(n) if n ≡ k − 1 mod k.

The minimal such k is the period of p(n), and for this minimal k, the
polynomials p0(n), p1(n), . . . , pk−1(n) are the constituents of p(n). Of
course, when k = 1, we need only one constituent and the coefficient functions
c0(n), c1(n), . . . , cd(n) are constants, and so p(n) is a polynomial. Yet another
perspective on quasipolynomials is explored in Exercise 4.31.

As we have seen in (4.3.3) and (4.4.2), the quasipolynomials arising
from plane partitions and restricted partitions can be encoded into rational
generating functions with a particular denominator.

Proposition 4.5.1. Let p : Z→ C be a function with associated generating
function

P (z) :=
∑

n≥0

p(n) zn.

Then p(n) is a quasipolynomial of degree ≤ d and period dividing k if and
only if

P (z) =
h(z)

(1− zk)d+1
,

where h(z) is a polynomial of degree at most k(d+ 1)− 1.

This generalizes Proposition 4.1.4 from polynomials (i.e., the case k = 1)
to quasipolynomials. Proposition 4.5.1 also explains, in some sense, why we
rewrote the generating function Pl(q) for plane partitions in (4.3.3). Appar-
ently the generating function (4.4.2) for the restricted partition function is
not of this form, but multiplying numerator and denominator by appropriate
terms yields the denominator (1− zk)d, where k = lcm(a1, a2, . . . , ad). For
example,

P{2,3}(z) =
1

(1− z2)(1− z3)
=

1 + z2 + z3 + z4 + z5 + z7

(1− z6)2
.
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For a general recipe to convert (4.4.2) into a form fitting Proposition 4.5.1, we
refer to Exercise 4.32. In particular, the presentation of P (z) in Proposition
4.5.1 is typically not reduced, and by getting rid of common factors it can

be seen that h(z)
g(z) gives rise to a quasipolynomial if and only if each zero γ of

g(z) satisfies γk = 1 for some k ∈ Z>0. The benefit of Proposition 4.5.1 is
that it gives a pretty effective way of showing that a function q : Z→ C is a
quasipolynomial.

Proof of Proposition 4.5.1. Suppose p(n) is a quasipolynomial of degree
≤ d and period dividing k, so there are polynomials p0(n), p1(n), . . . , pk−1(n)
of degree ≤ d such that

p(n) =





p0(n) if n ≡ 0 mod k,

p1(n) if n ≡ 1 mod k,
...

pk−1(n) if n ≡ k − 1 mod k.

Thus

P (z) =
∑

a≥0

k−1∑

b=0

p(ak + b) zak+b =

k−1∑

b=0

zb
∑

a≥0

pb(ak + b) zak,

and since pb(ak + b) is a polynomial in a of degree ≤ d, we can use Proposi-
tion 4.1.4 to conclude that

P (z) =

k−1∑

b=0

zb
hb(z

k)

(1− zk)d+1

for some polynomials hb(z) of degree ≤ d. Since
∑k−1

b=0 z
bhb(z

k) is a poly-
nomial of degree ≤ k(d + 1) − 1, this proves the forward implication of
Proposition 4.5.1.

For the converse implication, suppose P (z) = h(z)
(1−zk)d+1 , where h(z) is a

polynomial of degree ≤ k(d+ 1)− 1, say

h(z) =

k(d+1)−1∑

m=0

cm z
m =

d∑

a=0

k−1∑

b=0

cak+b z
ak+b.

Then

P (z) = h(z)
∑

j≥0

(
d+ j

d

)
zkj =

∑

j≥0

k−1∑

b=0

d∑

a=0

cak+b

(
d+ j

d

)
zk(j+a)+b

=
∑

j≥0

k−1∑

b=0

d∑

a=0

cak+b

(
d+ j − a

d

)
zkj+b =

∑

j≥0

k−1∑

b=0

pb(kj + b) zkj+b,
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where pb(kj + b) =
∑d

a=0 cak+b

(
d+j−a
d

)
, a polynomial in j of degree ≤ d. In

other words, P (z) is the generating function of the quasipolynomial with
constituents p0(n), p1(n), . . . , pb−1(n). �

4.6. Integer-point Transforms and Lattice Simplices

It is time to return to geometry. The theme of this chapter has been
generating functions that we constructed from some (counting) function,
with the hope of obtaining more information about this function. Now we
will start with a generating function and try to interpret it geometrically as
an object in its own right.

Our setting is that of Section 1.4 but in general dimensions: we consider
a lattice polytope P ⊂ Rd and its Ehrhart function

ehrP(n) :=
∣∣∣nP ∩ Zd

∣∣∣ =
∣∣∣P ∩ 1

nZ
d
∣∣∣ ; (4.6.1)

that is, ehrP(n) counts the lattice points as we dilate P or, equivalently,
shrink the integer lattice Zd. We call the accompanying generating function

EhrP(z) := 1 +
∑

n≥1

ehrP(n) zn (4.6.2)

the Ehrhart series of P. Our promised geometric interpretation of this
generating function uses a technique from Chapter 3; namely, we consider
the homogenization of P, defined in (3.1.9):

hom(P) =
{

(p, t) ∈ Rd+1 : t ≥ 0, p ∈ tP
}

= cone {(v, 1) : v ∈ vert(P)} .
One advantage of hom(P) is that we can see a copy of the dilate nP as the
intersection of hom(P) with the hyperplane t = xd+1 = n, as illustrated in
Figure 4.1; we will say that points on this hyperplane are at height n and
that the integer points in hom(P) are graded by the last coordinate. In
other words, the Ehrhart series of P can be computed through

EhrP(z) =
∑

n≥0

# (lattice points in hom(P) at height n) zn (4.6.3)

(and this also explains our convention of starting EhrP(z) with constant
term 1). This motivates the study of the arithmetic of a set S ⊆ Rd+1 by
computing a multivariate generating function, namely, its integer-point
transform

σS(z1, . . . , zd+1) :=
∑

m∈S∩Zd+1

zm ,

where we abbreviated zm := zm1
1 zm2

2 · · · zmd+1

d+1 ; we will often write σS(z) to
shorten the notation involving the variables. In the language of integer-point
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0

x3 = 1

x3 = 2

P

2P

Figure 4.1. Recovering dilates of P in hom(P).

transforms, (4.6.3) can be rewritten as

EhrP(z) = σhom(P)(1, . . . , 1, z) . (4.6.4)

An integer-point transform is typically not a formal power series but
a formal Laurent series

∑
m∈Zd+1 cm zm ∈ CJz±1

1 , . . . , z±1
d+1K. If we want to

multiply formal Laurent series (which we do), we have to be a little careful for
which sets S we want to consider integer-point transforms; see Exercise 4.34.
In particular, we are safe if we work with convex, line free sets such as
hom(P).

We illustrate the above train of thoughts with the down-to-earth example
from Section 1.4, the lattice triangle

4 :=
{

(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1
}
.

Its vertices are (0, 0), (0, 1), and (1, 1), and so

hom(4) = R≥0

(
0
0
1

)
+ R≥0

(
0
1
1

)
+ R≥0

(
1
1
1

)
. (4.6.5)

The three generators of hom(4)—call them v1,v2,v3—form a lattice basis
of Z3, i.e., every point in Z3 can be uniquely expressed as an integral linear
combination of v1,v2,v3 (see Exercise 4.33). In particular, every lattice
point in hom(4) can be uniquely written as a nonnegative integral linear
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combination of v1,v2,v3. Hence

σhom(4)(z) =
∑

m∈hom(4)∩Z3

zm =
∑

k1,k2,k3≥0

zk1v1+k2v2+k3v3

=
1

(1− zv1) (1− zv2) (1− zv3)

=
1

(1− z3) (1− z2z3) (1− z1z2z3)
.

(4.6.6)

With (4.6.4),

Ehr4(z) = σhom(4)(1, 1, z) =
1

(1− z)3
=
∑

n≥0

(
n+ 2

2

)
zn (4.6.7)

and thus we recover the Ehrhart polynomial of 4 which we computed in
Section 1.4.

Our computation of σhom(4)(z) in (4.6.6) is somewhat misleading when
thinking about the integer-point transform of the homogenization of a general
lattice simplex, because the cone hom(4) is unimodular: it is generated
by a lattice basis of Z3.

We now change our example slightly and consider the lattice triangle
P := conv {(0, 0), (0, 1), (2, 1)}; note that

hom(P) = R≥0

(
0
0
1

)
+ R≥0

(
0
1
1

)
+ R≥0

(
2
1
1

)
(4.6.8)

is not unimodular. We can still implement the basic idea behind our compu-
tation of σhom(4)(z), but we have to take into account some extra data. We
write w1,w2,w3 for the generators of hom(P) given in (4.6.8). We observe
that the lattice point q = (1, 1, 1) is contained in hom(P) but is not an integer
linear combination of the generators; see Figure 4.2 (mind you, the generators
are linearly independent). Hence, we will miss zq if we exercise (4.6.6) with
P instead of 4. Stronger yet, the linear independence of w1,w2,w3 yields
that none of the points

q + k1w1 + k2w2 + k3w3 for k1, k2, k3 ∈ Z≥0

can be expressed as a nonnegative integer linear combination of w1,w2,w3.
A little bit of thought (see Exercise 4.38 for more) brings the following insight:
we define the half-open parallelepiped

2 :=
{
λ1

(
0
0
1

)
+ λ2

(
0
1
1

)
+ λ3

(
2
1
1

)
: 0 ≤ λ1, λ2, λ3 < 1

}
;

then for each p ∈ hom(P)∩Z3 there are unique k1, k2, k3 ∈ Z≥0 and r ∈ 2∩Z3

such that

p = k1w1 + k2w2 + k3w3 + r .

Figure 4.2 illustrates a geometric reason behind our claim, namely, we can
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w1
w2 w3

x2

x3

x1

q

x2

x3

x1

Figure 4.2. Tiling hom(P) with translates of its fundamental parallelepiped.

tile the cone hom(P) with translates of 2. In our specific case you can check
(Exercise 4.37) that

2 ∩ Z3 = {0,q} .
Thus, we compute

σhom(P)(z) =
∑

k1,k2,k3≥0

zk1w1+k2w2+k3w3 +
∑

k1,k2,k3≥0

zq+k1w1+k2w2+k3w3

=
1

(1− zw1) (1− zw2) (1− zw3)
+

zq

(1− zw1) (1− zw2) (1− zw3)

=
1 + z1z2z3

(1− z3) (1− z2z3)
(
1− z2

1z2z3

) .

This implies, again with (4.6.4),

EhrP(z) = σhom(P)(1, 1, z) =
1 + z

(1− z)3
.

Note that the form of this rational generating function, as that of (4.6.7),
ensures that ehrP(n) is a polynomial, by Proposition 4.1.4. Of course, this
merely confirms Theorem 1.4.1.

We can interpret the coefficients of the numerator polynomial of EhrP(z):
the constant is 1 (stemming from the origin of hom(P)), and the remaining
term in the example above comes from the fact that the fundamental par-
allelepiped of hom(P) contains precisely one integer point at height 1 and
none of larger height. Exercise 4.42 gives a few general interpretations of the
Ehrhart series coefficients.

The general case of the integer-point transform of a simplicial cone is not
much more complicated than our computations in this section; we will treat
it in Theorem 4.8.1 below. One of its consequences will be the following
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result, which gives a simplicial version of Theorem 1.4.1 in all dimensions.
We recall that 4◦ denotes the relative interior of 4.

Theorem 4.6.1. Suppose 4 ⊂ Rd is a lattice simplex.

(a) For positive integers n, the counting function ehr4(n) agrees with a
polynomial in n of degree dim(4) whose constant term equals 1.

(b) When this polynomial is evaluated at negative integers, we obtain

(−1)dim(4) ehr4(−n) =
∣∣∣n4◦ ∩ Zd

∣∣∣ .
In other words, the Ehrhart polynomials of 4 and 4◦ are related as

(−1)dim(4) ehr4(−n) = ehr4◦(n) . (4.6.9)

This theorem holds for every lattice polytope (not just simplices), as we
will show in Chapter 5. The general version of Theorem 4.6.1(a) is known
as Ehrhart’s theorem and that of Theorem 4.6.1(b) as Ehrhart–Macdonald
reciprocity.

As a first example, we discuss the Ehrhart polynomial of a simplex

4 = conv {v0,v1, . . . ,vd} ⊂ Rd

that is unimodular, i.e., the vectors v1 − v0,v2 − v0, . . . ,vd − v0 form
a Z-basis for Zd (which, by Exercise 4.33, is equivalent to the condition
det (v1 − v0,v2 − v0, . . . ,vd − v0) = ±1). The following result, which can
be proved without assuming Theorem 4.6.1, is subject to Exercise 4.35.

Proposition 4.6.2. Let 4 be the convex hull of the origin and the d unit
vectors in Rd. Then ehr4(n) =

(
n+d
d

)
, and this polynomial satisfies the

conclusions of Theorem 4.6.1. More generally, ehr4(n) =
(
n+d
d

)
for every

unimodular simplex 4.

Before proving (a generalization of) Theorem 4.6.1, we will revisit the
partition and composition counting functions that appeared earlier in this
chapter. Again we can use a cone setting to understand these functions
geometrically, but instead of grading integer points by their last coordinate,
i.e., along (0, 0, 1), we will introduce a grading along a different direction.

4.7. Gradings of Cones and Rational Polytopes

In the last section, when considering the cone C = hom(P), we said that C is
graded by height ; this suggests that there are other ways to grade a cone.

Let C ⊂ Rd be a pointed, rational d-dimensional cone. A grading of C
is a vector a ∈ Zd such that 〈a,p〉 > 0 for all p ∈ C \ {0}. (This is where
our demanding C to be pointed is essential.) For a grading a ∈ Zd, we define
the Hilbert function of C as

haC(n) :=
∣∣∣
{

m ∈ C ∩ Zd : 〈a,m〉 = n
}∣∣∣ .
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Since C is pointed, it follows that haC(n) < ∞ for all n ∈ Z≥1 and thus we
can define the generating function

Ha
C(z) := 1 +

∑

n≥1

haC(n) zn,

the Hilbert series of C with respect to a. One benefit of integer-point
transforms is the following.

Proposition 4.7.1. Let C ⊂ Rd be a pointed, rational cone and a ∈ Zd a
grading of C. Then

Ha
C(z) = σC (za1 , za2 , . . . , zad) .

Proof. We compute

σC (za1 , . . . , zad) =
∑

m∈C∩Zd
za1m1+···+admd = 1 +

∑

m∈C∩Zd\{0}
z〈a,m〉

= 1 +
∑

n≥1

haC(n) zn. �

Consider again the cone defined by (4.6.5),

C := R≥0




0
0
1


+ R≥0




0
1
1


+ R≥0




1
1
1


 .

In the last section we computed its integer-point transform

σC(z) =
1

(1− z3) (1− z2z3) (1− z1z2z3)
,

and from the grading (0, 0, 1) we obtained the Ehrhart series 1
(1−z)3 of the

triangle 4 := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}. If we instead grade the
points in C along (1, 1, 1), we meet another friendly face:4

H
(1,1,1)
C (q) = σC(q, q, q) =

1

(1− q)(1− q2)(1− q3)
,

the generating function for the restricted partition function with parts 1, 2,
and 3, as well as (by Exercise 4.29) for the number of partitions into at most
three parts. We remark the obvious, namely, that this generating function
is quite different from the Ehrhart series (4.6.7) of 4; yet they both come
from the same cone and the same integer-point transform, specialized along
two different gradings.

Next we address some of the other composition/partition counting func-
tions that appeared earlier in this chapter. The compositions into k + 1

4We follow the convention of using the variable q when grading points along (1, 1, . . . , 1). This
also explains our mysterious shift from z to q in Section 4.2.
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parts, which—up to a factor of 1
q—we enumerated in (4.2.1), live in the open

(unimodular) cone Rk+1
>0 which comes with the integer-point transform

σRk+1
>0

(z) =
z1

1− z1

z2

1− z2
· · · zk+1

1− zk+1
,

and indeed, σRk+1
>0

(q, q, . . . , q) = qk+1

(1−q)k+1 confirms (4.2.1).

The plane partitions of Section 4.3 are the integer points in the cone

C :=



x ∈ R4

≥0 :

x1 ≥ x2≥ ≥

x3 ≥ x4



 .

The computation of its integer-point transform is less trivial, as C is not
simplicial. However, thinking about possible orderings of x2 and x3 in the
definition of C gives the inclusion–exclusion formula

σC(z) = σC2≥3
(z) + σC3≥2

(z)− σC2=3(z) , (4.7.1)

where

C2≥3 :=
{
x ∈ R4

≥0 : x1 ≥ x2 ≥ x3 ≥ x4

}
,

C3≥2 :=
{
x ∈ R4

≥0 : x1 ≥ x3 ≥ x2 ≥ x4

}
, and

C2=3 :=
{
x ∈ R4

≥0 : x1 ≥ x2 = x3 ≥ x4

}
.

Each of these cones is unimodular (and, in fact, can be interpreted as
containing partitions featured in Exercise 4.29), and so

σC2≥3
(z) =

1

(1− z1z2z3z4)(1− z1z2z3)(1− z1z2)(1− z1)
, (4.7.2)

σC3≥2
(z) =

1

(1− z1z2z3z4)(1− z1z2z3)(1− z1z3)(1− z1)
,

σC2=3(z) =
1

(1− z1z2z3z4)(1− z1z2z3)(1− z1)
.

Combining these integer-point transforms according to (4.7.1) gives

σC(z) =
1− z2

1z2z3

(1− z1z2z3z4)(1− z1z2z3)(1− z1z2)(1− z1z3)(1− z1)
(4.7.3)

and σC(q, q, q, q) = 1
(1−q)(1−q2)2(1−q3)

confirms the generating function (4.3.2)

for the plane partitions.

Finally, we interpret the restricted partition function from Section 4.4
geometrically. There are two ways to go about that: first, we can interpret

pA(n) =
∣∣∣
{

(m1,m2, . . . ,md) ∈ Zd≥0 : m1a1 +m2a2 + · · ·+mdad = n
}∣∣∣
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as counting lattice points in the cone Rd≥0 along the grading (a1, a2, . . . , ad);
this comes with the integer-point transform

σRd≥0
(z) =

1

(1− z1)(1− z2) · · · (1− zd)
which specializes to

σRd≥0
(qa1 , qa2 , . . . , qad) =

1

(1− qa1) (1− qa2) · · · (1− qad) ,

confirming (4.4.2). Possibly the more insightful geometric interpretation of
pA(n) goes back to the viewpoint through Ehrhart series. Namely, restricted
partitions are integer points in the cone

C :=
{

(x1, x2, . . . , xd, xd+1) ∈ Rd+1
≥0 : x1a1 + x2a2 + · · ·+ xdad = xd+1

}

and now we are interested in the “Ehrhart grading” along (0, 0, . . . , 0, 1). In
fact, C is the homogenization of a polytope, but this polytope is not a lattice
polytope anymore: the generators of C can be chosen as




1
a1

0
0
...
0
1



,




0
1
a2

0
...
0
1



, . . . ,




0
0
...
0
1
ad
1



.

Indeed, from the look of the generating function (4.4.2) of pA(n) we should
not expect the Ehrhart series of a lattice polytope, as the denominator of
PA(q) is not simply a power of (1− q).

These considerations suggest a variant of Theorem 4.6.1 for rational
polytopes—those with vertices in Qd. We leave its proof as Exercise 4.43
(with which you should wait until understanding our proof of Theorem 4.8.1
below).

Theorem 4.7.2. If 4 is a rational simplex, then for positive integers n, the
counting function ehr4(n) is a quasipolynomial in n whose period divides the
least common multiple of the denominators of the vertex coordinates of 4.
When this quasipolynomial is evaluated at negative integers, we obtain

(−1)dim(4) ehr4(−n) =
∣∣∣n4◦ ∩ Zd

∣∣∣ .

In other words, the Ehrhart quasipolynomials of 4 and 4◦ are related as

(−1)dim(4) ehr4(−n) = ehr4◦(n) .
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The different types of grading motivate the study of integer-point trans-
forms as multivariate generating functions. Our next goal is to prove struc-
tural results for them, in the case that the underlying polyhedron is a
simplicial rational cone.

4.8. Stanley Reciprocity for Simplicial Cones

We return once more to the plane partitions of Section 4.3, and again we
think of them as integer points in the 4-dimensional cone

C :=



x ∈ R4

≥0 :

x1 ≥ x2≥ ≥

x3 ≥ x4



 .

In (4.7.1) we computed the integer-point transform of C via inclusion–
exclusion, through the integer-point transforms of three unimodular cones
(two 4-dimensional and one 3-dimensional cone). Now we will play a variation
of the same theme; however, we will use only full-dimensional cones. Namely,
if we let

C2≥3 :=
{
x ∈ R4

≥0 : x1 ≥ x2 ≥ x3 ≥ x4

}
and

C3>2 :=
{
x ∈ R4

≥0 : x1 ≥ x3 > x2 ≥ x4

}
,

then C2≥3 ] C3>2 = C (recall that this symbol denotes a disjoint union), and
thus

σC(z) = σC2≥3
(z) + σC3>2(z) , (4.8.1)

from which we can compute Pl(q) once more by specializing z = (q, q, q, q).
Thus, compared to (4.7.1) we have fewer terms to compute, but we are
paying a price by having to deal with half-open cones. There is a general
philosophy surfacing here, which we will see in action time and again: it is
quite useful to decompose a polyhedron in different ways (in this case, giving
rise to (4.7.1) and (4.8.1)), each having its own advantages.

We have computed the integer-point transform of C2≥3 already in (4.7.2):

σC2≥3
(z) =

1

(1− z1z2z3z4) (1− z1z2z3) (1− z1z2) (1− z1)
.

The analogous computation for C3>2 has a little twist stemming from the
fact that C3>2 is half open: in terms of generators,

C3>2 = R≥0




1
1
1
1


+ R≥0




1
1
1
0


+ R>0




1
0
1
0


+ R≥0




1
0
0
0


 .
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The integer-point transform of its closure C3≥2 we also computed in (4.7.2),
from which we deduce

σC3>2(z) = z1z3 σC3≥2
(z) =

z1z3

(1− z1z2z3z4) (1− z1z2z3) (1− z1z3) (1− z1)
.

Putting it all together, we recover with (4.8.1) the integer-point transform
for C which we computed in (4.7.3):

σC(z) =
1− z2

1z2z3

(1− z1z2z3z4)(1− z1z2z3)(1− z1z2)(1− z1z3)(1− z1)
.

There are two features that made the “geometric computations” of σC(z)
through (4.7.1) and (4.8.1) possible: the fact that we could decompose C into
simplicial cones (in the first instance C2≥3, C3≥2, and C2=3, in the second
C2≥3 and C3>2), and the fact that these cones were unimodular. We will
see in Chapter 5 that every pointed cone can be similarly decomposed into
simplicial cones (this is called a triangulation of the cone), and the following
important theorem shows that the integer-point transform of every half-open
simplicial cone (not just a unimodular one) is nice. Even better, it gives our
first reciprocity theorem for a multivariate generating function.

Theorem 4.8.1. Fix linearly independent vectors v1,v2, . . . ,vk ∈ Zd and
1 ≤ m ≤ k and define the two half-open cones5

Ĉ := R≥0v1 + · · ·+ R≥0vm−1 + R>0vm + · · ·+ R>0vk

and
qC := R>0v1 + · · ·+ R>0vm−1 + R≥0vm + · · ·+ R≥0vk .

Then σ
Ĉ
(z) and σ

qC
(z) are rational generating functions in z1, z2, . . . , zd which

are related via

σ
qC

(
1
z

)
= (−1)k σ

Ĉ
(z) , (4.8.2)

where 1
z := ( 1

z1
, 1
z2
, . . . , 1

zd
).

This is the simplicial version of Stanley reciprocity, the general case of
which we will prove in Theorem 5.4.2. We remark that (4.8.2) is an identity
of rational functions (not formal Laurent series), just as, e.g., (4.6.9) is an
identity of polynomials (not counting functions).

Proof. We start with Ĉ and use a tiling argument, which we hinted at
already in Figure 4.2, to compute its generating function. Namely, let

2̂ := [0, 1) v1 + · · ·+ [0, 1) vm−1 + (0, 1] vm + · · ·+ (0, 1] vk , (4.8.3)

the fundamental parallelepiped of Ĉ; see Figure 4.3 for an example. Then

5Technically, the cones are only half open for m > 1.
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v1

v2 �̂ = [0, 1)v1 + (0, 1]v2

Ĉ = R≥0v1 + R>0v2

Figure 4.3. The fundamental parallelogram of a 2-cone.

we can tile Ĉ by translates of 2̂, as we invite you to prove in Exercise 4.38:

Ĉ =
⊎

j1,...,jk≥0

(j1v1 + · · ·+ jkvk + 2̂) (4.8.4)

(see Figure 4.4). This can be translated into the language of generating

v1

v2

Figure 4.4. Translates of the fundamental parallelogram tile the cone.

functions as

σ
Ĉ
(z) =


∑

j1≥0

zj1v1


 · · ·


∑

jk≥0

zjkvk


σ2̂(z)

=
σ2̂(z)

(1− zv1) · · · (1− zvk)
. (4.8.5)
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Completely analogously, we compute

σ
qC
(z) =

σ
q2(z)

(1− zv1) · · · (1− zvk)
,

where

q2 := (0, 1] v1 + · · ·+ (0, 1] vm−1 + [0, 1) vm + · · ·+ [0, 1) vk .

These two fundamental parallelepipeds are intimately related: if x ∈ q2, then
we can write x = λ1v1 + · · · + λkvk for some 0 < λ1, . . . , λm−1 ≤ 1 and
0 ≤ λm, . . . , λk < 1. But then

v1 + v2 + · · ·+ vk − x = (1− λ1)v1 + · · ·+ (1− λk)vk
is a point in 2̂. Since v1,v2, . . . ,vk are linearly independent, this proves

2̂ = v1 + v2 + · · ·+ vk − q2 (4.8.6)

(illustrated in Figure 4.5) or, in terms of generating functions,

σ2̂(z) = zv1+v2+···+vk σ
q2

(
1

z

)
.

This yields

σ
qC

(
1

z

)
=

σ
q2(1

z)

(1− z−v1) · · · (1− z−vk)
=

z−v1−v2−···−vk σ2̂(z)

(1− z−v1) · · · (1− z−vk)

= (−1)k
σ2̂(z)

(1− zv1) · · · (1− zvk)
= (−1)k σ

Ĉ
(z) . �

v1

v2

�̂

−�̂
−�̂+ v1 + v2 = �

̂

Figure 4.5. The geometry of (4.8.6) in dimension 2.

Theorem 4.8.1 is at the heart of this book. Once we have developed
the machinery of decomposing polyhedra in Chapter 5, we will be able to
extend it to every pointed rational cone (Theorem 5.4.2). For now, we limit
ourselves to consequences for simplicial cones. For m = 1, we observe that
in Theorem 4.8.1

Ĉ = C◦ and qC = C .
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This extreme case yields a reciprocity for simplicial cones equipped with an
arbitrary grading.

Corollary 4.8.2. Let C ⊂ Rd+1 be a rational simplicial cone with generators
v1, . . . ,vk and fundamental parallelepiped 2. For a grading a ∈ Zd+1,

Ha
C(z) =

∑

n≥0

haC(n) zn =
Ha

2(z)(
1− z〈a,v1〉

)
· · ·
(
1− z〈a,vk〉

) (4.8.7)

and

Ha
C

(
1

z

)
= (−1)kHa

C◦(z) .

One interesting fact to note is that the fundamental parallelepiped
depends on a choice of generators and hence is unique only up to scaling of
the generators. Technically, this means that the right-hand side of (4.8.7)
depends on a choice of generators, whereas the left-hand side does not; see
Exercise 4.39.

Corollary 4.8.2 also furnishes a proof of Theorem 4.6.1.

Proof of Theorem 4.6.1. Recall our setup for this result, stated at the
beginning of Section 4.6: to a given r-dimensional lattice simplex 4 ⊂ Rd
with vertices v1, . . . ,vr+1, we associate its homogenization C = hom(4).
This is a simplicial cone with generators wi = (vi, 1) for i = 1, . . . , r + 1 and
associated parallelepiped

2 := [0, 1)w1 + [0, 1)w2 + · · ·+ [0, 1)wr+1 .

For the grading a = (0, . . . , 0, 1), we can write the Ehrhart series of 4 as

Ehr4(z) = 1 +
∑

n≥1

ehr4(n) zn = Ha
C(z) =

Ha
2(z)

(1− z)r+1
,

where the last equality stems from Corollary 4.8.2. The numerator polynomial

h∗(z) := Ha
2(z) = h∗0 + h∗1z + · · ·+ h∗rz

r

enumerates the number of lattice points in 2 according to their height.
Note that the h∗j s are nonnegative integers. We also observe that there are
no lattice points of height > r and that the origin 0 is the unique lattice
point in 2 of height zero; hence h∗i ≥ 0 for i = 0, . . . , r and h∗0 = 1. Using
Proposition 4.1.4, this shows that ehr4(n) is a polynomial of degree r, as
h∗(1) > 0. By the same token, we observe that ehr4(0) = Ha

C(0) = h∗(0) = 1
which proves part (a).
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For part (b) we combine Theorem 4.1.6 with Corollary 4.8.2 to infer

(−1)r
∑

n≥1

ehr4(−n) zn = (−1)r+1
∑

n≥0

ehr4(n)

(
1

z

)n

= (−1)r+1 Ehr4

(
1

z

)
= Ehr4◦(z) =

∑

n≥1

ehr4◦(n) zn,

which gives the combinatorial reciprocity that we were after. �

We remark that the penultimate line in the above proof essentially forced
us to define the Ehrhart series of an open polytope to start at n = 1:

EhrP◦(z) :=
∑

n≥1

ehrP◦(n) zn.

One reason to do so is to make reciprocity work (specifically, Theorem 4.1.6),
but our definition also gives the correct open analogue to (4.6.4), as

EhrP◦(z) = σhom(P)◦(1, . . . , 1, z) .

4.9. Chain Partitions and the Dehn–Sommerville Relations

We finish this chapter with the study of a class of partition functions defined
via posets, which are hybrids of sorts between the restricted partition func-
tions from Section 4.4 and the zeta polynomials from Chapter 2. Let Π be a
finite poset with 0̂ and 1̂ and let φ : Π \ {0̂, 1̂} → Z>0 be an order-preserving
map. A (Π, φ)-chain partition of n ∈ Z>0 is a partition of the form

n = φ(cm) + φ(cm−1) + · · ·+ φ(c1)

for some multichain

1̂ � cm � cm−1 � · · · � c1 � 0̂

in Π. We define cpΠ,φ(n) to be the number of chain partitions of n and we set
cpΠ,φ(0) := 1. The connection to restricted partition functions is immediate:
for A = {bd > · · · > b1 > 0} ⊂ Z≥0, we set φ(i) := bi for i ∈ [d]. Then

cpΠ,φ(n) = pA(n) ,

where Π = [d] ∪ {0̂, 1̂} is the (d+ 2)-chain. On the other extreme, if Π is an
antichain together with 0̂ and 1̂, then (for the same φ) we are counting the
compositions from Section 4.2:

cpΠ,φ(n) = cA(n) .

Our counting function cpΠ,φ(n) for a general pair (Π, φ) comes, naturally,
with a generating function; we will first construct a multivariate generating
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function—analogous to an integer-point transform—, from which the uni-
variate version follows by specialization. Let z := (za : a ∈ Π) be a set of
variables indexed by the elements of Π, and set

ΥΠ(z) :=
∑

0̂≺c1�c2�···�cm≺1̂

zc1zc2 · · · zcm .

In words, the monomials in ΥΠ(z) encode the multichains in Π \ {0̂, 1̂}. In
particular,

CPΠ,φ(q) :=
∑

n≥0

cpΠ,φ(n) qn = Υ
(
za = qφ(a) : a ∈ Π

)
, (4.9.1)

the univariate generating function corresponding to our chain-partition
counting function cpΠ,φ(n). Not unlike the ideas used in Section 2.2, the
generating function ΥΠ(z) can be developed by accounting for the possible
repetitions in a multichain stemming from a chain:

ΥΠ(z) =
∑

0̂≺c1≺c2≺···≺cm≺1̂

∑

j1,j2,...,jm≥1

zj1c1z
j2
c2 · · · zjmcm

=
∑

0̂≺c1≺c2≺···≺cm≺1̂

zc1
1− zc1

zc2
1− zc2

· · · zcm
1− zcm

. (4.9.2)

As a first milestone, we compute cpΠ,φ for a particular class of pairs (Π, φ).
We recall that a poset Π is graded if every maximal chain in Π has the same
length d+ 1. In this case, we define the rank of a ∈ Π, denoted by rkΠ(a),
as the length of any maximal chain ending in a. (This definition made a
brief appearance in Exercise 2.15.) Thus the rank of Π is the rank of any
maximal element in Π, for which we write rk(Π) = d+ 1.

For S = {0 ≤ s1 < s2 < · · · < sm ≤ d+ 1}, let

αΠ(S) := |{c1 ≺ c2 ≺ · · · ≺ cm : rk(cj) = sj for j = 1, . . . ,m}| ;
in words, αΠ(S) counts all chains with ranks in S. The collection

(αΠ(S) : S ⊆ {0, 1, . . . , d+ 1})
is the flag f-vector of Π. If Π has a minimum 0̂ and maximum 1̂, then
αΠ(S) = αΠ(S ∪ {0}) = αΠ(S ∪ {d+ 1}) for any S. Hence we may restrict
the flag f -vector to (αΠ(S) : S ⊆ [d]).

The order-preserving map φ is ranked if φ(a) = φ(b) whenever rkΠ(a) =
rkΠ(b). For example, φ(a) := rkΠ(a) is a ranked order-preserving map. If φ
is ranked, we set φi := φ(a), where a ∈ Π is any element of rank 1 ≤ i ≤ d.

Theorem 4.9.1. Suppose Π is a graded poset of rank d + 1 with 0̂ and 1̂,
and φ : Π \ {0̂, 1̂} → Z≥0 is a ranked order-preserving map. Then

CPΠ,φ(q) =

∑
S⊆[d] α(S)

∏
s∈S q

φs
∏
s/∈S(1− qφs)

(1− qφ1)(1− qφ2) · · · (1− qφd) .
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In particular, cpΠ,φ(n) is a quasipolynomial in n.

Proof. Consider a summand in the right-hand side of (4.9.2). Under the

specialization za 7→ qφ(a), it takes on the form

qφ(c1)

1− qφ(c1)
· · · qφ(cm)

1− qφ(cm)
,

which only depends on S = {0 < rkΠ(c1) < · · · < rkΠ(cm) < d+1} and which
thus occurs exactly αΠ(S) times in (4.9.1). We can move the summands
to the common denominator (1− qφ1) · · · (1− qφd) by realizing that in each
chain there are no two elements with the same rank. �

The form of (4.9.2) suggests that there is a reciprocity theorem for ΥΠ(z)
waiting in the wings. Indeed,

ΥΠ

(
1
z

)
=

∑

0̂≺c1≺···≺cm≺1̂

(−1)m
1

1− zc1
1

1− zc2
· · · 1

1− zcm
(4.9.3)

is a weighted sum of monomials zk1
b1
zk2
b2
· · · zkjbj corresponding to the multichain

0̂ ≺ b1 � · · · � b1︸ ︷︷ ︸
k1

≺ b2 � · · · � b2︸ ︷︷ ︸
k2

≺ · · · ≺ bj � · · · � bj︸ ︷︷ ︸
kj

≺ 1̂ .

We observe that the coefficient with which this multichain occurs depends
only on the underlying chain b1 ≺ b2 ≺ · · · ≺ bj . As in Section 3.5, we will
abbreviate this chain by b and recall that l(b) = j − 1 is the length of b.
Any summand in the right-hand side of (4.9.3) can be expanded as a sum
over multichains supported on subchains of c1 ≺ c2 ≺ · · · ≺ cm. To be more
precise, the coefficient of zb1zb2 · · · zbj in (4.9.3) is

∑

c⊇b
(−1)l(c)−1, (4.9.4)

where this sum is over all chains c containing b as a subchain.

There is a natural construction that will help us with the bookkeeping.
Let Π be a general poset. For a, b ∈ Π, we define the order complex
∆Π(a, b) as the collection of sets σ = {c1, c2, . . . , cm} such that a ≺ c1 ≺ c2 ≺
· · · ≺ cm ≺ b. This is a partially ordered set under inclusion with minimum
∅, the empty chain. The order complex of Π itself is ∆(Π), the collection of
all chains in Π.

Coming back to the coefficient of zb1 · · · zbj , setting b0 := 0̂ and bj+1 := 1̂
allows us to rewrite

∑

c⊇b
(−1)l(c) =

j∏

h=0

∑

σ∈∆Π(bh,bh+1)

(−1)|σ|−1 =

j∏

h=0

∑

k≥1

(−1)kck(bh, bh+1) ,
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where ck(bh, bh+1) was introduced in Section 2.4 as the number of chains of
length k in the open interval (bh, bh+1) ⊆ Π. Bringing Theorem 2.4.6 into
the mix of (4.9.3) and (4.9.4) thus yields the following.

Lemma 4.9.2. Let Π be a finite poset with 0̂ and 1̂ and Möbius function µ.
Then

−ΥΠ

(
1

z

)
=

∑

0̂≺b1≺···≺bj≺1̂

µ(0̂, b1)µ(b1, b2) · · ·µ(bj , 1̂)
zb1

1− zb1
· · · zbj

1− zbj
.

This is surprisingly close to (4.9.2). We can get even closer if Π is
Eulerian.

Theorem 4.9.3. Suppose Π is an Eulerian poset with rk(Π) = d+ 1. Then

ΥΠ

(
1
z

)
= (−1)d ΥΠ(z) .

Proof. We have done most of the leg work by deriving Lemma 4.9.2. Since
Π is Eulerian, we have µ(a, b) = (−1)l(a,b) = (−1)rk(b)−rk(a) for any a � b
and hence

µ(0̂, b1)µ(b1, b2) · · ·µ(bj , 1̂) = (−1)l(0̂,b1)(−1)l(b1,b2) · · · (−1)l(bj ,1̂)

= (−1)d+1,

and so Lemma 4.9.2 yields

−ΥΠ

(
1
z

)
=

∑

0̂≺b1≺···≺bj≺1̂

(−1)d+1 zb1
1− zb1

· · · zbj
1− zbj

= (−1)d+1 ΥΠ(z) . �

Specializing at z = (qφ(a) : 0̂ ≺ a ≺ 1̂) gives the following generalization
of Theorem 4.4.3.

Corollary 4.9.4. Let Π be an Eulerian poset of rank d+1. If φ : Π\{0̂, 1̂} →
Z≥0 is a ranked order-preserving map with values φ1 ≤ · · · ≤ φd then

(−1)dcpΠ,φ(−n) = cpΠ,φ(n− φ1 − φ2 − · · · − φd) .

The counting function cpΠ,φ(n) is particularly nice for the following
class of (particularly nice) posets. An (abstract) simplicial complex is a
nonempty collection Γ of subsets of some finite set V that is closed under
taking subsets, that is, if σ ∈ Γ and σ′ ⊆ σ, then σ′ ∈ Γ. For example,
if Π is any poset, then its order complex ∆(Π) is a simplicial complex. A
simplicial complex is pure if all inclusion-maximal sets σ ∈ Γ have the same
cardinality. In this case, Γ is a graded poset with rank function rkΓ(σ) = |σ|.
In particular, Γ has the unique minimal element ∅.

Another class of examples for simplicial complexes can be derived from
simplicial polytopes: if P is a simplicial polytope with vertex set V , then
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every proper face F ≺ P is a simplex, and so any subset of vert(F) is the set
of vertices of a face of P. This means that

ΓP := {vert(F) : F ≺ P proper face}
is a simplicial complex.6 The elements σ ∈ Γ are called faces of Γ and, for
consistency with simplicial polytopes, we set dimσ := |σ| − 1 and dim Γ :=
max{dimσ : σ ∈ Γ}.

For a simplicial complex, there is a convenient way to encode multichains.
Each a ∈ ZV≥0 represents a multisubset of V by interpreting av as the

multiplicity of the element v. We define the support of a ∈ ZV≥0 as

supp(a) := {v ∈ V : av > 0} ,
the subset underlying the multisubset a, and we write |a| := ∑

v av for the
cardinality of a.

Lemma 4.9.5. Let Γ be a simplicial complex on V . Then there is a one-
to-one correspondence between multisubsets a ∈ ZV≥0 \ {0} with supp(a) ∈ Γ

and |a| = n and multichains

∅ ⊂ σ1 ⊆ σ2 ⊆ · · · ⊆ σm = supp(a)

with n = |σ1|+ · · ·+ |σm|.
Proof. We will actually prove a refined statement: there is a one-to-one
correspondence between multisubsets a ∈ ZV≥0 \ {0} with supp(a) ∈ Γ and

|a| = n and multichains

∅ ⊂ σ1 ⊆ σ2 ⊆ · · · ⊆ σm = supp(a) ,

where m = max{av : v ∈ V } and n = |σ1| + · · · + |σm|. If m = 1, then
a ∈ {0, 1}V and setting σ1 := supp(a) does the trick. Otherwise (m > 1),
consider a′ ∈ ZV with

a′v :=

{
av − 1 if v ∈ supp(a),

0 otherwise.

By construction, a′ ≥ 0, supp(a′) ⊆ supp(a), and max{a′v : v ∈ V } = m− 1.
By induction on m, there is a chain ∅ ⊂ σ1 ⊆ · · · ⊆ σm−1 = supp(a′) and
we simply set σm := supp(a).

Our construction also suggests what the inverse map should be. For a
subset A ⊆ V , let eA ∈ {0, 1}V with

(eA)v =

{
1 if v ∈ A,
0 if v /∈ A.

6It is a short step to identify each vertex set in Γ with the accompanying face of P, and the

resulting simplices form a simplicial complex for which we drop the attribute abstract ; we will have
much more to say about this in the next chapter.
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Then, given a multichain ∅ ⊂ σ1 ⊆ · · · ⊆ σm ∈ Γ with |σ1|+ · · ·+ |σm| = n,
we define a = eσ1 + · · ·+ eσm ∈ ZV≥0. �

The above way to encode multichains is the key to the following re-
sult. To every simplicial complex Γ, we can associate an f-vector f(Γ) =
(f−1, f0, . . . , fd−1), where fi = fi(Γ) is the number of faces σ ∈ Γ of dimension
i or, equivalently, of rank i+ 1.

Theorem 4.9.6. Let Γ be a simplicial complex of dimension d− 1 with rank
function rk(σ) = |σ|. Then

cpΓ∪{1̂},rk(n) =

d∑

k=0

fk−1(Γ)

(
n

k

)
.

Proof. Unravelling the definitions, cpΓ∪{1̂},rk(n) counts the number of mul-

tichains ∅ ⊂ σ1 ⊆ σ2 ⊆ · · · ⊆ σm in Γ with n = |σ1| + · · · + |σm|. Using
Lemma 4.9.5, we compute for n > 0

cpΓ∪{1̂},rk(n) =
∣∣{a ∈ ZV≥0 : supp(a) ∈ Γ , |a| = n

}∣∣

=
∑

σ∈Γ

∣∣{a ∈ ZV≥0 : supp(a) = σ , |a| = n
}∣∣

=
∑

σ∈Γ

∣∣{a ∈ ZV≥0 : supp(a) ⊆ σ , |a| = n− |σ|
}∣∣

=
∑

σ∈Γ

(
n

|σ|

)
=

d∑

k=0

fk−1

(
n

k

)
. �

If you get the feeling that this formula looks familiar, you might want to
revisit (3.5.6) in Section 3.5.

For any two F ⊆ G ∈ Γ, the interval [F,G] is isomorphic to the Boolean
lattice consisting of all subsets of G \ F (partially ordered by ⊆), and hence

µΓ(F,G) = (−1)l(F,G). In particular, if Γ = ΓP for some d-dimensional
simplicial polytope P, then ΓP ∪ {1̂} is isomorphic to the face lattice Φ(P),
which is an Eulerian poset by Theorem 3.5.1. We can then deduce from
Theorem 4.9.6 that

CPΦ(P),rk(q) =
h0(P) + h1(P) q + · · ·+ hd−1(P) qd−1

(1− q)d
for some integers h0(P), h1(P), . . . , hd−1(P) depending on P. Corollary 4.9.4
now implies that

hi(P) = hd−1−i(P) (4.9.5)

for i = 0, . . . , d−1. At this stage, this is where our story takes a break, as we
do not have an interpretation for the numbers hi(P). In fact, we do not even
know whether hi(P) ≥ 0 (in which case there is a chance that they count
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something). We will develop the necessary machinery in the next chapter
and shed more light on the hi(P) in Section 5.6.

Notes

We have barely started to touch on the useful and wonderful world of
generating functions. We heartily recommend [114] and [186] if you’d like
to explore more.

Partitions and compositions have been around since at least Leonard
Euler’s time. They provide a fertile ground for famous theorems (see, e.g.,
the work of Hardy, Ramanujan, and Rademacher) and open problems (e.g.,
nobody understands exactly how the parity of the number of partitions
of n behaves), and they provide a just-as-fertile ground for connections to
other areas in mathematics and physics (e.g., Young tableaux, which open a
window to representation theory). Again we barely scratched the surface in
this chapter; see, e.g., [4,5,82] for further study.

The earliest reference for Proposition 4.2.1 we are aware of is William
Feller’s book [63, p. 311] on probability theory, which was first published
in 1950. The earliest combinatorics paper that includes Proposition 4.2.1
seems to be [125]. A two-variable generalization of Proposition 4.2.1, which
appeared in [87], is described in Exercise 4.18. It is not clear who first
proved Theorem 4.2.2. The earliest reference we are aware of is [87] but
we suspect that the theorem has been known earlier. Arthur Cayley’s
collected works [45, p. 16] contain the result that c{j∈Z : j≥2}(n) equals
the n-th Fibonacci number, but establishing a bijective proof of the fact
that c{j∈Z : j≥2}(n) = c{2j+1 : j≥0}(n) (which follows from Theorem 4.2.2)
is nontrivial [157]. Other applications of Proposition 4.2.1 include recent
theorems, e.g., [23,144,145,189]; see Exercises 4.16 and 4.17.

Plane partitions were introduced by Percy MacMahon about a century
ago, who proved a famous generating-function formula for the general case
of an m× n plane partition [117]. There are various generalizations of plane
partitions, for example, the plane partition diamonds given in Exercise 4.20,
due to George Andrews, Peter Paule, and Axel Riese [6].

Restricted partition functions are closely related to a famous problem
in combinatorial number theory: namely, what is the largest integer root
of pA(n) (the Frobenius number associated with the set A)?7 This problem,
first raised by Georg Frobenius in the 19th century, is often called the coin-
exchange problem—it can be phrased in layman terms as looking for the
largest amount of money that we cannot change given coin denominations in
the set A. Exercise 4.25 (which gives a formula for the restricted partition
function in the case that A contains two elements; it goes back to an 1811

7For this question to make sense, we need to assume that the elements of A are relatively
prime.
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book on elementary number theory by Peter Barlow [13, pp. 323–325])
suggests that the Frobenius problem is easy for |A| = 2 (and you may use
Exercise 4.25 to find a formula for the Frobenius number in this case), but
this is deceiving: the Frobenius problem is much harder for |A| = 3 (though
there exist formulas of sorts [54]) and certainly wide open for |A| ≥ 4. The
Frobenius problem is also interesting from a computational perspective: while
the Frobenius number is known to be polynomial-time computable for fixed
|A| [98], implementable algorithms are harder to come by (see, e.g., [27]).
For much more on the Frobenius problem, we refer to [139].

Theorem 4.4.3 is due to Eugène Ehrhart [58], who also proved The-
orem 4.7.2, which gives a vast generalization of the reciprocity featured
in Theorem 4.4.3, from one to an arbitrary (finite) number of linear con-
straints. We will have more to say about Ehrhart’s work in the next chapter.
Our development of Ehrhart polynomials follows Eugène Ehrhart’s original
ansatz [57]. We’ll have (much) more to say about this in the next chapter.
The same goes for the multivariate analogues of Ehrhart series in Section 4.8,
which were initiated by Richard Stanley.

For a rational polyhedral cone C ⊂ Rd+1, the set C ∩ Zd+1 is a finitely
generated semigroup, called an affine semigroup. The corresponding semi-
group algebra C[C ∩ Zd+1] is the subalgebra of S := C[x±1

1 , x±1
2 , . . . , x±1

d+1]

generated by the monomials xu for u ∈ C ∩ Zd+1. Any a ∈ Zd+1 such that
〈a,u〉 > 0 for u ∈ C∩Zd+1 and u 6= 0 defines a grading of S and the Hilbert
functions of Section 4.7 are in fact the Hilbert functions of S in the given
grading. Affine semigroup algebras for cones of the form C = hom(P), where
P is a lattice polytope, are of particular interest in connection with toric
algebraic geometry and combinatorial commutative algebra. See, e.g., [122]
for more on this.

Flag f -vectors of posets, particularly, of Eulerian posets, have been
studied extensively; see, for example, [19,29]. In particular, flag f -vectors
of Eulerian posets satisfy the generalized Dehn–Sommerville relations; see
Exercise 4.45. If Π is an Eulerian poset of rank d+ 1, then the flag f -vector
has 2d entries but the complete flag f -vector can be recovered from the
knowledge of f(n) many entries, where f(n) is the n-th Fibonacci number.
Note that not any f(n) entries will do the job. Which subsets work, however,
is still open; see [46] for the easier case of f -, respectively, h-vectors of
Eulerian posets. General chain partitions are, to the best of our knowledge,
new. The chain-generating function (4.9.2) and its relative (4.9.3) are very
natural and have appeared in different guises. If Γ is a simplicial complex on
[n], then its Stanley–Reisner ring is C[Γ] := C[x1, . . . , xn]/IΓ, where IΓ is the
ideal generated by all xa for which supp(a) 6∈ Γ. The ideal IΓ is homogeneous
and C[Γ] inherits the natural grading of polynomials. The corresponding
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Hilbert function is exactly cpΓ∪{1̂},rk(n). For the algebraic perspective on

our derivation of the Dehn–Sommerville relations, see [122].

Exercises

4.1 Prove the following extension of Proposition 4.1.1: Let A ∈ Cd×d, fix
indices i, j ∈ [d], and consider the sequence a(n) := (An)ij formed by
the (i, j)-entries of the n-th powers of A. Then a(n) agrees with a
polynomial in n if and only if A is unipotent. (Hint: Consider the
Jordan normal form of A.)

4.2 D Complete the proof of Proposition 4.1.2 that (M), (γ), (∆), and (h∗)
are bases for the vector space C[z]≤d = {f ∈ C[z] : deg(f) ≤ d}:
(a) Give an explicit change of bases from (γ) to (M) in the spirit

of (4.1.1). For example, consider zj d
dz (z + w)d and set w = 1− z.

(b) Assume that there are numbers α0, . . . , αd such that

α0

(
z

d

)
+ α0

(
z + 1

d

)
+ · · ·+ αd

(
z + d

d

)
= 0 .

Argue, by specializing z, that αj = 0 for all j.
(c) Can you find explicit changes of bases for the sets (M), (γ), (∆),

and (h∗) and give them combinatorial meaning?

4.3 D Show that for F (z) =
∑

n≥0 f(n)zn there exists a power series G(z)

such that F (z)G(z) = 1 if and only if f(0) 6= 0. (This explains why we
do not allow A to contain the number 0 in Proposition 4.2.1.)

4.4 D Check that our definition (4.1.5) for the derivative of a formal power
series satisfies the following properties: given F (z) :=

∑
n≥0 f(n) zn

and G(z) :=
∑

n≥0 g(n) zn, define F ′(z) and G′(z) via (4.1.5). Then:

(a) If λ ∈ C, then (F (z) + λG(z))′ = F ′(z) + λG′(z).
(b) (F (z)G(z))′ = F ′(z)G(z) + F (z)G′(z).
(c) If G(z) has a multiplicative inverse, then

(
F (z)

G(z)

)′
=

F ′(z)G(z)− F (z)G′(z)
G(z)2

.

4.5 Show that for integers m ≥ k ≥ 0,

∑

n≥k

(
n+m− k

m

)
zn =

zk

(1− z)m+1
.

4.6 D Prove Proposition 4.1.5: Let (f(n))≥0 be a sequence of numbers.
Then (f(n))n≥0 satisfies a linear recurrence of the form (4.1.10) (with
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c0, cd 6= 0) if and only if

F (z) =
∑

n≥0

f(n)zn =
p(z)

cdzd + cd−1zd−1 + · · ·+ c0

for some polynomial p(z) of degree < d.

4.7 D Let (f(n))n≥0 be a sequence of numbers. Show that f(n) satisfies
a linear recursion (with nonzero constant term) for sufficiently large

n > 0 if and only if
∑

n≥0 f(n)zn = p(z)
q(z) for some polynomials p(z) and

q(z), with no restriction on the degree of p(z).

4.8 Show that, if f(n) is the sequence of Fibonacci numbers, then

∑

n≥1

f(n) zn =
z

1− z − z2
.

Expand this rational function into partial fractions to give a closed
formula for f(n).

4.9 D Let f◦(n) := f(−n) be the sequence satisfying the recurrence (4.1.13)
with starting values f(0), f(1), . . . , f(d− 1). Compute the numerator
for F ◦(z) =

∑
n≥1 f

◦(n)zn and thereby complete the proof of Theo-
rem 4.1.6.

4.10 Let A ∈ Cd×d, and for i, j ∈ [d] define f(n) := (An)ij .
(a) Show that f(n) satisfies a linear recurrence.
(b) If A is invertible, show that f◦(n) = (A−n)ij (in the language of

Exercise 4.9). What is f◦(n) if A is not invertible?
(c) If A is diagonalizable with eigenvalues λ1, . . . , λd, show that there

are a1, . . . , ad ∈ C such that

f(n) = a1 λ
n
1 + · · ·+ ad λ

n
d .

4.11 D Consider the formal power series F (z) =
∑

n≥0
zn

n! .

(a) Prove that F (z) is not rational.
(b) Show that F (1

z ) is not a generating function. (Hint: This time you

might want to think about F (1
z ) as a function.)

4.12 D Prove Corollary 4.1.7: A sequence f(n) is eventually polynomial of
degree ≤ d if and only if

∑

n≥0

f(n) zn = g(z) +
h(z)

(1− z)d+1

for some polynomials g(z) and h(z) with deg(h) ≤ d. Furthermore,
f(n) has degree d if and only if h(1) 6= 0.



Exercises 145

4.13 The Bernoulli polynomials Bk(n) are defined through the generating
function

z enz

ez − 1
=
∑

k≥0

Bk(n)

k!
zk. (4.9.6)

The Bernoulli numbers are Bk := Bk(0). Prove the following prop-
erties of Bernoulli polynomials and numbers.

(a)

n−1∑

j=0

jk−1 = 1
k (Bk(n)−Bk) .

(b) Bk(n) =

k∑

m=0

(
k

m

)
Bk−m n

m.

(c) Bk(1− n) = (−1)kBk(n) .
(d) Bk = 0 for all odd k ≥ 3.

4.14 Prove that, if P is a simplicial d-polytope, then

ZΦ(P)(n) =
d∑

m=0

nm+1

m+ 1

d∑

k=m

(
k

m

)
Bk−m fk−1

and conclude with Theorem 2.3.3 and Corollary 3.5.4 the following
alternative version of the Dehn–Sommerville relations (Theorem 3.5.5):

d∑

k=m

(
k

m

)
Bk−m fk−1 = 0

for m = d− 1, d− 3, . . . .

4.15 Give an alternative proof of Proposition 4.2.1 by utilizing the fact that
cA(n) =

∑
m∈A cA(n−m).

4.16 Let A := {n ∈ Z>0 : 3 - n}. Compute the generating function for
cA(n) and derive from it both a recursion and closed form for cA(n).
Generalize.

4.17 Fix positive integers a and b. Prove that the number of compositions of
n with parts a and b equals the number of compositions of n+ a with
parts in {a+ bj : j ≥ 0} (and thus, by symmetry, also the number of
compositions of n+ b with parts in {aj + b : j ≥ 0}).

4.18 Towards a two-variable generalization of Proposition 4.2.1, let cA(n,m)
denote the number of compositions of n with precisely m parts in the
set A, and let

CA(x, y) :=
∑

n,m≥0

cA(n,m)xnym,
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where we set cA(0, 0) := 1. Prove that

CA(x, y) =
1

1− y∑m∈A x
m
.

Compute a formula for cA(n,m) when A is the set of all positive odd
integers.

4.19 Compute the quasipolynomial pl(n) through a partial-fraction expansion

of Pl(q) of the form a(q)
(1−q)4 + b(q)

(1−q2)2 + c(q)
1−q3 . Compare your formula for

pl(n) with (4.3.4).

4.20 Show that the generating function for plane partition diamonds

a1 ≥ a2≥ ≥

a3 ≥ a4 ≥ a5≥ ≥
a6 ≥ a7

. . .

a3n−2 ≥ a3n−1≥ ≥

a3n ≥ a3n+1

is
(1 + q2)(1 + q5)(1 + q8) · · · (1 + q3n−1)

(1− q)(1− q2) · · · (1− q3n+1)
.

Derive a reciprocity theorem for the associated plane-partition-diamond
counting function.

4.21 D Prove Proposition 4.4.1: If p(n) is a quasipolynomial, so is r(n) :=∑n
s=0 p(s). More generally, if f(n) and g(n) are quasipolynomials, then

so is their convolution

c(n) =
n∑

s=0

f(s) g(n− s) .

4.22 Continuing Exercise 4.21, let c(n) be the convolution of the quasipoly-
nomials f(n) and g(n). What can you say about the degree and the
period of c(n), given the degrees and periods of f(n) and g(n)?

4.23 Compute the quasipolynomial pA(n) for the case A = {1, 2}.
4.24 How does your computation of both the generating function and the

quasipolynomial pA(n) change when we switch from Exercise 4.23 to
the case of the multiset A = {1, 2, 2}?

4.25 Suppose a and b are relatively prime positive integers. Define the
integers α and β through

bβ ≡ 1 mod a and aα ≡ 1 mod b ,
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and denote by {x} the fractional part of x, defined through

x = bxc+ {x} ,
where bxc is the largest integer ≤ x. Prove that

p{a,b}(n) =
n

ab
−
{
βn

a

}
−
{αn
b

}
+ 1 .

4.26 The (unrestricted) partition function p(n) counts all partitions
of n. Show that its generating function is

1 +
∑

n≥1

p(n) qn =
∏

k≥1

1

1− qk .

4.27 Let d(n) denote the number of partitions of n into distinct parts (i.e.,
no part is used more than once), and let o(n) denote the number of
partitions of n into odd parts (i.e., each part is an odd integer). Compute
the generating functions of d(n) and o(n), and prove that they are equal
(and thus d(n) = o(n) for all positive integers n).

4.28 In this exercise we consider the problem of counting partitions of n with
an arbitrary but finite number of parts, restricting the maximal size of
each part. That is, let

p≤m(n) :=

∣∣∣∣
{

(m ≥ a1 ≥ a2 ≥ · · · ≥ ak ≥ 1) :
k ∈ Z>0 and a1 + a2 + · · ·+ ak = n

}∣∣∣∣ .

Prove that

p≤m(n) = p{1,2,...,m}(n) .

4.29 Let pk(n) denote the number of partitions of n into at most k parts.
(a) Show that

1 +
∑

n≥1

pk(n) qn =
1

(1− q)(1− q2) · · · (1− qk)

and conclude that pk(n) is a quasipolynomial in n.
(b) Prove that (−1)k−1pk(−n) equals the number of partitions of n into

exactly k distinct parts.

4.30 Compute the constituents and the rational generating function of the
quasipolynomial p(n) = n+ (−1)n.

4.31 Recall that ζ ∈ C is a root of unity if ζm = 1 for some m ∈ Z>0.
(a) Prove that if c : Z → C is a periodic function with period k,

then there are roots of unity ζ0, ζ1, . . . , ζk−1 ∈ C and coefficients
c0, c1, . . . , ck−1 ∈ C such that

c(n) = c0 ζ
n
0 + c1 ζ

n
1 + · · ·+ ck−1 ζ

n
k−1 .
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(b) Show that p : Z≥0 → C is a quasipolynomial if only if

p(n) =

m∑

i=1

ci ζ
n
i n

ki ,

where ci ∈ C, ki ∈ Z≥0, and ζi are roots of unity.

4.32 D For A = {a1, a2, . . . , ad} ⊂ Z>0 let k = lcm(a1, a2, . . . , ad) be the
least common multiple of the elements of A. Provide an explicit poly-
nomial hA(q) such that the generating function PA(q) for the restricted
partitions with respect to A is

PA(q) =
∑

n≥0

pA(n) qn =
hA(q)

(1− qk)d .

4.33 D Recall that v1,v2, . . . ,vd ∈ Zd form a lattice basis of Zd if every point
in Zd can be uniquely expressed as an integral linear combination of
v1,v2, . . . ,vd. Let A be the matrix with columns v1,v2, . . . ,vd. Show
that v1,v2, . . . ,vd is a lattice basis if and only if det(A) = ±1. (Hint:
Use Cramer’s rule and the fact that each unit vector can be written as
an integral linear combination of the lattice basis.)

4.34 D For w ∈ Zd+1 \ {0}, let Tw : CJz±1
1 , . . . , z±1

d+1K→ CJz±1
1 , . . . , z±1

d+1K be
given by

Tw(f) := (1− zw)f .

(a) Show that Tw is an invertible linear transformation.
(b) For w ∈ Zd+1 \ {0} show that f :=

∑
t∈Z ztw equals zero.

(c) More generally, prove that if Q is a rational polyhedron that contains
a line, then σQ(z) = 0.

(d) Let S ⊂ Rd+1 and a ∈ Zd+1 such that for each δ ∈ Z the sets

Sδ :=
{

m ∈ S ∩ Zd+1 : 〈a,m〉 = δ
}

are all finite. Show that the specialization σS(ta) is a well-defined
element of CJt±1K.

(e) Let S ⊂ Rd+1 be a convex, line-free set. Prove that σS(z) is
nonzero. Moreover, if S1, S2 ⊂ Rd+1 are line-free convex sets, show
that σS1(z)σS2(z) is well defined.

4.35 D Prove Proposition 4.6.2 (without assuming Theorem 4.6.1): Let 4
be the convex hull of the origin and the d unit vectors in Rd. Then
ehr4(n) =

(
n+d
d

)
, and this polynomial satisfies Theorem 4.6.1. More

generally, ehr4(n) =
(
n+d
d

)
for every unimodular simplex 4.
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4.36 Show that the cone C2≥3 =
{
x ∈ R4

≥0 : x1 ≥ x2 ≥ x3 ≥ x4

}
has gener-

ators 


1
1
1
1


 ,




1
1
1
0


 ,




1
1
0
0


 ,




1
0
0
0


 .

4.37 D Let P := conv {(0, 0), (0, 1), (2, 1)}. Show that every lattice point in
hom(P) can be uniquely written as either

k1




0
0
1


+ k2




0
1
1


+ k3




2
1
1




or 


1
0
0


+ k1




0
0
1


+ k2




0
1
1


+ k3




2
1
1




for some nonnegative integers k1, k2, k3.

4.38 D Prove (4.8.4), i.e., fix linearly independent vectors v1,v2, . . . ,vk ∈ Zd
and define

Ĉ := R≥0v1 + · · ·+ R≥0vm−1 + R>0vm + · · ·+ R>0vk

and

2̂ := [0, 1) v1 + · · ·+ [0, 1) vm−1 + (0, 1] vm + · · ·+ (0, 1] vk .

Then
Ĉ =

⊎

j1,...,jk≥0

(j1v1 + · · ·+ jkvk + 2̂) .

4.39 Let C be a rational, simplicial cone with generators v1, . . . ,vk ∈ Zd
and corresponding parallelepiped 2. Let 2′ be the parallelepiped for
v′i = λivi, i ∈ [k] for some λi ∈ Z>0. Write σ2′(z) in terms of σ2(z) and
verify that the right-hand side of (4.8.7) is independent of a particular
choice of generators.

4.40 Let Ĉ and 2̂ be as in (the proof of) Theorem 4.8.1. Prove that if Ĉ is
unimodular, then 2̂ contains precisely one lattice point (namely, the
origin).

4.41 Pick four concrete points in Z3 and compute the Ehrhart polynomial of
their convex hull.

4.42 Let 4 be a lattice d-simplex and write

Ehr4(z) =
h∗d z

d + h∗d−1z
d−1 + · · ·+ h∗0

(1− z)d+1
.

Prove that:
(a) h∗d =

∣∣4◦ ∩ Zd
∣∣ .
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(b) h∗1 =
∣∣4∩ Zd

∣∣− d− 1 .
(c) h∗0 + h∗1 + · · ·+ h∗d = d! vol(4) .

4.43 D Prove Theorem 4.7.2: If 4 is a rational simplex, then for positive
integers n, the counting function ehr4(n) is a quasipolynomial in n
whose period divides the least common multiple of the denominators of
the vertex coordinates of 4. When this quasipolynomial is evaluated
at negative integers, we obtain

ehr4(−n) = (−1)dim(4) ehr4◦(n) .

4.44 Let S be an m-dimensional subset of Rd (i.e., the affine span of S has
dimension m). Then we define the relative volume of S to be

volS := lim
n→∞

1

nm

∣∣∣nS ∩ Zd
∣∣∣ .

(a) Convince yourself that volS is the usual volume if m = d.
(b) Show that, if 4 ⊂ Rd is an m-dimensional rational simplex, then

the leading coefficient of ehr4(n) (i.e., the coefficient of nm) equals
vol4.

4.45 Let Π be an Eulerian poset of rank d+ 1.
(a) For 0 ≤ i ≤ d+ 1, let αi be the number of elements of rank i. Show

that
α0 − α1 + · · ·+ (−1)d+1αd+1 = 0 .

(b) For 1 ≤ r < s ≤ d, let x, y ∈ Π be of ranks r and s, respectively.
Let αi(x, y) be the number of elements of rank i in [x, y]. This is
equal to 0 if x 6� y. Use the previous part to show that

s∑

i=r

(−1)iαΠ({r, i, s}) = 0 .

(c) Let S ⊆ [d] and 0 ≤ r < s−1 ≤ d+1 such that S∩{r, r+1, . . . , s} =
∅. Show that

s−1∑

i=r+1

(−1)i−r−1α(S ∪ {j}) = α(S)(1 + (−1)s−r) .



Chapter 5

Subdivisions

A heavy warning used to be given that pictures are not rigorous; this has never had
its bluff called and has permanently frightened its victims into playing for safety.
John Edensor Littlewood (1885–1977)

An idea that prevails in many parts of mathematics is to decompose a
complex object into simpler ones, do computations on the simple pieces, and
then put together the local information to get the global picture. This was
our strategy, e.g., in Section 1.4 where we proved Ehrhart’s theorem and
Ehrhart–Macdonald reciprocity for lattice polygons (Theorem 1.4.1). In the
plane we could appeal to your intuition that every lattice polygon can be
triangulated into lattice triangles. This technique of hand waving fails in
dimensions ≥ 3—it is no longer obvious that every (lattice) polytope can be
decomposed into (lattice) simplices. Our goal for this chapter is to show it
can be done, elegantly, and in more than one way.

5.1. Decomposing a Polyhedron

The first challenge in asserting that every polytope can be decomposed into
simpler polytopes is to make precise what we actually mean by that. It is
clear that counting lattice points through E(S) := |S ∩ Zd| is a valuation in
the sense of (1.4.2) and (3.4.1): for bounded sets S, T ⊂ Rd,

E(S ∪ T ) = E(S) + E(T )− E(S ∩ T ) .

We recall from Sections 1.4 and 4.6 that for a lattice polytope P ⊂ Rd, the
Ehrhart function of P is given by

ehrP(n) := E(nP)

for integers n ≥ 1. For a lattice simplex 4, Theorem 4.6.1 asserts that
ehr4(n) agrees with a polynomial of degree dim4. Thus, for general lattice

151
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polytopes we could wish for the following: if for a lattice polytope P ⊂ Rd,
we can find lattice simplices 41, . . . ,4m such that P = 41 ∪ · · · ∪ 4m, then
by the inclusion–exclusion principle from Section 2.4,

ehrP(n) =
∑

∅6=I⊆[m]

(−1)|I|−1 ehr4∩I (n) , (5.1.1)

where 4∩I :=
⋂
i∈I 4i. This attempt is bound to fail as the polytopes 4∩I

are in general not simplices and, even worse, not lattice polytopes. We need
more structure.

A dissection of a polyhedron Q ⊂ Rd is a collection of polyhedra
Q1, . . . ,Qm of the same dimension such that

Q = Q1 ∪ · · · ∪ Qm and Q◦i ∩ Q◦j = ∅ whenever i 6= j . (5.1.2)

This definition, at least, opens the door to induction on the dimension,
although our problem with 4∩I not being a lattice simplex prevails. As we
will see in Section 5.3, a dissection into lattice simplices is indeed sufficient to
extend Theorem 4.6.1 to arbitrary lattice polytopes, but there are alternatives.
We will pursue a more combinatorial (and conservative) approach in this
section.

A polyhedral complex is a nonempty finite collection S of polyhedra
in Rd (which we call cells of S) such that S satisfies the

containment property : if F is a face of G ∈ S then F ∈ S, and the
intersection property : if F,G ∈ S then F ∩ G is a face of both F and G.

We call S a polytopal complex if all of its cells are polytopes, and S is
a fan if all of its cells are polyhedral cones. A (geometric) simplicial
complex1 is a polytopal complex all of whose cells are simplices. The
support of a polyhedral complex S is

|S| :=
⋃

F∈S
F ,

the point set underlying S. The vertices of S are the zero-dimensional
polytopes contained in S. We already know two seemingly trivial instances
of polyhedral complexes, illustrated in Figure 5.1.

Proposition 5.1.1. If Q is a polyhedron, then the collection of faces Φ(Q)
is a polyhedral complex. Moreover, the collection of bounded faces

Φbnd(Q) := {F ∈ Φ(Q) : F bounded}
is a polyhedral complex.

1This notion of simplicial complex is, naturally, not disjoint from that of an abstract simplicial

complex defined in Section 4.9. In Section 5.6 we will witness the two notions simultaneously in
action.
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Q Φ(Q) Φbnd(Q)

Figure 5.1. The polyhedral complexes given by the faces/bounded
faces of a polyhedron.

Proof. By Proposition 3.3.1, a face of a face of Q is a face of Q, and the
intersection of faces of Q is again a face. These are exactly the containment
and intersection properties, respectively. As every face of a bounded face is
necessarily bounded, the second claim follows. �

A subdivision of a polyhedron P ⊂ Rd is a polyhedral complex S such
that P = |S|. Proposition 5.1.1 yields that Φ(P) is trivially a subdivision
of P. We call a subdivision S proper if S 6= Φ(P). A subdivision S of a
polytope P is a triangulation if all cells in S are simplices—in other words,
S is a simplicial complex. All but the top right dissections in Figure 5.2 are
subdivisions, the two middle ones are even triangulations.

Figure 5.2. Various dissections.

The benefit of the intersection property of a subdivision is evident: if
P1, . . . ,Pm are the inclusion-maximal cells in a subdivision S, then for every
I ⊆ [m], the polytope

⋂
i∈I Pi is a lattice polytope whenever P1, . . . ,Pm are.2

For lattice triangulations, that is, triangulations into lattice simplices,
Theorem 4.6.1 gives the following.

2The empty set is, by definition, a lattice polytope.
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Corollary 5.1.2. Let P ⊂ Rd be a lattice polytope that admits a lattice
triangulation. Then ehrP(n) agrees with a polynomial of degree dimP.

Proof. Let 41, . . . ,4m be the inclusion-maximal cells of a lattice trian-
gulation T of P. By the intersection property, each cell in T is a lattice
simplex and Theorem 4.6.1 guarantees that (5.1.1) is an alternating sum
of polynomials. Exercise 5.1 states that dim4i = dimP for 1 ≤ i ≤ m,
and since 4i ∩4j is a proper face of 4i whenever i 6= j, we conclude from
Theorem 4.6.1 that deg(ehr4(n)) < dimP for every cell 4 ∈ T that is not
one of 41, . . . ,4m. Together with the fact that all ehr4i(n) are polynomials
of degree dimP with positive leading coefficient, this proves our claim about
the degree. �

In Corollary 5.1.6 below, we will show that every lattice polytope admits
a lattice triangulation, from which we can (finally!) deduce that the Ehrhart
counting function of every lattice polytope is a polynomial.

The motivation for requiring the containment property when defining
polyhedral complexes is that we can appeal to Chapter 2 to express an
Ehrhart function. Given a proper subdivision S of a lattice polytope P,

we form the poset Ŝ := S ∪ {P} with respect to inclusion; it has maximal
element P.

Corollary 5.1.3. Let S be a proper subdivision of a lattice polytope P. Then

ehrP(n) =
∑

F∈S
−µŜ(F,P) ehrF(n) . (5.1.3)

Proof. We define a function f= on Ŝ by

f=(F) :=

{
ehrF◦(n) if F ∈ S ,
0 if F = P .

Thus

f≤(F) =
∑

G�F
f=(G) = ehrF(n) , (5.1.4)

using Lemma 3.3.8 when F ∈ S, and the definition of a subdivision when
F = P. By Möbius inversion (Theorem 2.4.2),

0 = f=(P) = f≤(P) +
∑

F∈S
µŜ(F,P) ehrF(n) . �

In Theorem 5.2.1 we will determine the Möbius function of a subdivision
concretely.

We still need to show that every (lattice) polytope has a (lattice) triangu-
lation. In some sense, we actually already know how to do this—here is the
setup: we fix a finite set V ⊂ Rd such that P := conv(V ) is full dimensional.
(It would suffice to assume that V is the vertex set of P but as we will see, it



5.1. Decomposing a Polyhedron 155

will pay off to have some flexibility). For a function ω : V → R, we denote
its graph by

V ω :=
{

(v, ω(v)) ∈ Rd+1 : v ∈ V
}
.

Let

↑R :=
{

(0, t) ∈ Rd+1 : t ≥ 0
}

and denote by π : Rd+1 → Rd the coordinate projection

π(x1, . . . , xd, xd+1) := (x1, . . . , xd) ,

so that π(↑R) = {0}. Finally, we define

Eω(V ) := conv(V ω) + ↑R ,
which we call the convex epigraph of ω, for reasons that will become clear
in a moment. Figure 5.3 illustrates our construction. By the Minkowski–Weyl
Theorem 3.2.5, Eω(V ) is a genuine polyhedron in Rd+1.

v0 v1 v2 x1 v1 v2 v3 x1

xd+1

V ω
ω(v1)

ω(v2)

ω(v3)

x1

xd+1

Eω(V )

Figure 5.3. Constructing the convex epigraph of a polytope.

Proposition 5.1.4. Fix a finite set V ⊂ Rd and a hyperplane

H =
{

(x, xd+1) ∈ Rd+1 : 〈a,x〉+ ad+1xd+1 = b
}
.

If Eω(V ) ⊆ H≤, then ad+1 ≤ 0. If H is a supporting hyperplane, then the
face Eω(V ) ∩ H is bounded if and only if ad+1 < 0.

Proof. For every p ∈ Eω(V ), we have p + ↑R⊆ Eω(V ). Hence, if Eω(V ) ⊆
H≤, then also p + ↑R⊆ H≤ which implies ad+1 ≤ 0.

The nonempty face F = Eω(V ) ∩ H is unbounded if and only if F + ↑R
⊆ F. This happens if and only if for every point (q, qd+1) ∈ H, we have
(q, qd+1 + t) ∈ H for all t ≥ 0, a condition that is satisfied if and only if
ad+1 = 0. �

By construction, π(Eω(V )) = P. The crucial insight now is that P is
already the image under π of the collection of bounded faces of Eω(V ). The
statement in the following theorem is even better.
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x1

x2

xd+1

Eω(V )

x1

x2

xd+1

Φ(Eω(V ))

π(Φ(Eω(V )))

Figure 5.4. Two examples of a subdivision construction from the con-
vex epigraph of a polytope.

Theorem 5.1.5. Let P = conv(V ) and ω : V → R. Then

Sω(V ) :=
{
π(F) : F ∈ Φbnd(Eω(V ))

}

is a subdivision of P with vertices in V . Moreover, Sω(V ) ∼= Φbnd(Eω(V )) as
posets.

An illustration of this theorem is given in Figure 5.4.

Proof. For a point p ∈ P, we denote by ω(p) the smallest real number h
such that p̂ := (p, h) ∈ Eω(V ). Then p̂ is contained in the boundary of
Eω(V ) (see Figure 5.3), and so there is a unique face F of Eω(V ) with p̂ ∈ F◦.
We claim that F is bounded. Indeed, if F is unbounded, then F + ↑R⊆ F and
so (p, ω(p) + ε) ∈ F◦ and, consequently, (p, ω(p)− ε) ∈ F◦ for some ε > 0.
But this contradicts the minimality of ω(p).

We further claim that π restricted to |Φbnd(Eω(V ))|, the union of the
bounded faces of Eω(V ), is injective. Since for each p ∈ P there is exactly one
h such that (p, h) is contained in a bounded face of Eω(V ), it suffices to show
that π is injective when restricted to the relative interior of a bounded face
F of Eω(V ). This will also show that Sω(V ) is isomorphic to Φbnd(Eω(V )).
Again by Proposition 5.1.4, we know that F = Eω(V )∩H for some supporting
hyperplane

H =
{

(x, xd+1) ∈ Rd+1 : 〈a,x〉 − xd+1 = b
}
.

Now we observe that the map s : Rd → H given by s(x) = (x, 〈a,x〉 − b)
is a linear inverse to π|H : H → Rd. Thus, π|H is an isomorphism and, in
particular, injective on F◦. The geometric idea is captured in Figure 5.5.
This shows that Sω(V ) is a polyhedral complex with |Sω(V )| = P, and with
vertices in V . �
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x1

xd+1

Eω(V )

x1

xd+1

Φ(Eω(V ))

π(Φ(Eω(V )))

Figure 5.5. The complex of bounded faces and the induced subdivision.

We call a subdivision S of a polytope P regular (or coherent) if there
is a finite subset V ⊂ P and a function ω : V → R such that S = Sω(V ). In
Exercise 5.2 you will check that not all polytopal subdivisions are regular.
Nevertheless, this construction proves the main result of this section.

Corollary 5.1.6. Every (lattice) polytope has a (lattice) triangulation.

Proof. Let V ⊂ Rd be a finite set containing the vertices of P. For each
ω : V → R, Theorem 5.1.5 yields a subdivision Sω(V ) whose cells are
polytopes with vertices in V . To make such a subdivision into a triangulation,
we appeal to Exercise 5.4 for a suitable choice of ω. �

As we announced already, Corollaries 5.1.2 and 5.1.6 imply the following
general variant of Theorem 4.6.1(a).

Theorem 5.1.7. Suppose P is a lattice polytope. For positive integers n,
the counting function ehrP(n) agrees with a polynomial in n of degree dimP.

This is Ehrhart’s theorem and we call the counting function ehrP(n) the
Ehrhart polynomial of the lattice polytope P. Theorem 4.6.1 also said that
the constant term of the Ehrhart polynomial of a lattice simplex is 1. Our
next result extends this.

Theorem 5.1.8. Let P be a lattice polytope and ehrP(n) its Ehrhart polyno-
mial. Then ehrP(0) = χ(P) = 1.

Proof. Fix a lattice triangulation S of P. By (5.1.4),

ehrP(n) =
∑

4∈S
ehr4◦(n) . (5.1.5)

For every lattice simplex 4, the constant term of ehr4◦(n) is (−1)dim4

(by Theorem 4.6.1), and so setting n = 0 in (5.1.5) computes the Euler
characteristic of P. �
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Theorem 5.1.5 yields an elegant way to obtain subdivisions. What the
technique hides is that it is in general difficult to determine the actual
subdivision Sω(V ) from V and ω. The following example illustrates the
power of Theorem 5.1.5 and, at the same time, gives an impression of potential
difficulties.

Let P = [0, 1]d, the d-dimensional cube with vertex set V = {0, 1}d. For
v ∈ {0, 1}d, let n(v) :=

∑
i vi, the number of nonzero entries, and define

ω : V → R by

ω(v) := n(v) (d− n(v)) . (5.1.6)

This gives a subdivision Sω(V ) of P into lattice polytopes but what is the
subdivision exactly? To answer this, we have to determine which subsets of
V correspond to the sets of vertices of bounded faces of Eω(V ). In general,
this is tantamount to computing an inequality description of a polyhedron
that is given as a polytope plus a cone.

In our example, we can approach this as follows: given a point p ∈ [0, 1]d,
we seek to find ω(p), that is, the smallest h such that (p, h) ∈ Eω(V ). In
particular, (p, ω(p)) is in the boundary of Eω(V ) and hence in the relative
interior of a unique bounded face. Let p be a generic point relative to
[0, 1]d by which we mean for now that pi 6= pj for all i 6= j. Thus there is a
unique permutation σ of [d] such that

0 ≤ pσ(1) < pσ(2) < · · · < pσ(d) ≤ 1 .

For this permutation σ, we set

uσi := eσ(i+1) + eσ(i+2) + · · ·+ eσ(d) ∈ {0, 1}d (5.1.7)

for 0 ≤ i ≤ d. That is, (uσi )j = 1 if and only if σ−1(j) > i. In particular
uσd = 0 and uσ0 = (1, 1, . . . , 1). By writing

p = pσ(1)u
σ
0 + (pσ(2)− pσ(1))u

σ
1 + · · ·+ (pσ(d)− pσ(d−1))u

σ
d−1 + (1− pσ(d))u

σ
d ,

we see that p is a point in

4σ := conv(uσ0 , . . . ,u
σ
d) ,

a d-dimensional simplex spanned by a subset of the vertices of [0, 1]d. (We
have seen a precursor of this construction in (3.2.4).) Conversely, 4σ is
exactly the set of points p ∈ Rd that satisfy

0 ≤ pσ(1) ≤ pσ(2) ≤ · · · ≤ pσ(d) ≤ 1 . (5.1.8)

We claim that 4σ and its siblings yield our subdivision. As in Exercise 2.18,
we denote by Sd the set of all permutations of [d].

Proposition 5.1.9. Let S consist of 4σ, for all σ ∈ Sd, and their faces.
Then S is the regular triangulation of [0, 1]d corresponding to (5.1.6). More-
over, S is a unimodular triangulation of [0, 1]d.
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Proof. Our claim is that4σ is the projection of a bounded face of Eω(V ). To
show this, we construct a (linear) hyperplane H ⊂ Rd+1 such that V ω ⊆ H≤

and

V ω ∩ H = {(uσi , ω(uσi )) : 0 ≤ i ≤ d} .
We claim that the linear function `σ : Rd → R defined by

`σ(x) :=
∑

1≤i<j≤d

(
xσ(j) − xσ(i)

)

satisfies

`σ(v) ≤ ω(v)

for all v ∈ {0, 1}d with equality if and only if v = uσk for some 0 ≤ k ≤ d.

Indeed, for i < j and v ∈ {0, 1}d,
vσ(j) − vσ(i) ≤ 1

with equality if and only if vσ(i) = 0 and vσ(j) = 1. Hence `σ(v) is at most
the number of pairs (s < t) with vσ(s) = 0 and vσ(t) = 1, that is, at most

n(v)(d− n(v)) = ω(v) .

Equality holds when σ sorts the entries of v. Hence

Hσ :=
{

(x, t) ∈ Rd+1 : `σ(x)− t = 0
}

is supporting for Eω(V ) and π(Eω(V ) ∩ Hσ) = 4σ.

It remains to see that every maximal cell of S is of the form 4σ for some
permutation σ ∈ Sd. However, most points in [0, 1]d are generic and so the
simplices 4σ cover [0, 1]d. That the simplices 4σ are unimodular is subject
to Exercise 5.6. �

Next, we will live up to our promise and explain why we call Eω(V ) the
convex epigraph of P = conv(V ). In the proof of Theorem 5.1.5, we defined
for each p ∈ P the number ω(p) as the smallest h such that (p, h) ∈ Eω(V ).
This gives rise to a continuous function ω : P→ R.

Proposition 5.1.10. Let P = conv(V ) be a polytope. For each ω : V → R,
the function ω : P→ R is convex, and ω(v) ≤ ω(v) for all v ∈ V .

Proof. Let p,q ∈ P and 0 ≤ λ ≤ 1. Since Eω(V ) ⊂ Rd+1 is a convex
polyhedron, we know that

(1− λ)(p, ω(p)) + λ(q, ω(q)) ∈ Eω(V )

and hence

(1− λ)ω(p) + λω(q) ≥ ω((1− λ)p + λq) .

(See Figure 5.6 for an illustration.) Moreover, by definition (v, ω(v)) ∈ Eω(V )
and therefore ω(v) ≤ ω(v) for every v ∈ V . �
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x1

x2

xd+1

Eω(V )

q

p

Figure 5.6. Illustrating the proof of Proposition 5.1.10.

In other words, Eω(V ) is the epigraph {(p, t) : p ∈ P, t ≥ ω(p)} of the
function ω. We note that there are many convex functions f : P→ R such
that f(v) ≤ ω(v). However, ω is special—it can be shown that ω is the
unique convex function with f(v) ≤ ω(v) for all v ∈ V that minimizes the
volume of the convex body

{(p, t) : p ∈ P, f(p) ≤ t ≤M} ,

where M := max{ω(v) : v ∈ V }; see the Notes at the end of this chapter.

5.2. Möbius Functions of Subdivisions

Let P ⊂ Rd be a full-dimensional lattice polytope and T a lattice triangulation
of P (whose existence is vouched for by Corollary 5.1.6). Our next goal is a
more refined statement about the representation (5.1.3) for ehrP(n) via the

Möbius function µT̂ of T̂ := T ∪ {P}.
If T = Sω(P) is a regular triangulation, then T is isomorphic to the

subposet Φbnd(Eω(V )) of the bounded faces of Eω(V ), and so our knowl-
edge about Möbius functions of polyhedra (Theorem 3.5.1) gives almost
everything; see Exercise 5.7. However, as we know from Exercise 5.2, not
all subdivisions are regular. At any rate, it turns out that the methods
developed in Section 3.5 help us to determine µT̂ .
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Theorem 5.2.1. Let S be a proper subdivision of the polytope P and set

Ŝ := S ∪ {P}. Then for F,G ∈ Ŝ with F ⊆ G,

µŜ(F,G) =





(−1)dimG−dimF if G 6= P,

(−1)dimP−dimF+1 if G = P and F 6⊆ ∂P,
0 if G = P and F ⊆ ∂P.

If G 6= P, then the interval [F,G] in Ŝ is contained in the face lattice Φ(G)
and hence the first case is subsumed by Theorem 3.5.1.

For G = P, we need to ponder the structure of the collection of cells
G′ ∈ S that contain F. We recall from Section 3.5 that for a polyhedron Q
and a point q ∈ Q, the tangent cone of Q at q is

Tq(Q) = {q + u : q + εu ∈ Q for all ε > 0 sufficiently small} .

We saw in Proposition 3.5.2 that Tq(Q) is the translate of a polyhedral
cone which depends only on the (unique) face F � Q that contains q in its
relative interior. In Chapter 3, tangent cones helped us to understand the
intervals [F,G] in Φ(Q). The following is a strengthening of Lemma 3.5.3
from polyhedra to polyhedral subdivisions, illustrated in Figures 5.7 and 5.8.

1 2

3

4 5

1 2

3

4 5

1 2

3

4 5

A B C

Figure 5.7. Various complexes of tangent cones.

Lemma 5.2.2. Let S be a proper subdivision of a polytope P. For q ∈ P,

Tq(S) := {Tq(G) : G ∈ S}

is a polyhedral complex with support |Tq(S)| = Tq(P). Moreover, if F ∈ S is

the unique face with q in its relative interior, then the interval [F,P] in Ŝ is
isomorphic to Tq(S) ∪ {1̂}, via K 7→ Tq(K).

Proof. Let u ∈ Rd. If q + εu ∈ P for all ε > 0 sufficiently small, then there
is a unique cell G ∈ S such that q + εu ∈ G◦ for all ε < ε0. This implies, in
particular, that F is a face of G and that Tq(G)◦ ∩ Tq(G′)◦ = ∅ whenever



162 5. Subdivisions
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Figure 5.8. Intervals in Ŝ corresponding to the tangent cones in Figure 5.7.

G 6= G′. The containment property is a statement about polytopes and hence
a consequence of Lemma 3.5.3. This shows that

Tq(S) = {Tq(G) : F � G ∈ S} ∼= {G ∈ S : F � G}
and |Tq(S)| = Tq(P). �

We observe that Tq(S) does not depend on the choice of q ∈ F◦ and
hence we will denote this polyhedral complex by TF(S). For the empty face,
we define T∅(S) := |S| = P. We are ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. We need to consider only the case G = P. For a
cell F ∈ S we compute

µŜ(F,P) = −
∑

F�ŜG′≺ŜP
(−1)dimG′−dimF = (−1)dimF+1

∑

C∈TF(S)

(−1)dimC

= (−1)dimF+1 χ(TF(P)) ,

where the first equation follows from the defining property of Möbius func-
tions (2.2.1) and µŜ(F,G′) = (−1)dimG′−dimF for all G′ ≺ P.

Let q ∈ F◦. If F ∈ S is contained in the boundary of P, then q is contained
in a proper face of P and, by Lemma 3.5.3, TF(P) is a proper polyhedral cone.
Hence, our Euler characteristic computations (Corollaries 3.4.8 and 3.4.10)
give χ(TF(P)) = 0. On the other hand, if F 6⊆ ∂P, then q ∈ P◦. In this case
TF(P) = aff(P) and χ(TF(P)) = (−1)dimP finishes the proof. �

With this machinery at hand, we can extend Ehrhart–Macdonald reci-
procity from lattice simplices (Theorem 4.6.1) to all lattice polytopes.

Theorem 5.2.3. Let P ⊂ Rd be a lattice polytope and ehrP(n) its Ehrhart
polynomial. Then for all integers n > 0,

(−1)dimP ehrP(−n) =
∣∣∣nP◦ ∩ Zd

∣∣∣ .
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In other words, the Ehrhart polynomials of P and P◦ satisfy

(−1)dimP ehrP(−n) = ehrP◦(n) .

Proof. Assume that P is not a lattice simplex and let S be a lattice triangula-

tion of P. (This exists by Corollary 5.1.6.) Möbius inversion on Ŝ := S ∪{P}
(Corollary 5.1.3) yields

ehrP(n) = −
∑

F∈S
µŜ(F,P) ehrF(n) .

By Theorem 5.2.1, this simplifies to

ehrP(n) =
∑

F∈S
F 6⊆∂P

(−1)dimP−dimF ehrF(n) .

Ehrhart–Macdonald reciprocity for simplices (Theorem 4.6.1) asserts that
ehrF(−n) = (−1)dimF|nF◦ ∩ Zd| for every lattice simplex F. Hence

(−1)dimP ehrP(−n) =
∑

F∈S
F 6⊆∂P

ehrF◦(n) , (5.2.1)

and the right-hand side counts the number of lattice points in the relative
interior of nP, by Lemma 3.3.8 and the definition of a subdivision. �

Our proofs of Theorems 5.1.7 and 5.2.3 can be generalized for a rational
polytope, and you are invited to prove the following theorem in Exercise 5.14.

Theorem 5.2.4. If P ⊂ Rd is a rational polytope, then for positive integers n,
the counting function ehrP(n) is a quasipolynomial in n whose period divides
the least common multiple of the denominators of the vertex coordinates of P.
Furthermore, for all integers n > 0,

(−1)dimP ehrP(−n) =
∣∣∣nP◦ ∩ Zd

∣∣∣ .

In other words, the Ehrhart quasipolynomials of P and P◦ are related as

(−1)dimP ehrP(−n) = ehrP◦(n) .

5.3. Beneath, Beyond, and Half-open Decompositions

We promised a second method to obtain nontrivial subdivisions of a given
(lattice) polytope. The technique presented in this section is not only
algorithmic but it also furnishes a general methodology that avoids (rather:
hides) the use of Möbius inversion.

Let P ⊂ Rd be a full-dimensional polytope with vertex set V . The idea
is to recursively construct a subdivision of P. So given a vertex v ∈ V , let
P′ = conv(V \ {v}). Our next goal is, assuming we have a subdivision S ′ of
P′, to extend S ′ to a subdivision of P.
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We recall from Section 3.7 that v is beyond a face F of P′ if v 6∈ TF(P′),
and that this is equivalent to all points in F being visible from v. Let S ′ be
a subdivision of the polyhedron P′ ⊂ Rd and v ∈ Rd. We define

Visv(S ′) :=
{
F ∈ S ′ : v 6∈ TF(S)

}
,

containing the cells of S ′ that are visible from v. Note that T∅(S ′) = P′ and,
since we assume v 6∈ P′, we have ∅ ∈ Visv(S ′).3

Proposition 5.3.1. Let S ′ be a subdivision of the polytope P′ ⊂ Rd and let
v ∈ Rd. Then Visv(S ′) is a polyhedral complex.

Proof. Since Visv(S ′) ⊆ S ′, the intersection property holds automatically.
For the containment property, we note that TG(S ′) ⊆ TF(S ′) for faces
G � F ∈ S ′, and so v is visible from all points of G if it is visible from all
points of F. �

We recall from Section 3.1 that for v 6∈ aff(F′), the polytope

v ∗ F′ = conv({v} ∪ F′)

is the pyramid over F′ with apex v. The next lemma states that under
certain conditions, we can take the pyramid over a polyhedral complex.

Lemma 5.3.2. Let S be a polyhedral complex and v 6∈ |S|. If, for any
p ∈ |S|, the segment [v,p] meets |S| only in p, then

v ∗ S := {v ∗ F : F ∈ S} ∪ S
is a polyhedral complex.

Proof. We first note that v 6∈ aff(F) for every F ∈ S—otherwise, [v,p] ∩ F
would be a segment for any point p ∈ F◦. Hence, v ∗ F is a well-defined
pyramid. Moreover, by Exercise 3.40, every face of v ∗ F is either a face of
F or a pyramid over a face of F. Therefore, v ∗ S satisfies the containment
property.

For the intersection property, assume that F,G ∈ v ∗ S are cells such
that F◦ ∩ G◦ contains a point p. Then F and G cannot both be cells in
S, and so we may assume that F = v ∗ F′ for some F′ ∈ S. Now the ray
{v + t(p− v) : t ≥ 0} meets the relative interior of F′ in a unique point p′.
If G ∈ S, then our assumption yields that F′ = G and so G is a face of F.
Otherwise, G = v ∗ G′ for some G′ ∈ S and again by assumption the segment
[v,p′] meets both F′ and G′ in their relative interiors which implies that
F′ = G′. �

Returning to our initial goal of describing a way of extending a subdivision
of P′ to P, we can do the following.

3Now our notation in (3.7.2) should finally make sense: we studied the support of the
polyhedral complex formed by visible faces.
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Theorem 5.3.3. Let S ′ be a subdivision of the polytope P′ ⊂ Rd and let
v ∈ Rd \ P′. Then

S := S ′ ∪ (v ∗Visv(S ′))
is a subdivision of P = conv({v} ∪ P′).

Proof. By Lemma 5.3.2, v ∗Visv(S ′) is a polyhedral complex and

(v ∗Visv(S ′)) ∩ S ′ = Visv(S ′) ,
by definition of Visv(S ′). Thus, we are left to show that P = |S|.

Let p ∈ P \ P′, and let r be the first point on the ray v + R≥0(p − v)
that meets P′. By construction, r ∈ ∂P′ is visible from v. Hence, the unique
cell F′ ∈ S ′ that contains r in its relative interior is contained in Visv(P′)
and p lies in v ∗ F ∈ S. �

Theorem 5.3.3 and its proof give a practical algorithm for computing a
(lattice) triangulation of a (lattice) polytope P = conv(v0, . . . ,vn):

(1) We start with a simplex P0 := conv(v0, . . . ,vd), which is triangu-
lated by its collection of faces T0 := Φ(P0).

(2) For every i = 1, . . . , n − d, set Pi := conv({vd+i} ∪ Pi−1). Now
Theorem 5.3.3 asserts that

Ti := Ti−1 ∪
{
vd+i ∗ F′ : F′ ∈ Visv(Ti−1)

}

is a triangulation of Pi.

In particular, T := Tn−d is a triangulation of Pn−d = P. This triangulation
T is called a pushing (or placing) triangulation and depends only on the
labeling of the vertices. Figure 5.9 illustrates the algorithm for a pentagon.

v0

v1

v2

v3

v4v5 v6

P0
v3

v4

v5 v6

Figure 5.9. A pushing triangulation of a pentagon.

The crucial insight that makes the above algorithm work is that at every
iteration of step (2), we know not only the sets of vertices of the cells in Ti
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but also a description in terms of facet-defining inequalities. For the initial
step (1), this is due to the fact that P0 is a simplex (see Exercise 5.16); for
every subsequent iteration of (2), see Exercises 5.17 and 5.18. In particular, a
nice byproduct of our algorithm is that it computes an inequality description
for P along the way and hence verifies the first half of the Minkowski–Weyl
Theorem 3.2.5 for polytopes; see Exercise 5.20.

Exercise 5.19 reveals that the triangulation constructed by our algorithm
is regular, and so in some sense we have really given only one method for
constructing subdivisions of polytopes. However, the concept of a subdivision
or, more generally, a dissection inevitably leads to overcounting and Möbius
inversion in the setting of, e.g., Ehrhart theory, as in our proof of Theo-
rem 5.2.3. Our use of tangent cones and the notion of points beyond a face in
the construction of a pushing triangulation suggests a conceptual perspective
that avoids inclusion–exclusion of any sort and that we will elucidate in the
following.

Given a full-dimensional polyhedron P ⊂ Rd with facets F1,F2, . . . ,Fk,
we call a point q ∈ Rd generic relative to P if q is not contained in any
facet-defining hyperplane of P. The key to avoiding Möbius inversion with
subdivisions is the following definition: for a full-dimensional polyhedron
P ⊂ Rd and q generic relative to P, let

HqP := P \ |Visq(P)| ,
which we call a half-open polyhedron. By setting I := {j : q beyond Fj},
we may also write

HqP = P \
⋃

j∈I
Fj . (5.3.1)

The counterpart to this half-open polyhedron, appealing to our treatment of
half-open cones in Section 4.8, is

HqP := P \
⋃

j /∈I
Fj . (5.3.2)

Lemma 5.3.4. Let P ⊂ Rd be a full-dimensional polyhedron with dissection
P = P1 ∪ P2 ∪ · · · ∪ Pm. If q ∈ Rd is generic relative to each Pi, then

HqP = HqP1 ]HqP2 ] · · · ]HqPm and (5.3.3)

HqP = HqP1 ]HqP2 ] · · · ]HqPm . (5.3.4)

Figure 5.10 illustrates this lemma. If q ∈ P ◦, then HqP = P and
HqP = P◦.4 (However, there is no q such that HqP = P; see Exercise 5.22.)
Thus Lemma 5.3.4 immediately implies the following corollary.

4 In particular, a half-open polyhedron might be open or closed (or neither), so our nomencla-
ture should be digested carefully.
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q HqP
q

HqP

Figure 5.10. Two half-open dissections of a heptagon according to Lemma 5.3.4.

Corollary 5.3.5. Let P ⊂ Rd be a full-dimensional polyhedron with dis-
section P = P1 ∪ P2 ∪ · · · ∪ Pm. If q ∈ P◦ is generic relative to all Pj,
then

P = HqP1 ]HqP2 ] · · · ]HqPm and (5.3.5)

P◦ = HqP1 ]HqP2 ] · · · ]HqPm .

Proof of Lemma 5.3.4. We prove (5.3.3) and leave (5.3.4) to Exercise 5.21.
Since HqPj ⊆ HqP for 1 ≤ j ≤ m, the right-hand side of (5.3.3) is a

subset of HqP and we need to show only the reverse inclusion and that the
union is disjoint.

Let p ∈ HqP. If p ∈ P◦j for some j, then we are done, so suppose p lies

on the boundary of some of the Pjs. (There is at least one such Pj because
they form a dissection of P.) Since p is not in a face of P that is visible from
q, there is a subinterval

[(1− ε) p + εq, p] ⊆ [q, p]

for some ε > 0 that is contained in P. By choosing ε smaller, if necessary,
we can realize [(1− ε) p + εq, p] ⊆ Pj for some j. (Note that p ∈ ∂Pj and

[(1− ε) p + εq, p) ⊆ P◦j (5.3.6)

since q is generic.) But this means that p is not on a face of Pj that is visible
from q, and so p ∈ HqPj .

If, in addition, p ∈ ∂Pk for some k 6= j, then [q, p) lies outside of Pk,
by convexity, (5.3.6), and the definition of a dissection. This means that
p /∈ HqPk. �

We call (5.3.5) a half-open decomposition of P. Half-open decom-
positions give a cancellation-free way to prove results such as Ehrhart’s
theorem and Ehrhart–Macdonald reciprocity. Towards the latter, we define
the Ehrhart function of the half-open polytope HqP (naturally) by

ehrHqP(n) :=
∣∣∣nHqP ∩ Zd

∣∣∣
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for integers n ≥ 1, with the analogous definition for ehrHqP(n). You can
already guess the interplay of these counting functions and may try to
deduce it via Möbius inversion. Instead, our proof follows the philosophy of
Section 4.8.

Proposition 5.3.6. Let 4 ⊂ Rd be a full-dimensional lattice simplex and q
generic relative to 4. Then ehrHq4(n) agrees with a polynomial of degree d,
and, for all integers n ≥ 1,

(−1)d ehrHq4(−n) =
∣∣∣nHq4∩ Zd

∣∣∣ .
In other words, the Ehrhart polynomials of Hq4 and Hq4 are related as

(−1)d ehrHq4(−n) = ehrHq4(n) .

Proof. Let 4 ⊂ Rd be a full-dimensional lattice simplex with vertices
v1, . . . ,vd+1 and facets F1, . . . ,Fd+1. We can assume that the vertices and
facets are labeled such that vj 6∈ Fj for all j. For convenience, we can also
assume that

{j ∈ [d+ 1] : q beyond Fj} = {m,m+ 1, . . . , d+ 1} .
Every point in 4 has a unique representation as a convex combination of
v1, . . . ,vd+1. Hence, we can give an intrinsic description of the half-open
simplex Hq4 as

Hq4 =



λ1v1 + λ2v2 + · · ·+ λd+1vd+1 :

λ1 + · · ·+ λd+1 = 1
λ1, . . . , λm−1 ≥ 0
λm, . . . , λd+1 > 0



 .

The homogenization hom(Hq4) is therefore the half-open cone

Ĉ := R≥0

(
v1

1

)
+ · · ·+ R≥0

(
vm−1

1

)
+ R>0

(
vm
1

)
+ · · ·+ R>0

(
vd+1

1

)
.

This gives precisely the setup of Theorem 4.8.1 and our subsequent proof of
Theorem 4.6.1. Specializing (4.8.5) to our setting gives

EhrHq4(z) = σ
Ĉ
(1, . . . , 1, z) , (5.3.7)

where EhrHq4(z) :=
∑

n≥1 ehrHq4(n) zn. (Technically, for this definition to

be in sync with (5.3.7), we need to assume that Hq4 6= 4—which we may,
since otherwise Proposition 5.3.6 is simply Theorem 4.6.1, which we have
long proved.) By Exercise 5.23, the right-hand side of (5.3.7) is a rational
function that yields our first claim.

For the second claim, we refer to Exercise 5.24, which says (in the

language of Section 4.8) that qC = hom(Hq4), and so by Theorem 4.8.1,

(−1)d+1 EhrHq4(1
z ) = EhrHq4(z) ,

which yields the reciprocity statement, using Theorem 4.1.6. �
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As you might have already guessed, the combination of Corollary 5.3.5
and Proposition 5.3.6 yields an alternative proof of Ehrhart–Macdonald
reciprocity (Theorem 5.2.3). In fact, we can give a more general reciprocity
theorem, namely, the nonsimplicial version of Proposition 5.3.6.

Theorem 5.3.7. Let P ⊂ Rd be a full-dimensional lattice polytope and let
q ∈ Rd be generic relative to P. Then for all integers n ≥ 1,

(−1)d ehrHqP(−n) =
∣∣∣nHqP ∩ Zd

∣∣∣ .

In other words, the Ehrhart polynomials of HqP and HqP are related as

(−1)d ehrHqP(−n) = ehrHqP(n) .

In particular, the special case q ∈ P◦ gives an alternative proof of
Theorem 5.2.3.

Proof. Let P = 41 ∪ · · · ∪ 4m be a dissection of P into lattice simplices.
If necessary, we can replace q by some q′ such that HqP = Hq′P and q′ is
generic relative to each 4i. Lemma 5.3.4 implies

ehrHqP(n) = ehrHq41(n) + · · ·+ ehrHq4m(n) and

ehrHqP(n) = ehrHq41(n) + · · ·+ ehrHq4m(n) .

Now use Proposition 5.3.6. �

5.4. Stanley Reciprocity

While we have made a number of definitions for general polyhedra, the major
constructions in this chapter up to this point have been on polytopes. As
cones recently made a comeback (in our proof of Proposition 5.3.6), it’s time
to extend some of our constructs to the conical world.

A subdivision S of a polyhedral cone C is a triangulation if all cells
in S are simplicial cones. If C and the cells in a triangulation S of C are
rational, we call S rational. For arithmetic purposes, we will mostly be
interested in the case that C is pointed. A nice side effect of concentrating
on pointed cones is that many results for polytopes carry over, such as the
following.

Corollary 5.4.1. Every (rational) pointed cone has a (rational) triangula-
tion.

Proof. We may assume that C ⊂ Rd is full dimensional. Because C is
pointed, there exists a hyperplane H (which we may choose to be rational)
such that C ∩ H = {0}. Choose a (rational) point p ∈ C \ {0}; then p + H
meets every ray of C and

P := (p + H) ∩ C
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is a polytope. (If C is rational, we can rescale p, if necessary, to make P into
a lattice polytope.) By Corollary 5.1.6, P admits a (lattice) triangulation T
which, in turn, gives rise to the (rational) triangulation

{cone(4) : 4 ∈ T }
of C. �

Half-open decomposition of lattice polytopes naturally led us to Theo-
rem 5.3.7, a generalized version of Ehrhart–Macdonald reciprocity. In the
world of cones, we have seen a reciprocity theorem for the integer-point
transforms of half-open simplicial cones (Theorem 4.8.1). Now we extend it,
in similar fashion, to the general case of pointed cones.

Theorem 5.4.2. Let C ⊂ Rd be a full-dimensional pointed rational cone,
and let q ∈ Rd be generic relative to C. Then

σHqC

(
1
z

)
= (−1)d σHqC(z) .

Analogous to Corollary 5.3.5, the special case q ∈ C◦ gives a result that
is worth being mentioned separately.

Corollary 5.4.3. Let C ⊂ Rd be a full-dimensional pointed rational cone.
Then

σC
(

1
z

)
= (−1)d σC◦(z) .

Theorem 5.4.2 and Corollary 5.4.3 constitute Stanley reciprocity; we
already saw the simplicial case in Section 4.8.

Proof of Theorem 5.4.2. We repeat the arguments in our proof of Theo-
rem 5.3.7, adjusting them to the integer-point transforms of a pointed rational
cone. Let C ⊂ Rd be a rational pointed cone with a rational triangulation
C = C1 ∪ · · · ∪ Cm. Lemma 5.3.4 implies

σHqC(z) = σHqC1(z) + · · ·+ σHqCm(z) and

σHqC(z) = σHqC1(z) + · · ·+ σHqCm(z) .

Now use Theorem 4.8.1 and Exercise 5.25. �

Just as in Section 4.8, Theorem 5.4.2 has an immediate application to
Hilbert series.

Corollary 5.4.4. Let C ⊂ Rd be a full-dimensional rational pointed cone,
and fix a grading a ∈ Zd. Then

Ha
C

(
1
z

)
= (−1)dHa

C◦(z) .

Again as in Section 4.8, this corollary implies the reciprocity theorem
for Ehrhart series, which is equivalent to Ehrhart–Macdonald reciprocity
(Theorem 5.2.3). We record it for future reference.
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Corollary 5.4.5. Let P ⊂ Rd be a lattice polytope and EhrP(n) its Ehrhart
series. Then

EhrP
(

1
z

)
= (−1)dimP+1 EhrP◦(z) .

We finish this section with an important application of Theorem 3.7.1
(the Brianchon–Gram relation). Applied to integer-point transforms of a
rational polytope P, it gives a relation to the integer-point transforms of the
tangent cones at the vertices of P, called Brion’s theorem.

Theorem 5.4.6. Let P ⊂ Rd be a rational polytope. Then as rational
functions, ∑

v vertex of P

σTv(P)(z) = σP(z) .

Proof. Theorem 3.7.1 gives the identity of indicator functions

[P ] =
∑

∅≺F�P
(−1)dimF [TF(P)] .

Now Exercise 4.34 allows us to sum the above identity over Zd in Laurent-
series style,

∑

m∈Zd
[P ](m) zm =

∑

∅≺F�P
(−1)dimF

∑

m∈Zd
[TF(P)](m) zm,

which is simply

σP(z) =
∑

∅≺F�P
(−1)dimFσTF(P)(z) .

However, TF(P) contains a line except when F is a vertex, and so again by
Exercise 4.34, the rational generating functions on the right-hand side are
zero except for those belonging to vertices of P. �

Half-open decompositions will return to the stage in Section 6.4, where
we will directly extract combinatorial information from them.

5.5. h∗-vectors and f-vectors

After having seen two proofs (in Sections 5.1 and 5.3) that the Ehrhart
function ehrP(n) of a lattice polytope P ⊂ Rd is a polynomial, we will now
take a look at some fundamental properties of the corresponding Ehrhart
series5

EhrP(z) =
∑

n≥0

ehrP(n)zn.

It follows from Proposition 4.1.4 that

EhrP(z) =
h∗0 + h∗1z + · · ·+ h∗rz

r

(1− z)r+1

5 Our original definition (4.6.2) defined this series to have constant term 1; this is consistent
with Theorem 5.1.8.
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for some h∗0, . . . , h
∗
r , where r =: dimP. We call h∗P(z) := h∗0 +h∗1z+ · · ·+h∗rz

r

the h∗-polynomial and h∗(P) = (h∗0, . . . , h
∗
d) the h∗-vector of P, where we

set h∗i = 0 for all i > r. Note that h∗(P) together with the dimension of P
completely determines EhrP(z). The h∗-vector first surfaced in our proof of
Theorem 4.6.1, and our goal in this section is to study the salient features of
h∗-vectors of lattice polytopes.

If 4 ⊂ Rd is a lattice simplex, then the machinery of Section 4.8 helps
us, in a sense, to completely understand h∗4(z). Consider a half-open lattice

simplex Hq4 ⊂ Rd of dimension r. Its homogenization

Ĉ := hom(Hq4) ⊂ Rd+1

is a half-open simplicial cone with integer-point transform

σ
Ĉ
(z1, . . . , zd+1) =

σ2̂(z1, . . . , zd+1)

(1− zv1zd+1) · · · (1− zvr+1zd+1)
,

where v1, . . . ,vr+1 are the vertices of 4, and 2̂ is the fundamental paral-

lelepiped of Ĉ, defined in (4.8.3). As in Section 4.6, we recover h∗Hq4(z) =

σ2̂(1, . . . , 1, z), more explicitly,

h∗i (Hq4) =
∣∣∣
{

(x, xd+1) ∈ 2̂ ∩ Zd+1 : xd+1 = i
}∣∣∣ . (5.5.1)

From the definition of the integer-point transform and Theorem 4.8.1, we
obtain almost instantly the following nontrivial facts about h∗-vectors and,
consequently, about Ehrhart polynomials.

Corollary 5.5.1. Let P ⊂ Rd be a lattice polytope. Then h∗i (P) is a nonneg-
ative integer for all 0 ≤ i ≤ d. Moreover, h∗0(P) = 1 and if we set

m◦ := max {i : h∗i (P) > 0} ,

then n = dimP+1−m◦ is the smallest dilation factor such that nP◦ contains
a lattice point.

Proof. Choose a dissection P = 41 ∪ · · · ∪ 4k into lattice simplices. (This
exists by Corollary 5.1.6.) Corollary 5.3.5 gives a half-open decomposition
P = Hq41 ] · · · ]Hq4k for any generic q ∈ P◦. Since the Ehrhart functions
are additive in this situation and all simplices have the same dimension, we
conclude that

h∗i (P) = h∗i (Hq41) + · · ·+ h∗i (Hq4k) (5.5.2)

for all 0 ≤ i ≤ d. The first claim now follows from (5.5.1).

For the second part, note that a lattice point p is in P or P◦ if and only
if it is in Hq4j or Hq4j for some j, respectively. Thus, it suffices to treat
half-open simplices and we leave this case to Exercise 5.27. �
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Whereas the second part of Corollary 5.5.1 is in some sense a statement
about rational generating functions, the nontrivial part is the nonnegativity
of the h∗-vector. This, however, was pretty easy with the help of half-open
decompositions—we challenge you to try to prove Corollary 5.5.1 without
it. In fact, a stronger result holds which we can achieve by pushing the
underlying ideas further. The following result subsumes Corollary 5.5.1 by
taking P = ∅.

Theorem 5.5.2. Let P,Q ⊂ Rd be lattice polytopes with P ⊆ Q. Then

h∗i (P) ≤ h∗i (Q)

for all i = 0, . . . , d.

Proof. We first assume that dimP = dimQ = r. Repeatedly using Theo-
rem 5.3.3, we can find a dissection into lattice simplices,

Q = 41 ∪42 ∪ · · · ∪ 4n ,

such that for some m ≤ n
P = 4m+1 ∪42 ∪ · · · ∪ 4n

is a dissection of P. Pick a point q ∈ P◦ generic relative to all 4i. Then
Lemma 5.3.4 yields

Q \ P = Hq41 ]Hq42 ] · · · ]Hq4m

as a disjoint union of half-open lattice simplices of dimension r, and follow-
ing (5.5.2),

h∗(Q)− h∗(P) =

m∑

j=1

h∗(Hq4j) .

Since we just argued that the h∗-vector is nonnegative for any half-open
simplex, we are done for the case dimP = dimQ.

If dimQ− dimP =: s > 0, set P0 := P, and for 0 ≤ i < s we recursively
define the pyramids

Pi+1 := pi+1 ∗ Pi for some pi+1 ∈
(
Q \ aff(Pi)

)
∩ Zd.

This gives a sequence of nested lattice polytopes

P = P0 ⊂ P1 ⊂ · · · ⊂ Ps ⊆ Q

with dimPi+1 = dimPi + 1 for all i = 0, . . . , s− 1.

By construction, dimPs = dimQ (and so the step from Ps to Q is covered
by the first half of our proof) and hence it suffices to show the claim for
the case that Q is a pyramid over P with apex v. Pick a dissection of
P = 41 ∪ · · · ∪ 4k into lattice simplices which yields, by Exercise 5.30, a
dissection of Q = 4′1 ∪ · · · ∪ 4′k, where 4′i = v ∗ 4i. For a point q generic
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relative to 4′1, . . . ,4′k, we get half-open decompositions of Q as well as of P,
and we are left to show that

h∗i (Hq4j) ≤ h∗i (Hq4′j)
for all i and j. However, if we denote by 2̂j and 2̂′j the fundamental

parallelepiped of the half-open simplicial cones hom(Hq4j) and hom(Hq4′j),
respectively, then the last claim follows from (5.5.1) and Exercise 5.31. �

In general, there is no simple interpretation for the numbers h∗i (P).
However, in the rather special situation that the lattice polytope P admits
a unimodular dissection, that is, a dissection into unimodular simplices,
these numbers are quite nice.

Theorem 5.5.3. Let P ⊂ Rd be a d-dimensional lattice polytope. If P admits
a unimodular dissection, then h∗i (P) is the number of half-open simplices
with i facets removed.

It is wise to pause and let this result sink in. The h∗-vector of P does not
depend on any particular dissection—it can be computed just in terms of
generating functions. Thus Theorem 5.5.3 implies that if a single unimodular
dissection exists, then the number of simplices that will have i facets missing
is predetermined for any choice of a unimodular dissection and for any choice
of a generic point. The key lies in (5.5.2), and Theorem 5.5.3 follows directly
from the following lemma; see Exercise 5.28.

Lemma 5.5.4. Let 4 ⊂ Rd be a unimodular d-simplex and q a point generic
relative to 4. Then

h∗Hq4(z) = zr,

where r is the number of facets that are missing in Hq4.

Going a step further, assume that P can be triangulated with unimodular
simplices. That is, there is a polyhedral complex T consisting of unimodular
simplices of varying dimensions such that P = |T |; see Exercise 5.40 for the
relation between unimodular dissection and unimodular triangulations. We
denote by fk(T ) the number of simplices of dimension k for −1 ≤ k ≤ dim T ,
and we similarly define fk(Hq4) for a half-open simplex. We have to be
careful with f−1(Hq4): we set f−1(Hq4) = 0 if Hq4 is properly half-open
and = 1 if Hq4 = 4. Now, if 41, . . . ,4m ∈ T are the inclusion-maximal
cells, then

P = Hq41 ] · · · ]Hq4m

for any generic point q ∈ P◦. Since each (k − 1)-dimensional cell in T is the
face of exactly one 4j , we infer that

fk−1(T ) = fk−1(Hq41) + · · ·+ fk−1(Hq4m) , (5.5.3)
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for all k > 0. In the next result we use the natural convention that
(
n
−s
)

= 0
for s > 0.

Proposition 5.5.5. Let Hq4 be a d-dimensional half-open simplex with
0 ≤ r ≤ d facets removed. Then

fk−1(Hq4) =

(
d+ 1− r
k − r

)

for all k ≥ 0.

Proof. Let F1, . . . ,Fr be the missing facets and let vi be the unique vertex
of 4 with vi 6∈ Fi for 1 ≤ i ≤ r. A face F � 4 is present in Hq4 = 4\⋃i Fi
if and only if {v1, . . . ,vr} ⊂ F; see Exercise 5.35. Thus, the (k− 1)-faces are
in bijection with the subsets

U ⊆ vert(4) \ {v1, . . . ,vr} with |U | = k − r . �

The following quite amazing result follows now directly from (5.5.3),
Theorem 5.5.3, and Proposition 5.5.5.

Theorem 5.5.6. Let P be a d-dimensional lattice polytope. If T is a uni-
modular triangulation of P, then

fk−1(T ) =

k∑

r=0

(
d+ 1− r
k − r

)
h∗r(P)

for all 0 ≤ k ≤ d+ 1.

Theorem 5.5.6 implies that the h∗-vector is determined by the f -vector
of any unimodular triangulation and vice versa. To see this, we introduce
the f-polynomial of a triangulation T :

fT (z) := fd(T ) + fd−1(T ) z + · · ·+ f−1(T ) zd+1 .

It follows from the formal reciprocity of generating functions (Theorem 4.1.6)
and Ehrhart–Macdonald reciprocity (Theorem 5.2.3) that

h∗P◦(z) = h∗d(P) z + h∗d−1(P) z2 + · · ·+ h∗0(P) zd+1 .

As in Chapter 4, we emphasize that we view the polynomials fT (z) and h∗P◦(z)
as generating functions: they enumerate certain combinatorial quantities.
Theorem 5.5.6 states that these quantities are related and the following
result, whose formal verification you are supposed to do in Exercise 5.36,
expresses this relation in the most elegant way possible.

Corollary 5.5.7. Let P be a d-dimensional lattice polytope and T a uni-
modular triangulation of P. Then, as generating functions,

fT (z) = h∗P◦(z + 1) .
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In particular, h∗P◦(z) = fT (z − 1) which gives the explicit formula

h∗r(P) =
r∑

k=0

(−1)r−k
(
d+ 1− k
d+ 1− r

)
fk−1(T ) . (5.5.4)

At this point you might (correctly) wonder if there is a similar story
involving h∗(P) instead of h∗(P◦). The key to this rests in reciprocity. Let
f int
k−1(T ) be the number of (k − 1)-dimensional cells of T that do not lie in

the boundary of P. It follows from Corollary 5.3.5 that for the very same
point q ∈ P◦ used in this corollary that

P◦ = Hq41 ]Hq42 ] · · · ]Hq4m .

Definitions (5.3.1) and (5.3.2) show that if Hq4 has r missing facets, Hq4
is missing d+ 1− r facets. The same argument that led to Theorem 5.5.6
gives

f int
k−1(T ) =

d+1∑

r=1

(
d+ 1− r
k − r

)
h∗d+1−r(P) ,

and thus we conclude:

Proposition 5.5.8. Let P be a d-dimensional lattice polytope and T a
unimodular triangulation of P. Then, as generating functions,

f int
T (z) =

d+1∑

k=0

f int
k−1(T ) zd+1−k = h∗P(z + 1) .

As a sneak preview for the next section, we note that Corollary 5.5.7 and
Proposition 5.5.8 together show that the number of faces and the number of
interior faces of a unimodular triangulation are not independent.

Corollary 5.5.9. Let P be a d-dimensional lattice polytope and T a uni-
modular triangulation. Then

f int
k−1(T ) =

d+1∑

l=k

(
l

k

)
(−1)d+1−kfl−1(T ) .

Proof. Ehrhart–Macdonald reciprocity (Theorem 5.2.3) implies h∗P(z) =

zd+1h∗P◦(
1
z ), and by Corollary 5.5.7

h∗P(z) = zd+1fT

(
1− z
z

)
=

d+1∑

k=0

fk−1(T )(1− z)d+1−kzk.

Proposition 5.5.8 now gives

f int
T (z) = h∗P(z + 1) =

d+1∑

k=0

fk−1(T )(−z)d+1−k(z + 1)k,

and the result follows by inspecting coefficients. �
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5.6. Self-reciprocal Complexes and Dehn–Sommerville
Revisited

Let K be a complex of lattice polytopes in Rd. We define the Ehrhart function
of K by

ehrK(n) :=
∣∣∣n|K| ∩ Zd

∣∣∣
for all integers n ≥ 1. Corollary 5.1.3 then yields that

ehrK(n) =
∑

F∈K
−µK̂(F, 1̂) ehrF(n) , (5.6.1)

where K̂ is the partially ordered set K with a maximum 1̂ adjoined. In fact,
if we set dimK := max{dimF : F ∈ K}, then Corollary 5.1.2 immediately
implies the following.

Corollary 5.6.1. If K is a complex of lattice polytopes, then ehrK(n) agrees
with a polynomial of degree dimK for all positive integers n.

In this section we want to investigate a special class of polytopal com-
plexes, very much in the spirit of this book: we call a complex K self-
reciprocal if for all n > 0

(−1)dimK ehrK(−n) = ehrK(n) . (5.6.2)

The right-hand side of (5.6.1) also suggests a value for ehrK(n) at n = 0,
namely, the Euler characteristic χ(K). We will, however, not follow this
suggestion and instead decree that

ehrK(0) := 1 .

Unless χ(K) = 1, this is a rather strange (if not disturbing) convention and in
light of Corollary 5.6.1, the function ehrK(n) now agrees with a polynomial of
degree dimK for all n except for n = 0. (Theorem 5.6.2 below will vindicate
our choice.)

We extend the definition of h∗-vectors from Section 5.5 to complexes of
lattice polytopes via

EhrK(z) := 1 +
∑

n≥1

ehrK(n)zn =
h∗0 + h∗1z + · · ·+ h∗d+1z

d+1

(1− z)d+1
,

where d = dimK, and we set h∗(K) = (h∗0, . . . , h
∗
d+1).

Theorem 5.6.2. Let K be a d-dimensional complex of lattice polytopes with
χ(K) = 1− (−1)d+1. Then K is self-reciprocal if and only if

h∗d+1−i(K) = h∗i (K) (5.6.3)

for all 0 ≤ i ≤ d+ 1.
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We remark that the condition χ(K) = 1− (−1)d+1 is not as esoteric as it
might seem; see (5.6.5) and (5.6.6) below. At any rate, in Exercise 5.41 you
are asked to verify that h∗d+1(K) = (−1)d+1(1− χ(K)); with the additional

property χ(K) = 1 − (−1)d+1, we obtain h∗d+1(K) = 1, which is certainly
necessary for (5.6.3) to hold.

Proof. If (5.6.3) holds, then (−1)d+1 EhrK(1
z ) = EhrK(z) and Corollary 4.1.8

says that (5.6.2) holds for all n ≥ 1. Conversely, it follows again from
Corollary 4.1.8 that

(−1)d+1 EhrK(1
z ) = (−1)d+1(1−χ(K))+(−1)d

∑

n≥1

ehrK(−n)zn = EhrK(z) ,

where we used (5.6.2) and that χ(K) = 1− (−1)d+1. Multiplying both sides
by (1− z)d+1 and comparing coefficients proves the claim. �

If K is the subdivision of a lattice polytope P then, since χ(P ) = 1, we
have ehrK(n) = ehrP(n) for all n ≥ 0 and we are consistent with the definition
of Ehrhart functions for polytopes. However, subdivisions of polytopes can
never be self-reciprocal: if K is the subdivision of a lattice polytope P, then,
by Ehrhart–Macdonald reciprocity (Theorem 5.2.3),

(−1)dimK ehrK(−n) = ehrP◦(n) < ehrP(n) for all n > 0 .

On the other hand, the boundaries of polytopes are good examples of self-
reciprocal complexes. The boundary complex Φ(∂P) of a polytope P is
the collection of all proper faces of P.

Proposition 5.6.3. The boundary complex of any lattice polytope is self-
reciprocal.

Proof. Let P be a d-dimensional lattice polytope. Then

ehrΦ(∂P)(n) = ehrP(n)− ehrP◦(n) = ehrP(n)− (−1)d ehrP(−n) , (5.6.4)

by Ehrhart–Macdonald reciprocity (Theorem 5.2.3). The boundary complex
is of dimension d− 1, and for n > 0 we compute

(−1)d−1 ehrΦ(∂P)(−n) = (−1)d−1 ehrP(−n)− (−1)2d−1 ehrP(n)

= ehrP(n)− (−1)d ehrP(−n)

= ehrΦ(∂P)(n) . �

From P = ∂P ] P◦, we compute with the help of Theorem 3.4.1 and
Corollary 3.4.6

χ(∂P) = χ(P)− χ(P◦) = 1− (−1)dimP, (5.6.5)
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and Theorem 5.6.2 implies that h∗i (Φ(∂P)) = h∗d−i(Φ(∂P)) for all 0 ≤ i ≤ d.
In this particular case, the symmetry of the h∗-vector can also be seen quite
directly:

EhrΦ(∂P)(z) =
∑

n≥0

ehrΦ(∂P)(n)zn = EhrP(z)− EhrP◦(z)

= EhrP(z)− (−1)d+1 EhrP(1
z ) =

h∗P(z)− zd+1h∗P(1
z )

(1− z)d+1
,

where the third equation follows from Corollary 5.4.5. We note that

h̃(z) := h∗P(z)− zd+1h∗P(1
z )

has a root at z = 1 and hence h̃(z) = (1−z)h∗Φ(∂P)(z). Moreover, zd+1h̃(1
z ) =

−h̃(z) which implies zd h∗Φ(∂P)(
1
z ) = h∗Φ(∂P)(z).

There are much more general classes of self-reciprocal complexes and
(at least) one particular class that has a strong combinatorial flavor. We
recall from Chapter 2 that a graded poset Π with minimum and maximum
is Eulerian if µΠ(a, b) = (−1)l(a,b) for any a � b, where l(a, b) is the length
of a maximal chain in the interval [a, b]Π. Viewed as a poset, a polyhedral
complex K is graded if it is pure, that is, if every inclusion-maximal cell is
of the same dimension dimK. We will say that K is an Eulerian complex

if K̂ := K ∪ {1̂} is an Eulerian poset. For example Φ(∂P) is an Eulerian
complex, for any polytope P.

Theorem 5.6.4. If K is an Eulerian complex of lattice polytopes, then K is
self-reciprocal.

Proof. The length of a maximal chain starting in F ∈ K and ending in 1̂ is

dimK + 1− dimF. Hence, if K̂ is Eulerian, then

ehrK(n) =
∑

F∈K
−µK̂(F, 1̂) ehrF(n) =

∑

F∈K
(−1)dimK−dimF ehrF(n) ,

and for n > 0 we thus compute with Ehrhart–Macdonald reciprocity (Theo-
rem 5.2.3)

(−1)dimK ehrK(−n) =
∑

F∈K
(−1)dimF ehrF(−n) =

∑

F∈K
ehrF◦(n)

= ehrK(n) . �

Not all self-reciprocal complexes are necessarily Eulerian. For example,
the disjoint union of two self-reciprocal complexes of the same dimension
is self-reciprocal but never Eulerian; see Exercise 5.42. However, if K is a
d-dimensional Eulerian complex, then Theorem 2.4.6 implies that

(−1)d+1 = µK̂(0̂, 1̂) = 1−
∑

F∈K
µK̂(0̂, F ) = 1− χ(K) (5.6.6)
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and so Theorem 5.6.2 applies. If K is a polyhedral complex of unimodular
simplices, then, thinking back to Corollary 5.5.9, we could hope that the
symmetry of the h∗-vector implies conditions on the face numbers fi(K). It
turns out that we can do this in a more general way.

Let V be a finite set. We recall from Section 4.9 that an abstract simplicial
complex Γ is a nonempty collection of finite subsets of V with the property

σ ∈ Γ, σ′ ⊆ σ =⇒ σ′ ∈ Γ. (5.6.7)

Back then we agreed that if P is a simplicial polytope, then the vertex sets
of proper faces of P form an abstract simplicial complex ΓP. More generally,
if K is a polyhedral complex consisting of simplices—that is, in the language
of Section 5.1, K is a geometric simplicial complex—,then

ΓK := {vert(F) : F ∈ K}

is an abstract simplicial complex. The geometric information is lost in the
passage from K to ΓK but all combinatorial information is retained; in
particular, K and ΓK are isomorphic as posets. Every k-simplex has k + 1
vertices and dimσ = |σ|−1 for σ ∈ Γ as well as dim Γ = max{dimσ : σ ∈ Γ}
is consistent with the geometry.

Conversely, for an abstract simplicial complex Γ on the ground set V ,
we can construct the following realization as a geometric simplicial complex.
Let {ev : v ∈ V } be the standard basis of the vector space RV and consider
the unimodular (|V | − 1)-dimensional simplex

4 := conv {ev : v ∈ V } =

{
p ∈ RV≥0 :

∑

v∈V
pv = 1

}
.

The faces of 4 are given by 4[A] := conv{ev : v ∈ A} for all ∅ 6= A ⊆ V .
Thus to Γ we can associate the geometric simplicial complex

R[Γ] := {4[σ] : σ ∈ Γ} ⊆ Φ(4) ,

the canonical realization of Γ. Here are two simple but pivotal facts
about R[Γ].

Proposition 5.6.5. Let Γ be an abstract simplicial complex. The canonical
realization R[Γ] is a complex of unimodular simplices and Γ ∼= R[Γ] as posets.

For 0 ≤ i ≤ dim Γ, set fi(Γ) to be the number of faces σ ∈ Γ with
dimσ = |σ| − 1 = i. The empty set ∅ is always a face of Γ of dimension
−1 which we record by f−1(Γ) = f−1(R[Γ]) = 1. Since R[Γ] is a complex of
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unimodular simplices, we can compute its Ehrhart series as

EhrR[Γ](z) =
∑

S∈Γ

EhrS◦(z) =
∑

S∈Γ

z|S|

(1− z)|S|

=

∑d+1
i=0 fi−1(Γ) zi (1− z)d+1−i

(1− z)d+1
. (5.6.8)

(This mirrors some of our computations in Section 5.5.) Thus the h∗-vector
of R[Γ] depends only on the f -vector of Γ, and we define the h-vector
h(Γ) = (h0, . . . , hd+1) of a d-dimensional abstract simplicial complex Γ
through hi(Γ) := h∗i (R[Γ]) for 0 ≤ i ≤ d+ 1. So with (5.6.8),

d+1∑

i=0

fi−1(Γ) zi (1− z)d+1−i =
d+1∑

i=0

hi(Γ) zi . (5.6.9)

At this point, we take a short break to repeat our computation in (5.6.8)
for the (geometric) simplicial complex given by a unimodular triangulation
of a lattice polytope P. The computation is literally the same, except that
on the left-hand side of (5.6.8), EhrR[Γ](z) needs to be replaced by EhrP(z).
The numerator polynomial now becomes the h∗-vector of P from Section 5.5,
and (5.6.9) implies:

Corollary 5.6.6. Let P be a d-dimensional lattice polytope with a unimodular
triangulation T . Then

EhrP(z) =

∑d
i=0 hi(T ) zi

(1− z)d+1
.

In particular, the h∗-vector of P depends only on the combinatorics of T .

The h-vector is like the h∗-vector but it is not exactly the same thing. For
starters—unlike in the geometric scenario of a unimodular triangulation—it is
not true that hi(Γ) ≥ 0 for all simplicial complexes Γ; check out Exercise 5.38.
In particular, h∗(K) and h(ΓK) are typically different.

Next we reap some fruit from Theorem 5.6.2.

Corollary 5.6.7. Let Γ be a d-dimensional Eulerian simplicial complex.
Then, for 0 ≤ i ≤ d+ 1,

hi(Γ) = hd+1−i(Γ) .

In particular, for 0 ≤ j ≤ d+ 1,

fj−1(Γ) =

d+1∑

k=j

(
k

j

)
(−1)d+1−kfk−1(Γ) .
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Proof. The first claim is exactly Theorem 5.6.2 applied to the canonical
realization R[Γ]. For the second claim, we replace z by 1

z in (5.6.9) and

multiply the resulting equation by zd+1. This gives

d+1∑

i=0

fi−1(Γ)(z − 1)d+1−i =
d+1∑

i=0

hd+1−i(Γ) zi.

But hi(Γ) = hd+1−i(Γ), and so with (5.6.9) we conclude

d+1∑

i=0

fi−1(Γ)(z − 1)d+1−i =
d+1∑

i=0

fi−1(Γ)zi(1− z)d+1−i.

Now substituting z + 1 for z and comparing coefficients yields the second
claim. �

Applying Corollary 5.6.7 to the case that Γ is the (d− 1)-dimensional
boundary complex of a d-dimensional simplicial polytope P yields exactly the
Dehn–Sommerville relations for f(P) obtained in Theorem 3.5.5. We could
now employ the same reasoning as in Section 3.5 to the zeta polynomials of
Eulerian simplicial complexes; however, we will forgo this in favor of a more
geometric perspective on zeta polynomials of abstract simplicial complexes.
For a finite set V , let

2V :=
{
q ∈ RV : 0 ≤ qv < 1 for all v ∈ V

}
,

the standard half-open unit cube in RV . For any A ⊆ V , we can identify 2A

as a (half-open) face of 2V , and for B ⊆ V we have 2A ∩ 2B = 2A∩B. It
follows that for an abstract simplicial complex Γ on vertices V , the collection
of half-open parallelepipeds

2Γ := {2S : S ∈ Γ}

satisfies the intersection property of Section 5.1. As before, we consider the
Ehrhart function ehr2Γ(n) of the support |2Γ| :=

⋃
S∈Γ 2S . In sync with

Lemma 3.3.8,

2A =
⊎

B⊆A
2◦B ,

and so

ehr2Γ(n) =
∑

A∈Γ

ehr2◦A(n) =
∑

A∈Γ

(n− 1)|A| =

dim Γ+1∑

i=0

fi−1(Γ)(n− 1)i .

A do-it-yourself example is given in Exercise 5.39.
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Now, if Γ is an Eulerian simplicial complex of dimension d, then by
reasoning similarly to that in our proof of Theorem 5.6.4,

ehr2Γ(n) =
∑

A∈Γ

−µ
Γ̂
(A, 1̂) ehr2A(n) =

∑

A∈Γ

(−1)d−dimA n|A|

=
d+1∑

i=0

fi−1(Γ)(−1)d+1−i ni.

Equating these two expressions for ehr2Γ(n) and comparing coefficients again
yields the linear relations of Corollary 5.6.7.

We close this section with yet another connection. We recall from
Section 4.9 that for a graded poset Π with 0̂ and 1̂ and an order preserving
and ranked φ : Π → Z≥0, a (Π, φ)-chain partition of n > 0 stems from a

multichain 0̂ ≺ c1 � c2 � · · · � cm ≺ 1̂ such that

n = rk(c1) + rk(c2) + · · ·+ rk(cm) ,

and the number of chain partitions of n is denoted by cpΠ,φ(n).

Proposition 5.6.8. Let Γ be a pure simplicial complex on the ground set V
with rank function rk = rkΓ. Then

ehrR[Γ](n) = cpΓ∪{1̂},rk(n)

for all n > 0.

Proof. A point p ∈ ZV is contained in n|R[Γ]| if and only if p ≥ 0, |p| = n,
and supp(p) ∈ Γ. The claim now follows from Lemma 4.9.5. �

Thus for an Eulerian complex Γ, we discovered Corollary 5.6.7 already
in (4.9.5) in Section 4.9.

5.7. A Combinatorial Triangulation

We finish our study of subdivisions of polytopes with a construction that
brings us back to purely combinatorial considerations. Fix a polytope P ⊂ Rd
and let Φ(P) be its face lattice. For a vertex v ∈ P, we define the antistar
of v as the collection of faces of P not containing v:

Astv(P) := {F ∈ Φ(P) : v 6∈ F} .
Like the collection of faces visible from a given point, the antistar is a
polyhedral complex. Indeed, since Astv(P) ⊆ Φ(P), it inherits the intersection
property from the face lattice. Moreover, if F is a face that does not contain
v, so does every face G ≺ F. We note the following simple but useful fact
about antistars (see Exercise 5.43).

Lemma 5.7.1. Let P be a polytope and v a vertex. Then Astv(G) ⊆ Astv(P)
is a subcomplex for any face G � P with v ∈ G.
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The connection between antistars and subdivisions is the following.

Proposition 5.7.2. For a polytope P with vertex v,

v ∗Astv(P) = {v ∗ F : F ∈ Astv(P)} ∪Astv(P)

is a subdivision of P.

Proof. Let p ∈ P be an arbitrary point that is different from v. The ray
v + R≥0(p− v) intersects P in a segment with endpoints v and r ∈ ∂P. Let
F be the unique face that contains r in its relative interior. We claim that
F ∈ Astv(P). Otherwise, r + ε(v − r) ∈ F ⊆ P for some ε > 0, which would
contradict the choice of r as an endpoint of our segment.

By invoking Lemma 5.3.2, this shows that v ∗ Astv(P) is a polyhedral
complex and, at the same time, that P = |v ∗ Astv(P)|, which finishes the
proof. �

v

Astv(P)

Figure 5.11. Pulling a vertex of a hexagon.

Note that v ∗ Astv(P) = Φ(P) if P is a simplex. In all other cases,
v ∗ Astv(P) is a proper subdivision of P, and it is a triangulation if and
only if all faces in Astv(P) are simplices. This happens, for example, when
P is simplicial. Figure 5.11 illustrates Proposition 5.7.2 for a hexagon and
Figure 5.12 shows the resulting subdivision (into pyramids over squares) for
a cube.

v

Astv(P)

Figure 5.12. The antistar of a vertex in a 3-cube and the resulting
subdivision into pyramids over squares.
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To obtain a triangulation of a general (nonsimplicial) polytope, the idea
is to use v ∗ T , where T is a triangulation of Astv(P) and we can get T by
recursively applying Proposition 5.7.2 to elements in Astv(P).

For a fixed ordering v1, . . . ,vn of the vertices of P, we denote by vF the
smallest vertex of a face F � P in this ordering.

Theorem 5.7.3. Let P be a polytope and order its vertices v1, . . . ,vn. If P
is simplicial, set Pull(P) := vP ∗AstvP

(P). Otherwise,

Pull(P) :=
⋃

F∈AstvP (P)

vP ∗ Pull(F) . (5.7.1)

Then Pull(P) is a triangulation of P.

The triangulation obtained in Theorem 5.7.3 is called the pulling tri-
angulation of P with respect to the chosen order on the vertices.

Proof. Since every polytope of dimension at most 1 is a simplex and every
2-dimensional polytope is simplicial, the claim is true in dimensions d ≤ 2
and we can proceed by induction on d = dimP.

Let P be a polytope of dimension d > 2. For any F ∈ AstvP
(P), Pull(F)

is a triangulation of F by induction. What we need to check is that the
collection of polyhedral complexes

{Pull(F) : F ∈ AstvP
(P)}

all fit together to give a triangulation of AstvP
(P). Let F,F′ ∈ AstvP

(P) such
that G = F∩ F′ is not empty. If G is a face in AstvF

(F) or AstvF′ (F
′), then by

construction the restriction of Pull(F) and Pull(F′) to G is exactly Pull(G).
If G is neither in AstvF

(F) nor in AstvF′ (F
′), then vF = vF′ and the claim

follows from Lemma 5.7.1. Thus

T :=
⋃

F∈AstvP (P)

Pull(F) (5.7.2)

is a triangulation of |AstvP
(P)| and Pull(P) = vP ∗ T finishes the proof. �

Note that the pulling triangulation of Theorem 5.7.3 makes no reference
to the geometry of P and can be constructed solely from the knowledge of
Φ(P). For this reason pulling triangulations are a favorite tool to obtain
combinatorial results about polytopes. To get a better feel for that, consider
the d-dimensional cube Cd = [0, 1]d. We can identify its vertices vert(Cd) =
{0, 1}d with subsets of [d] under the correspondence that takes A ⊆ [d] to
the point eA ∈ {0, 1}d with

(eA)i =

{
1 if i ∈ A,
0 otherwise.
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Choose any total ordering of the vertices of Cd such that eA comes before
eB whenever A ⊆ B; see Exercise 5.37. In any such ordering vCd = e∅.

Proposition 5.7.4. Let T = Pull(Cd) be the pulling triangulation of the
d-cube Cd = [0, 1]d with respect to an ordering of its vertices that refines the
inclusion-order on subsets of [d]. Then

conv(eA1 , eA2 , . . . , eAk) ∈ T
for distinct A1, . . . , Ak ⊆ [d] if and only if Ai ⊂ Aj or Aj ⊂ Ai for all
1 ≤ i < j ≤ k.

Proof. We argue by induction on the dimension d. For d = 1, C1 is a
simplex with vertices 0 = e∅ and 1 = e{1}.

For d > 1, we observe that the facets not containing vCd = e∅ are

Fi :=
{

p ∈ [0, 1]d : pi = 1
}
,

for i = 1, . . . , d. So Fi is the cube [0, 1]d−1 embedded in the hyperplane
{x ∈ Rd : xi = 1} with minimal vertex vFi = ei. By induction the simplices
of Pull(Fi) correspond exactly to the chains

A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊆ [d] \ {i} .
Thus, the simplices of Pull(Cd) correspond exactly to all chains of [d], which
proves the claim. �

We have seen this triangulation before—this is exactly the triangulation
given in Proposition 5.1.9: for a maximal chain ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ad, we
have Aj \Aj−1 = {ad−j+1} for some ad−j+1 ∈ [d]. Since each aj can appear
only once, the map σ : [d]→ [d] given by σ(j) := aj is a permutation of [d].
The point corresponding to Ai is then

eAi =

i∑

j=1

eσ(1) + eσ(2) + · · ·+ eσ(j) = uσ.

As a byproduct, we obtain the following from Proposition 5.1.9.

Corollary 5.7.5. Every pulling triangulation of [0, 1]d is unimodular.

We now illustrate the power of pulling triangulations on a different class
of polytopes. For integers 0 < k < d, we define the (d, k)-hypersimplex as
the polytope

4(d, k) := conv {eA : A ⊆ [d], |A| = k} .
For example, for k = 1, 4(d, 1) = conv(e1, . . . , ed) is a unimodular simplex,
and 4(d, k) ∼= 4(d, d− k) under the linear transformation x 7→ e[d] − x. In
Exercise 5.44 you will show that

4(d, k) =
{

x ∈ [0, 1]d : x1 + x2 + · · ·+ xd = k
}
. (5.7.3)
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In particular, for i = 1, . . . , d,

F0
i := 4(d, k) ∩

{
x ∈ Rd : xi = 0

}
∼= 4(d− 1, k) and

F1
i := 4(d, k) ∩

{
x ∈ Rd : xi = 1

}
∼= 4(d− 1, k − 1) ,

(5.7.4)

where in both cases the isomorphism is with respect to the projection
Rd → Rd−1 that deletes the i-th coordinate.

To get an impression what a hypersimplex looks like, we note that 4(d, 1)
and 4(d, d− 1) are just unimodular simplices. The first nontrivial case is

∆(4, 2). This is a 3-dimensional polytope with
(

4
2

)
= 6 vertices and 2 · 4 = 8

facets, each of which is a unimodular triangle. It is not difficult to verify
that ∆(4, 2) is, in fact, affinely isomorphic (in the sense of Exercise 5.45)
to an octahedron. For the case 4(4, 2), the following result can be verified
quite directly.

Proposition 5.7.6. Every pulling triangulation of a hypersimplex is uni-
modular.

Proof. We proceed once more by induction on d. For d = 2 and hence k = 1,
4(d, k) is the unimodular simplex with vertices (1, 0) and (0, 1).

For d > 2, let v be the first vertex in an arbitrary but fixed ordering of
the vertices of 4(d, k). Since each facet of 4(d, k) is again a hypersimplex,
we obtain by induction that (5.7.2) is a unimodular triangulation T of the
antistar of v. Any inclusion-maximal F ∈ T is contained in the hyperplane
{x ∈ Rd : xi = 1−vi} for some i = 1, . . . , d. You should check (Exercise 5.46)
that if F has a unimodular triangulation, then v ∗ F has a unimodular
triangulation. This completes the proof. �

Proposition 5.7.6 gives the quite remarkable (and rare) property that
every pulling triangulation is unimodular. Such lattice polytopes are called
compressed and the unimodular simplices, the cube, and the hypersimplices
are examples; see Exercise 5.47 for more.

We can use (5.7.4) to determine the number of simplices in any such
triangulation of a hypersimplex. For a permutation π ∈ Sd, we call 1 ≤ i <
d− 1 an ascent if π(i) < π(i+ 1) and a descent if π(i) > π(i+ 1).

Theorem 5.7.7. Let 0 ≤ k ≤ d− 1 and let T be a unimodular triangulation
of the d-dimensional hypersimplex 4(d + 1, k + 1). Then the number of
full-dimensional simplices in T is the number s(d, k) of permutations in Sd

with exactly k descents.

For example, for (d, k) = (3, 1), the hypersimplex 4(4, 2) is triangulated
by four unimodular simplices. At the same time, there are d! = 6 permuta-
tions of which the following 4 have exactly one descent: [132], [312], [231],
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and [213]. (Here we use the one-line notation for a permutation π ∈ Sd and
write it as [π(1)π(2) · · · π(d)].)

The numbers s(d, k) are called the Eulerian numbers. We will see
them again in Chapter 6.

Proof. It follows from Proposition 5.7.6 and Corollary 5.5.7 that it suffices
to prove the claim for a pulling triangulation T = Pull(4(d + 1, k + 1)).
Let’s write s(d, k) for the number of d-simplices of T . If k = 0 or k = d− 1,
then 4(d+ 1, k + 1) is already a unimodular simplex and therefore s(d, 0) =
s(d, d− 1) = 1. We claim that

s(d, k) = (d− k) s(d− 1, k) + (k + 1) s(d− 1, k − 1) . (5.7.5)

Indeed, the number of d-simplices of T is equal to the number of (d − 1)-
simplices in the restriction of T to Astv(4(d + 1, k + 1)) for the vertex
v = v4(d+1,k+1) that was first in the pulling order. From (5.7.4), we know
that the antistar is composed of d+ 1 facets of 4(d+ 1, k), namely, d− k
facets F0

i
∼= 4(d, k + 1) corresponding to those positions i with vi = 0 and

k + 1 facets F1
i
∼= 4(d, k) for vi = 1. Each of these facets is triangulated by

s(d− 1, k) and s(d− 1, k − 1) simplices, respectively.

The permutations [12 · · · d] and [d(d− 1) · · · 1] are the only permutations
in Sd with 0 and d− 1 descents, respectively. Hence, to complete the proof,
it suffices to show that the number of permutations τ ∈ Sd with k descents
satisfies the recurrence (5.7.5). This is done in Exercise 5.49. �

Corollary 5.5.7 says that the number fr(T ) of r-dimensional simplices
for 0 ≤ r ≤ d − 1 in any unimodular triangulation T of 4(d, k) has to be
the same. However, it seems to be a quite challenging problem to find a
meaningful interpretation for this number. We will revisit this problem in
Section 7.4.

Notes

Subdivisions and triangulations of polyhedra and, more generally, manifolds
go back at least to the beginning of the 20th century. In particular geometric
simplicial complexes are a common means to build complex objects from
simple ones. The study of simplicial complexes independent of a geomet-
ric embedding (i.e., abstract simplicial complexes) belongs to the field of
(combinatorial) topology; see, for example, [88,126].

It seems to be hard to credit a single mathematician for inventing (or
discovering) regular subdivisions. Certainly Hermann Minkowski [123] knew
that the projection of a full-dimensional polytope onto a hyperplane H
yields two subdivisions of the projection. Boris Delaunay [53] described an
important class of subdivisions (see Exercise 5.5) that is still today of great
importance in discretizing (and solving) differential equations. The name
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regular or coherent goes back to Israel Gelfand, Mikhail Kapranov, and Andrei
Zelevinsky [70] who initiated much of modern research into subdivisions, in
particular the poset of subdivisions of a polytope P = conv(V ) with vertices
in V . The partial order relation is given by refinement. A sneak peak: for
fixed V there is a polytope, the secondary polytope of V , whose face lattice is
isomorphic to the poset of regular subdivisions. The key to the construction
of that polytope is Proposition 5.1.10. This result is also the reason why
these subdivisions are sometimes called convex. Exercise 5.2 shows that there
are nonregular subdivisions and the whole story becomes more subtle. A
comprehensive treatise is given in [51].

The triangulation of the cube given in Proposition 5.1.9 was described
by Hans Freudenthal [66].

Theorem 5.2.1 holds for all polyhedral complexes S whose support |S| is
homeomorphic to a ball but a different proof is needed with techniques from
topology; see, for example, [33, Part II].

Eugène Ehrhart laid the foundation for lattice-point enumeration in
rational polyhedra, starting with Theorems 4.6.1, 4.7.2, and 5.1.7 in 1962
[57] as a teacher at a lycée in Strasbourg, France. (Ehrhart received his
doctorate later, at age 60 on the urging of some colleagues.) As already
mentioned in the Notes for Chapter 4, our approach follows Ehrhart’s original
lines of thought; an alternative proof from first combinatorial principles
can be found in [147]. The reciprocity theorem for Ehrhart polynomials
(Theorem 5.2.3) was conjectured (and proved in several special cases) by
Ehrhart and proved by I. G. Macdonald [115]. Theorem 5.2.3 is a particular
instance of a reciprocity relation for simple lattice-invariant valuations due
to Peter McMullen [120], who also proved a parallel extension of Ehrhart–
Macdonald reciprocity to general lattice-invariant valuations.

Ehrhart–Macdonald reciprocity takes on a special form for reflexive
polytopes which we define and study in Exercise 5.13. The term reflexive
polytope was coined by Victor Batyrev, who motivated these polytopes by
applications of mirror symmetry in string theory [18]. That the Ehrhart
series of a reflexive polytope exhibits an unexpected symmetry (Exercise 5.13)
was discovered by Takayuki Hibi [84]. The number of reflexive polytopes
in dimension d is known only for d ≤ 4 [105, 106]; see also [1, Sequence
A090045].

The placing triangulation was described by Branko Grünbaum [78, Sec-
tion 5.2]. The algorithm described underneath Theorem 5.3.3 is called the
beneath-beyond method and, in more sophisticated versions, it is widely used
in practice; see [51].

The half-open decompositions in Lemma 5.3.4 (and beyond) first surfaced
in the computational approach to Ehrhart quasipolynomials by Matthias
Köppe and Sven Verdoolaege [103]. The fact that a half-open decomposition



190 5. Subdivisions

is a disjoint union of half-open polytopes makes computations much simpler,
both in theory and in practice; see, for example, [96,97].

Richard Stanley developed much of the theory of Ehrhart (quasi)poly-
nomials, initially from a commutative-algebra point of view. Theorem 5.4.2
appeared in [162], the paper that coined the term combinatorial reciprocity
theorem, Corollary 5.5.1 (the simplicial case of which we mentioned in our
proof of Theorem 4.6.1) in [163], and Theorem 5.5.2 in [168]. The nonnega-
tivity constraints in Corollary 5.5.1 serve as the starting point when trying to
classify Ehrhart polynomials, though a complete classification is known only
in two dimensions [21]. Theorem 5.5.2 was proved in [168], our proof is taken
from [97]. Reciprocal domains were studied by Ehrhart [59,60] and in [162].
For (much) more about Ehrhart (quasi)polynomials, see [16,24,83,170].

Theorem 5.4.6 is due to Michel Brion [40]; his proof was quite a bit
more involved than the one we give here. Alternative proofs can be found
in [22,92]; see also [110,111,180] for more decomposition theorems with the
same philosophy. Theorem 5.4.6 motivated Alexander Barvinok to devise an
efficient algorithm for Ehrhart quasipolynomials [14]. Barvinok’s algorithm,
which is described in detail in [17], has been implemented in the software
packages barvinok [181] and LattE [49,50,102].

Theorem 5.5.6 (and the equivalent Corollary 5.5.7) is due to Richard
Stanley [163]. As we mentioned already, lattice polytopes that admit uni-
modular triangulations are quite special. There are other, less restrictive,
classes of lattice polytopes which come with numerous applications (e.g., to
semigroup algebras) and open problems [42]. A far-reaching extension of
Theorem 5.5.6 to general lattice polytopes, still relating its h∗-polynomial
with the f -polynomial of a fixed triangulation, is due to Ulrich Betke and
Peter McMullen [28]. Their theorem becomes particularly powerful when the
polytope has an interior lattice point; this consequence was fully realized only
by Alan Stapledon [173] who extended the Betke–McMullen theorem further;
see also [172,174] which give the current state of the art regarding inequali-
ties among Ehrhart coefficients. Related work includes [12,43,133,141].

Corollary 5.5.9 is due to Victor Klee [100]. Other Dehn–Sommerville-type
relations include [2,127].

The pulling triangulation was described by John F. P. Hudson [88,
Lemma 1.4] as a technique to refine polyhedral complexes. The consequence
of Theorem 5.7.7 was already known to Pierre-Simon Laplace: the volume
of the hypersimplex ∆(d+ 1, k + 1) times d! is the number of permutations
σ ∈ Sd with k descents; see [65], which also contains a short after-thought
by Richard Stanley in which he constructs a piecewise-linear map from the
Freudenthal triangulation to the collection of all hypersimplices that maps
∆σ with σ ∈ Sd to 4(d+ 1, k + 1) precisely when σ has k descents. We will
revisit this in Section 7.4.
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Exercises

5.1 D Let S be a subdivision of a polytope P. Show that if F ∈ S with
dimF < dimP, then there is some G ∈ S with F ⊂ G. In particular, S
is a graded poset.

5.2 D Prove that the subdivision of the triangle in Figure 5.13 (with three
additional vertices) is not regular. Give an example of a nonregular
subdivision in every dimension ≥ 3.

Figure 5.13. A nonregular triangulation.

5.3 Let P ⊂ Rd be a full-dimensional polytope. For every nonempty face
F ⊂ P, let pF be a point in F◦.
(a) Let F = {F0 ⊂ F1 ⊂ · · · ⊂ Fk} be a chain of nonempty faces. Show

that

T(F ) := conv {pFi : i = 0, 1, . . . , k}
is a k-dimensional simplex.

(b) Show that

B(P) := {T(F ) : F chain of nonempty faces of P}
is a triangulation of P, called a barycentric subdivision.

(c) Show that, as posets, B(P) is isomorphic to the order complex
of Φ(P).

5.4 D Let V := {v1,v2, . . . ,vn} ⊂ Rd be a configuration of n ≥ d+2 points
such that P := conv(V ) is full dimensional. A stronger condition than
all bounded faces of Eω(V ) being simplices (as in Corollary 5.1.6) is
that no hyperplane in Rd+1 contains more than d + 1 points of V ω.
Indeed, each supporting hyperplane of Eω(V ) will then contain k ≤ d+1
points which are thus the vertices of a (k− 1)-simplex. In the following
you will show that there is a (sufficiently large) h ∈ R such that for
ω(vj) := hj , Eω(V ) satisfies this stronger condition.
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(a) Consider the case n = d+ 2. Then V ω is contained in a hyperplane
if and only if the points V ω are affinely dependent, that is, the
(d+ 2)× (d+ 2)-matrix




v1 v2 · · · vd+2

h h2 · · · hd+2

1 1 · · · 1




has determinant 0. Use Laplace expansion to show that this can
happen only for finitely many values of h.

(b) Argue that the same holds true for n > d + 2 by considering all
(d+ 2)-subsets of V .

5.5 D Let V ⊂ Rd be a finite set such that P = conv(V ) is full dimensional
and define ω : V → R by

ω(p) :=
d∑

i=1

p2
i .

Show that Sω(V ) has the following interesting property: the vertices of
every full-dimensional cell F lie on the boundary of a unique ball and
this ball does not contain any element of V \ F.

5.6 D Show that the vectors uσ0 ,u
σ
1 , . . . ,u

σ
d−1 as defined in (5.1.7) form a

lattice basis of Zd for any σ ∈ Sd. In particular, 4σ is a unimodular
simplex.

5.7 Let S = Sω(V ) be a regular subdivision of the polytope P = conv(V ).
Use Theorem 3.5.1 and the fact that

Ŝ ∼= Φbnd(Eω(V )) ∪ {Eω(V )} ⊂ Φ(Eω(V ))

to give an independent proof of Theorem 5.2.1 for regular subdivisions.
(Hint: The tricky case is G = P and F ⊆ ∂P; here first show that there
is a bijection between the bounded and unbounded faces of Eω(V ) that
contain the face of Eω(V ) that projects to F.)

5.8 Compute the Ehrhart polynomial of the pyramid with vertices (0, 0, 0),
(2, 0, 0), (0, 2, 0), (2, 2, 0), and (1, 1, 1).

5.9 Compute the Ehrhart polynomial of the octahedron with vertices
(±1, 0, 0), (0,±1, 0), and (0, 0,±1). Generalize to the d-dimensional
cross polytope, the convex hull of the unit vectors in Rd and their
negatives, which made its debut in (3.1.13).

5.10 D Show that if P is a d-dimensional lattice polytope in Rd, then the
degree of its Ehrhart polynomial ehrP(n) is d and the leading coefficient
is the volume of P. What can you say if P is not full dimensional?
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5.11 Find and prove an interpretation of the second leading coefficient of
ehrP(n) for a full-dimensional lattice polytope P. (Hint: Start by
computing the Ehrhart polynomial of the boundary of P.)

5.12 For a lattice d-polytope P ⊂ Rd, consider its Ehrhart series

EhrP(z) =
∑

n≥0

ehrP(n) zn.

By Proposition 4.5.1 and Theorem 5.1.7, we can write

EhrP(z) =
h∗d z

d + h∗d−1 z
d−1 + · · ·+ h∗0

(1− z)d+1

for some h∗0, h
∗
1, . . . , h

∗
d. Prove:

(a) h∗0 = 1 .
(b) h∗1 =

∣∣P ∩ Zd
∣∣− d− 1 .

(c) h∗d =
∣∣P◦ ∩ Zd

∣∣ .
(d) h∗0 + h∗1 + · · ·+ h∗d = d! vol(P) .
(This extends Exercise 4.42 from lattice simplices to arbitrary lattice
polytopes.)

5.13 A reflexive polytope is a lattice polytope P such that the origin is
the unique interior lattice point of P and6

ehrP◦(n) = ehrP(n− 1) for all n ∈ Z>0 . (5.7.6)

Prove that if P is a lattice d-polytope that contains the origin in its
interior and that has the Ehrhart series

EhrP(z) =
h∗d z

d + h∗d−1 z
d−1 + · · ·+ h∗1 z + h∗0

(1− z)d+1
,

then P is reflexive if and only if h∗k = h∗d−k for all 0 ≤ k ≤ d
2 .

5.14 D Prove Theorem 5.2.4: If P is a rational polytope in Rd, then for
positive integers n, the counting function ehrP(n) is a quasipolynomial in
n whose period divides the least common multiple of the denominators
of the vertex coordinates of P. Furthermore, for all integers n > 0,

(−1)dimP ehrP(−n) =
∣∣∣nP◦ ∩ Zd

∣∣∣ .

5.15 D Generalize Theorem 5.1.8 to rational polytopes, as follows: Let P
be a rational polytope and ehrP(n) its Ehrhart quasipolynomial. Then
ehrP(0) = 1. (Hint: This is the constant term for one of the constituents
of ehrP(n).)

6More generally, if the 1 on the right-hand side of (5.7.6) is replaced by an arbitrary fixed

positive integer, we call P Gorenstein. You may think about how Exercise 5.13 can be extended
to Gorenstein polytopes.
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5.16 D Let v0, . . . ,vd ∈ Rd be affinely independent, and so conv(v0, . . . ,vd)
is a d-simplex. Describe how to find the facet-defining hyperplane Hi
for the facet Fi := conv(v0, . . . ,vi−1,vi+1, . . . ,vd) for i = 0, . . . , d.

5.17 D In the setting of Theorem 5.3.3, prove that F = v ∗ F′ is a cell of S
that was not present in S ′ if and only if F′ is the facet of some cell in
S ′ such that v is beyond F′. (Hint: Exercise 3.69.)

5.18 D Consider a d-simplex with facet-defining hyperplanes

Hi =
{

x ∈ Rd : 〈ai,x〉 = bi

}

for i = 0, . . . , d, and let v be a point that is beyond F0, the facet
corresponding to H0. Show that v ∗ F0 is given by all x ∈ Rd such that

〈−a0,x〉 ≤ b0 ,

〈ai + δi a0,x〉 ≤ bi + δi b0 ,

where δi := bi−〈ai,v〉
〈a0,v〉−b0 for i = 1, . . . , d.

5.19 D Let P be a d-polytope with ordered vertices v1, . . . ,vn. Show that for
h > 0 sufficiently large, the subdivision Sω(v1, . . . ,vn) with ω(vi) = hi

is exactly the pushing triangulation of P with the given order.

5.20 Let P be a polytope with dissection P = P1 ∪ P2 ∪ · · · ∪ Pm, and let H
be a hyperplane. Show that H is facet-defining for P if and only if all
Pi are contained in the same halfspace of H, and H is facet-defining for
at least one Pj .

5.21 D Prove (5.3.4): Let P ⊂ Rd be a full-dimensional polyhedron with
dissection P = P1 ∪ P2 ∪ · · · ∪ Pm. If q ∈ Rd is generic relative to all Pi,
then

HqP = HqP1 ]HqP2 ] · · · ]HqPm .

5.22 D Let P ⊂ Rd be a full-dimensional polytope. Show that there is no
q ∈ Rd such that HqP = P.

5.23 D Finish the first half of our proof of Proposition 5.3.6 by showing
(using the notation from our proof) that

σ
Ĉ
(0, . . . , 0, z) =

h(z)

(1− z)d+1

for some polynomial h(z) of degree ≤ d+ 1. Deduce from (5.3.7) and
Proposition 4.1.4 that ehrHq4(n) is a polynomial in n of degree d. (Hint:
You might have to use long division to write σ

Ĉ
(0, . . . , 0, z) as a constant

plus a proper rational function.)

5.24 D Using the notation of Section 4.8 and our proof of Proposition 5.3.6,

show that qC = hom(Hq4) and (using Theorem 4.8.1)

(−1)d+1 EhrHq4(1
z ) = EhrHq4(z) .
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5.25 D Fix linearly independent vectors v1,v2, . . . ,vd ∈ Zd and consider the
simplicial cone

C := R≥0v1 + R≥0v2 + · · ·+ R≥0vd .

Prove that, for

Ĉ := R≥0v1 + · · ·+ R≥0vm−1 + R>0vm + · · ·+ R>0vd ,

there exists q ∈ Rd (generic relative to C) such that

Ĉ = HqC .

Conversely, show that, for every generic q ∈ Rd relative to C, the

half-open cone HqC is of the form Ĉ for some reordering of the vjs and
some m.

5.26 Let P ⊂ Rd be a full-dimensional polytope and let q ∈ Rd be generic
relative to P. Prove that χ(HqP) = 0 unless HqP = P.

5.27 D Prove the following generalization of Corollary 5.5.1: For a half-open
simplex Hq4 of dimension r, let

m := min {i : h∗i (Hq4) 6= 0}

and

m◦ := max {i : h∗i (Hq4) 6= 0} .
Then m and m◦ are the smallest dilation factors such that ehrHq4(m) >
0 and ehrHq4(r + 1 −m◦) > 0, respectively. Note that if Hq4 = 4,
then m = 0.

5.28 D Give a proof of Lemma 5.5.4: Let 4 ⊂ Rd be a unimodular d-simplex
and q a point generic relative to 4. Then

h∗Hq4(z) = zr,

where r is the number of facets that are missing in Hq4.

5.29 A generalized half-open decomposition of a polytope P is a collection of
polytopes P1, . . . ,Pm ⊂ P and points q1, . . . ,qm ∈ P◦ such that

P = Hq1P1 ]Hq2P2 ] · · · ]HqmPm .

The ordinary half-open decompositions in Section 5.3 are thus the
special case qi = q for all i. Find a generalized half-open decomposition
of a polytope that is not ordinary.

5.30 D Let Q be a pyramid over P with apex v. Show that a dissection of
P = 41∪· · ·∪4k into simplices induces a dissection of Q = ∆′1∪· · ·∪∆′k,
where ∆′i = v ∗ 4i.
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5.31 D Following the setup of the last part of our proof of Theorem 5.5.2,
let P ⊂ Rd be a lattice polytope and v ∈ Zd \ aff(P). Given a dissection
of P = 41 ∪ · · · ∪ 4k into lattice simplices, let 4′i := v ∗ 4i. For a
point q generic relative to 4′1, . . . ,4′k, let 2̂j and 2̂′j be the funda-

mental parallelepiped of the half-open simplicial cones hom(Hq4j) and
hom(Hq4′j), respectively. Show that 2̂j ⊆ 2̂′j for all j.

5.32 Come up with and prove a generalization of Theorem 5.5.2 for rational
polytopes.

5.33 Let 4 be the convex hull of j + 1 unit vectors in Rd, and consider
cone(4), the conical hull of the same j + 1 unit vectors.

(a) Show that ehr4(n) =
(
n+j
j

)
and ehr4◦(n) =

(
n−1
j

)
.

(b) Show that

Ehr4(z) = σcone(4)(z, z, . . . , z) =

(
1

1− z

)j+1

and

Ehr4◦(z) = σcone(4)◦(z, z, . . . , z) =

(
z

1− z

)j+1

.

5.34 Find a lattice polytope P that has a unimodular dissection but no
unimodular triangulation.

5.35 D Let 4 be a d-simplex, F ≺ 4 a facet, and v the unique vertex not
contained in F. Show that for any face G � 4, we have G◦ 6⊆ F if and
only if v ∈ G.

5.36 D Use Theorem 5.5.6 to prove Corollary 5.5.7 and (5.5.4).

5.37 D Define a partial order on the collection of subsets of [d] by setting
A � B if and only if min(A \ B) > min(B \ A). (Set min(∅) := ∞.)
Show that this is a total order that satisfies A ⊆ B implies A � B.

5.38 Every simple graph G = (V,E) can be thought of as a 1-dimensional
simplicial complex Γ = {∅} ∪ V ∪ E. Characterize which graphs have
nonnegative h-vector.

5.39 Let Γ be the (d − 1)-dimensional abstract simplex. That is, Γ is the
complex of all subsets of [d]. Show that

ehr2Γ(n) = nd .

5.40 D Find a 3-dimensional lattice polytope that has a unimodular dissection
that is not a unimodular triangulation. Can you find a 3-dimensional
lattice polytope that has a unimodular dissection but no unimodular
triangulation? (Hint: A suitable construction to do this can be found
in [148].)
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5.41 D Verify that for a d-dimensional complex K of lattice polytopes,

h∗d+1(K) = (−1)d+1(1− χ(K)) .

5.42 D Show that a 0-dimensional complex is Eulerian if and only if it has
at most two vertices.

5.43 D Carry out a proof for Lemma 5.7.1: Let P be a polytope and v a
vertex. Then Astv(G) ⊆ Astv(P) is a subcomplex for any face G � P
with v ∈ G.

5.44 D Prove (5.7.3):

4(d, k) =
{

x ∈ [0, 1]d : x1 + x2 + · · ·+ xd = k
}
.

5.45 D Let P be the octahedron from Exercise 5.9, with vertices (±1, 0, 0),
(0,±1, 0), and (0, 0,±1). Show that there is an injective affine map
L : R3 → R4 such that L(P) = ∆(4, 2).

5.46 D Verify the claim made in the proof of Proposition 5.7.6 that, if F has
a unimodular triangulation, then v ∗ F has a unimodular triangulation.

5.47 Let P ⊂ Rd be a full-dimensional lattice polytope. Suppose that for
any facet-defining hyperplane H = {x ∈ Rd : 〈a,x〉 = b} there is some
r ∈ R such that

〈a,p〉 ∈ {b, b+ r} for all p ∈ P ∩ Zd.

(a) Show that every facet of P, when considered as a lattice polytope,
has the same property.

(b) Show that any such P is a compressed polytope.
(c) Show the converse: If P is compressed, then it satisfies the above

property.

5.48 Let P ⊂ Rd be a full-dimensional polytope, not necessarily a lattice
polytope. Assume that P satisfies the condition of Exercise 5.47 for
every vertex p ∈ vert(P); such a polytope is called 2-level.
(a) Show that there is a linear transformation T : Rd → Rd such that

vert(T (P)) ⊆ {0, 1}d. Such a polytope is called a 0/1-polytope.
(Hint: Pick d facets that intersect in a vertex and whose normals
are linearly independent.)

(b) Conclude that up to linear transformation there are only finitely
many 2-level (and hence compressed) polytopes.

(c) Can you count them in dimensions 1, 2, 3, 4, . . . ?

5.49 D This exercise completes our proof of Theorem 5.7.7. We first observe
that every position i except for i = d is either a descent or an ascent.
Now come up, and prove, a recurrence relation for s(d, k); it will involve
the quantities s(d−1, k) and s(d−1, k−1). (Hint: Write a permutation
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in Sd−1 in one-line notation; this way it is easier to go from Sd−1 to
Sd by inserting a number at some position.)

5.50 Let 4 = conv(u0, . . . ,ud) ⊂ Rd, 4′ = conv(v0, . . . ,ve) ⊂ Re be two
unimodular simplices and let P = 4×4′ be their Cartesian product.
(a) Show that any (d + e)-simplex spanned by the vertices of P is

unimodular.
(b) We can identify the vertices of P with the nodes of the square grid
{0, . . . , d} × {0, . . . , e}. A lattice path from (0, 0) to (d, e) is a
path on the grid that uses only unit steps → and ↑. Show that any
such path encodes a unique (d+ e)-simplex of P.

(c) Show that the collection of all such simplices yields a triangulation
of P.

(d) Compute the h∗-vector of P.



Chapter 6

Partially Ordered Sets,
Geometrically

Order is not sufficient. What is required, is something much more complex. It is
order entering upon novelty; so that the massiveness of order does not degenerate
into mere repetition; and so that the novelty is always reflected upon a background
of system.
Alfred North Whitehead

Now we return to the combinatorics of posets of Chapter 2. We will employ
the machinery of the previous chapters to study posets and their combi-
natorics from a geometric point of view. To do so, we will follow a sound
approach of modern mathematics: objects can be understood by studying
their relations to other objects through structure-preserving maps. The ob-
jects that we want to study in this chapter are posets and, as we pinpointed in
Section 1.3, the structure preserving maps are the (strictly) order-preserving
maps. We will consider the collection of all order-preserving maps from Π to
a particular poset which, at the same time, gives Π a geometric incarnation.
The order cone of a finite poset Π is the set

KΠ := {φ : Π→ R≥0 : φ order preserving} .

The order cone lives in the finite-dimensional vector space RΠ ∼= R|Π| and,
as the name suggests, is a polyhedral cone:

KΠ =

{
φ ∈ RΠ :

0 ≤ φ(m) for all m ∈ Π
φ(a) ≤ φ(b) for all a �Π b

}
. (6.0.1)

Our investigations of its geometric aspects will shed a different light on
several results from Chapters 2 and 4.

199
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Since we will exclusively be dealing with finite posets (Π,�), we decree
in this chapter that Π = [d]. That is, we will view � as a partial order on
the elements 1, 2, . . . , d; in particular, we might write 10 ≺ 3 even though
this looks unnatural. We call Π naturally labelled if i � j implies i ≤ j
for all i, j ∈ [d]. As we will see, it will be at times convenient to assume that
Π is naturally labelled.

With the convention Π = [d], we have a canonical isomorphism RΠ ∼= Rd
and we will interchangeably write φi and φ(i) when considering φ ∈ RΠ.

6.1. The Geometry of Order Cones

As we can see already from their definition, order cones inevitably live in
high dimensions. It is thus all the more important to have some natural
families and examples at hand to develop our geometric intuition.

We recall that the d-antichain Ad is the poset with elements 1, 2, . . . , d
and the trivial order relation �, i.e., i � j implies i = j for all i, j ∈ Ad.
Thus, in (6.0.1) there are no linear inequalities other than nonnegativity, and
we conclude

KAd = Rd≥0 .

Diametrically to antichains are the chains. It turns out that here a slight
variation is helpful. For a permutation τ ∈ Sd, we define a partial order �τ
on [d] through

i �τ j :⇐⇒ τ−1(i) ≤ τ−1(j)

for all i, j ∈ [d]. This is a total order on [d] with minimal element τ(1) and
maximal element τ(d), and a little bit of thinking reveals that the order cone
of ([d],�τ ) is given by

Kτ :=
{
φ ∈ Rd : 0 ≤ φτ(1) ≤ φτ(2) ≤ · · · ≤ φτ(d)

}
. (6.1.1)

Notice that this representation uses far less, namely d, of the
(
d+1

2

)
inequalities

of (6.0.1). A similar reduction can be observed for general order cones. We
recall that a ≺ b is a cover relation in Π if there are no elements “between”
a and b, i.e., there is no p ∈ Π with a ≺ p ≺ b. In this case we use the
notation a ≺· b.
Proposition 6.1.1. An irredundant representation of KΠ is given by

KΠ =

{
φ ∈ RΠ :

0 ≤ φ(m) if m ∈ Π is a minimum
φ(a) ≤ φ(b) if a ≺· b

}
.

Proof. We show that the stated inequalities imply the ones in (6.0.1). For
an order relation a � b, there are elements a0, a1, . . . , ak ∈ Π such that
a = a0 ≺· a1 ≺· · · · ≺· ak = b. Hence

φ(b)− φ(a) = (φ(ak)− φ(ak−1)) + · · ·+ (φ(a1)− φ(a0)) ≥ 0 .



6.1. The Geometry of Order Cones 201

Moreover, for any a ∈ Π there is a minimum m ∈ Π such that m � a and
repeating our argument yields 0 ≤ φ(a). �

1

2 3

4

Figure 6.1. The poset 3.

Our next sample is the diamond poset 3 pictured in Figure 6.1, whose
order cone

K3 =



φ ∈ R3

≥0 :

φ(1) ≥ φ(2)

≥ ≥

φ(3) ≥ φ(4)





made an appearance in Section 4.7, where we painted a geometric picture of
plane partitions. Whereas the order cones KAd and Kτ are simplicial (even
unimodular), this is not true for K3.

The dimension of K3 is 4: the strictly order-preserving map

(l(4), l(3), l(2), l(1)) = (1, 2, 3, 4)

satisfies all defining inequalities strictly and hence lies in the interior of K3.
We can expand this argument to prove:

Proposition 6.1.2. For a finite poset Π, the order cone KΠ is of dimen-
sion |Π|.

Proof. Guided by the diamond-poset example, we will construct a strictly
order-preserving map l : Π→ [d] that strictly satisfies all defining inequalities
of KΠ and hence lies in the interior of KΠ. This shows that KΠ ⊂ RΠ is full
dimensional.

We construct φ by induction on d = |Π|. For the base case d = 1, say,
Π = {1}, we simply set l(1) := 1. For d > 1, let M ∈ Π be a maximum. By
induction, there is a strictly order preserving map l : Π \ {M} → [d− 1]. We
can complete l to a map Π→ [d] by setting l(M) = d. �

Working from the bottom up, we could have also employed the strategy
of picking the low-hanging fruits: setting l(a1) := 1 for a minimum a1 ∈ Π,
then l(a2) := 2 for a minimum a2 ∈ Π \ {a1}, and so on, we can construct a
point in the interior of KΠ.
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Any map l constructed in this way is a linear extension, that is, a
strictly order-preserving bijection

l : (Π,�) → ([d],≤) .

Since we assume Π = {1, . . . , d}, we may view l as a permutation of [d]. We
denote the set of linear extensions of Π by Lin(Π). That is, Lin(Π) is the
collection of all permutations l ∈ Sd for which

i ≺Π j =⇒ l(i) < l(j) (6.1.2)

for all i, j ∈ [d].
A poset Π is connected if Π 6= Π1 ]Π2 for some posets Π1,Π2, where ]

means that there are no relations between an element of Π1 and an element
of Π2. That is, Π is connected if its Hasse diagram is connected as a graph.
The following lemma implies that we lose nothing by restricting our study
to connected posets. You are asked to supply a proof in Exercise 6.1.

Lemma 6.1.3. Let Π1,Π2 be posets. Then

KΠ1]Π2 = KΠ1 × KΠ2 .

To study the facial structure of KΠ, we start by forcing equality in one
of the irredundant inequalities of Proposition 6.1.1. If m ∈ Π is a minimum,
then

KΠ ∩ {φ(m) = 0} = KΠ\{m} .

Figure 6.2 shows an example for the diamond poset.

4

2 3

1

σ(2)

σ(3)

σ(1)

K♦\{4}

Figure 6.2. A facet of K3 stemming from removing a minimum from 3.

The facet stemming from a cover relation a ≺· b is slightly more subtle to
describe:

KΠ ∩ {φ(a) = φ(b)} = KΠ′ ,

where Π′ is the poset obtained from Π by identifying the elements a and
b. Hence, the Hasse diagram of Π′ is the result of contracting the edge
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corresponding to the cover relation a ≺· b. This is plausible: every order-
preserving map φ : Π→ R≥0 that assigns a and b the same value is genuinely
an element of KΠ′ . As we hinted at already, there is a subtlety here, and

so for a poset Π, we define qΠ as the poset obtained from Π by adding an
element 0̂ that is smaller than every element in Π.

Theorem 6.1.4. Let Π be a connected poset. For every surjective order-

preserving map Ψ : Π → qΠ′ there is a face of KΠ isomorphic to KΠ′.
Conversely, for every face F � KΠ there is a poset Π′ and a surjective

order-preserving map Ψ : Π→ qΠ′ such that F ∼= KΠ′.

Proof. Let Ψ : Π→ qΠ′ be a surjective order-preserving map. Every order-

preserving map φ : Π′ → R≥0 naturally extends to qΠ′ by setting φ(0̂) := 0.
Hence we obtain a linear map T : KΠ′ → KΠ that maps φ to φ ◦Ψ, and KΠ′

is isomorphic to T (KΠ′). An order-preserving map φ : Π → R≥0 is in the
image of T if and only if

φ(a) = φ(b) if Ψ(a) = Ψ(b) and φ(a) = 0 if Ψ(a) = 0̂ .

It follows from (6.0.1) that these conditions define a nonempty face F.
For the converse statement, for a given face F � KΠ we define an

equivalence relation ∼ on qΠ by setting a ∼ b if φ(a) = φ(b) for all φ ∈ F. We

use the usual notation a for the equivalence class of a and qΠ′ := Π/∼ for the

set of all equivalence classes. In Exercise 6.2 you are asked to show that qΠ′

is a poset with partial order a �′ b if there are elements a0, a1, . . . , ak ∈ qΠ

such that a ∼ a0 � a1 ∼ a2 � · · · � ak ∼ b. The map qΠ→ qΠ′ that takes a
to a is surjective and order preserving and thus finishes the proof. �

Proposition 6.1.2 now immediately implies:

Corollary 6.1.5. Let F be a face of KΠ with corresponding surjective order

preserving map Π→ qΠ′. Then dimF = |Π′|.
Theorem 6.1.4 and Corollary 6.1.5 tell us the generators of KΠ. Namely,

if cone(u) is a ray of KΠ with corresponding surjective order-preserving map

Π→ qΠ′, then qΠ′ is a chain on two elements.
We recall from Chapter 2 that a subset F ⊆ Π is a filter if a ∈ F and

b � a imply b ∈ F . For instance, Figure 6.3 shows the five nonempty filters
of 3. We also recall that F ⊆ Π is a filter if and only if Π \ F is an order
ideal, and so filters and order ideals of Π are in one-to-one correspondence.
Thus filters are in bijection with order-preserving maps φ : Π→ [2], and so
filters get us on the trail started in the last paragraph. For a filter F ⊆ Π
we write eF : Π→ {0, 1} for the order-preserving map

eF (a) =

{
1 if a ∈ F,
0 otherwise.
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Figure 6.3. The five nonempty filters of 3.

Every subset of the antichain Ad is a filter. But not every eF spans a
generator of the corresponding order cone KAd

∼= Rd, which has exactly d
generators; so some care is needed.

Theorem 6.1.6. Let Π be a poset. A minimal set of generators for KΠ is
given by {eF : ∅ 6= F ⊆ Π connected filter}.

For example, K3 is a 4-dimensional polyhedral cone with five facets and
five generators given by the filters corresponding to

{1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}.
Since K3 is a pointed cone, we may intersect it with a hyperplane meeting
all its generators to get a 3-dimensional picture of it; see Figure 6.4.

{1} {1, 2}

{1, 2, 3}{1, 3}

{1, 2, 3, 4}

Figure 6.4. A 3-dimensional representation of K3.

Proof. We first show that the eF for nonempty connected filters F generate
KΠ. In fact, it suffices to show that the eF for all filters—connected or not—
generate KΠ: if F = F1 ] F2 is a disconnected filter, then eF = eF1 + eF2 .

Let φ ∈ KΠ. We will prove that φ is a nonnegative linear combination of
eF for some nonempty filters F by induction on

s(φ) := |{a ∈ Π : φ(a) > 0}| ,
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the size of the support of φ. If s(φ) = 0, then φ(a) = 0 for all a ∈ Π and
there is nothing to prove. For s(φ) > 0, the key observation is that

F := {a ∈ Π : φ(a) > 0}
is a filter: if b � a and a ∈ F , then φ(b) ≥ φ(a) > 0 and b ∈ F . Let
µ := min{φ(a) : a ∈ F} and define φ′ := φ− µ eF . By construction,

φ(a) ≥ µ if a ∈ F and φ(a) = 0 otherwise.

Consequently, φ′(a) ≥ 0 for all a ∈ Π. Moreover, for b � a, we have
φ′(b)−φ′(a) = φ(b)−φ(a) ≥ 0 whenever a ∈ F or b 6∈ F . If a 6∈ F but b ∈ F ,
then φ(a) = 0 and

φ′(b)− φ′(a) = φ(b)− µ ≥ 0 .

This shows that φ′ ∈ KΠ. There is at least one element a ∈ F with φ(a) = µ.
This yields s(φ′) < s(φ) and so we are done by induction and the fact that
φ = φ′ + µ eF .

To show that we cannot forgo any single connected filter F 6= ∅, suppose
that

eF = λ1 eF1 + λ2 eF2 + · · ·+ λr eFr ,

where F1, . . . , Fr are nonempty connected filters and λ1, . . . , λr > 0. We
may further assume that r is minimal. If a ∈ Fi for some 1 ≤ i ≤ r, then
eF (a) ≥ λi eFi(a) > 0 and hence Fi ⊆ F . From the minimality of r it
follows that there is a minimal element m ∈ F1 that is not contained in
any Fj with j > 1. From 1 = eF (m) = λ1 eF1(m) we deduce that λ1 = 1.
Since we assume that F is connected, there is an element a ∈ F1 such that
a ∈ Fj for some 1 < j ≤ r—otherwise we would have F = F1 ] F ′ with
F ′ = F2 ∪ · · · ∪ Fr. But then

1 = eF (a) ≥ λ1 eF1(a) + λj eFj (a) = 1 + λj ,

which implies λj = 0. Since this contradicts our assumption that r is minimal,
it can only be that r = 1. �

6.2. Subdivisions, Linear Extensions, and Permutations

We now turn to the question of how to subdivide an order cone. We have
already seen a subdivision (in fact, a triangulation) of K3 in (4.7.1):

K3 =
{
x ∈ R4

≥0 : x4 ≤ x3 ≤ x2 ≤ x1

}
∪
{
x ∈ R4

≥0 : x4 ≤ x2 ≤ x3 ≤ x1

}
.

The two cones on the right-hand side are order cones themselves, namely,
those for the permutations τ, τ ′ ∈ S4 given by

τ (1) = 4 , τ (2) = 3 , τ (3) = 2 , τ (4) = 1 ,
τ ′(1) = 4 , τ ′(2) = 2 , τ ′(3) = 3 , τ ′(4) = 1 .

In this example we can witness that the original order cone is subdivided
into order cones. This suggests studying the relationship between pairs of
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posets and their respective order cones. For two partial orders �1,�2 on the
same ground set Π we say that �2 refines �1 if for all a, b ∈ Π

a �1 b =⇒ a �2 b . (6.2.1)

Informally speaking, �2 possibly puts more relations on Π than �1. We can
say the following on the geometric side; since the ground set Π is fixed for
now, we simply write K� for the order cone of the poset (Π,�).

Proposition 6.2.1. Let �1 and �2 be partial orders on Π. Then �2 refines
�1 if and only if K�2 ⊆ K�1.

Proof. For i = 1, 2, let

Ri := {(a, b) ∈ Π×Π : a �i b} .
Then �1 is refined by �2 if and only if R1 ⊆ R2. By construction (6.0.1),
(a, b) ∈ Ri if and only if K�i is contained in the halfspace

{
φ ∈ RΠ : φ(a) ≤ φ(b)

}
.

Hence, R1 ⊆ R2 if and only if K�2 ⊆ K�1 . �

From the definition (or, geometrically, from Proposition 6.2.1) it becomes
apparent that refinement is actually a partial order on posets with the same
ground set. To make use of this, we define for a given poset (Π,�), the
partially ordered set

N (Π,�) :=
{
�′ : �′ refines �

}
.

By construction, � is the maximum in N (Π,�). What are the minimal
elements? If �2 strictly refines �1, then there are elements a, b ∈ Π that are
incomparable, i.e., a 6�1 b and b 6�1 a, but comparable with respect to �2.
Thus, �′ cannot be refined if and only if for any a, b ∈ Π, either a �′ b or
b �′ a. That is, �′ is a minimal element of N (Π,�) if and only if (Π,�′) is
a linear or total order.

Since we assume that Π = {1, 2, . . . , d}, any total order is of the form
�τ for some τ ∈ Sd. Now, if �τ refines �, then (6.2.1) together with the
definition of �τ yields

i ≺Π j =⇒ τ−1(i) < τ−1(j)

for all i, j ∈ [d]. That is, �τ refines � if and only if τ−1 ∈ Lin(Π). We define
the Jordan–Hölder set of Π as

JH(Π) :=
{
τ ∈ Sd : τ−1 ∈ Lin(Π)

}

= {τ ∈ Sd : �τ refines �} .
A linear extension l ∈ Lin(Π) tells us the position l(a) of an element a ∈ Π
in a linear order that respects the partial order �. Dually, each τ ∈ JH(Π)
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gives the elements of Π labels: the element τ(1) ∈ Π is the minimal element
in the refined order �τ .

The Jordan–Hölder set JH(Π) is exactly the set of minimal elements of
N (Π,�). In Exercise 6.3 you will explore some further properties of N (Π,�).
Now, for each �′∈ N (Π,�), we have K�′ ⊆ KΠ by Proposition 6.2.1. This
gives plenty of supply of nice cones to subdivide KΠ. A crosscut in a poset
N is an antichain {c1, . . . , cs} ⊆ N \ {0̂} such that for every maximal chain
C ⊆ N , there is a unique ci ∈ C.

Theorem 6.2.2. Let (Π,�) be a poset and N = N (Π,�) its poset of
refinements. Let �1,�2, . . . ,�s ∈ N be a collection of refinements of Π.
Then

KΠ = K�1 ∪ K�2 ∪ · · · ∪ K�s
is a dissection of KΠ if and only if �1,�2, . . . ,�s is a crosscut in N such
that every minimal element is covered uniquely.

Proof. To ease notation, we set Ki = K�i for i = 1, . . . , s. We first assume
that �1,�2, . . . ,�s is a crosscut. Due to Proposition 6.2.1, we only need to
show that KΠ ⊆ K1 ∪ · · · ∪ Ks and that dim(Ki ∩ Kj) < |Π| for all i 6= j.

We may assume that Π is naturally labelled, i.e., i ≺Π j implies i < j for
all i, j ∈ Π = [d]. For any φ ∈ KΠ, we define a refinement �φ of � as follows.
For i, j ∈ Π, we set

i �φ j if φi < φj or (φi = φj and i ≤ j) .
You are asked to check in Exercise 6.4 that �φ is a partial order relation
on Π and, in fact, a linear order. Moreover, if i ≺ j, then φi ≤ φj by
assumption and i < j by the fact that our labeling is natural; hence i ≺φ j.
Consequently, �φ is a minimal element in N and φ ∈ K�φ . By definition of
a crosscut, any maximal chain in N that starts in �φ contains �i for some
unique 1 ≤ i ≤ s. That is, �i is refined by �φ and therefore φ ∈ K�φ ⊆ K�i
using Proposition 6.2.1. Hence KΠ ⊆ K1 ∪ · · · ∪ Ks.

If dimKi ∩Kj = |Π|, then pick a generic φ in Ki ∩Kj . Genericity implies
that φ is in the interior of K�φ and hence K�φ ⊆ Ki ∩ Kj . Proposition 6.2.1
implies that �φ refines both �i and �j which contradicts the assumption
that every minimal element is uniquely covered.

For sufficiency, we can play the arguments backwards: if �i refines �j ,
then Ki ⊆ Kj , which would contradict the assumption that K1, . . . ,Ks form a
dissection. Every maximal chain C in N starts in a minimal element �τ with
τ ∈ JH(Π). For any φ in the relative interior of Kτ , there is a unique i with
φ ∈ Ki and from Proposition 6.2.1, we deduce that �i∈ C. Thus, �1, . . . ,�s
form a crosscut such that every minimal element is uniquely covered. �

A canonical crosscut of a poset that uniquely covers the minimal elements
is the set of minimal elements itself. Hence the elements in JH(Π) yield a
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subdivision of KΠ. Moreover, the cones Kτ for τ ∈ JH(Π) are simplicial and
even unimodular. We record the result of applying Theorem 6.2.2 in the
following important corollary.

Corollary 6.2.3. Let Π be a finite poset. Then

KΠ =
⋃

τ∈JH(Π)

Kτ

is a dissection into unimodular cones.

In Exercise 6.5, you are asked to verify that this is actually a triangulation
of KΠ, i.e., that the cones meet in faces.

Figure 6.5 illustrates the two linear extensions of 3. Thinking back
to (4.7.1) we now realize that the two maximal simplicial cones in the
triangulation of K3 in Section 4.7 are naturally indexed by the two linear
extensions of 3.

1

2 3

4
4

3

2

1

4

2

3

1

Figure 6.5. The two linear extensions of 3.

For the antichain Ad, every permutation τ ∈ Sd represents a linear
extension, and JH(Ad) = Sd. Corollary 6.2.3 yields

Rd≥0 = KAd =
⋃

τ∈Sd
KΓτ . (6.2.2)

Figure 6.6 shows a picture for d = 3.
Our next goal is to understand all the half-open decompositions of the

triangulation of KΠ furnished by Corollary 6.2.3. We recall that for τ ∈ Sd,
every point φ ∈ K◦τ satisfies

0 < φτ(1) < φτ(2) < · · · < φτ(d) .

In particular, any such φ is generic relative to Kσ, for all σ ∈ Sd. The
key insight, formalized below, is that HφKσ will depend only on the two
permutations τ and σ.

We recall that for a permutation ρ ∈ Sd, an index 1 ≤ i ≤ d − 1 is a
descent if ρ(i) > ρ(i+ 1). We collect the descents of ρ in the set

Des(ρ) := {i ∈ [d− 1] : ρ(i) > ρ(i+ 1)} .
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(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(
1
2
, 0, 1

2

)

(
1
2
, 1
2
, 0
)

(
0, 1

2
, 1
2

)

Figure 6.6. The triangulation (6.2.2) for d = 3.

Lemma 6.2.4. Let τ, σ ∈ Sd and let φ ∈ K◦τ . Then

HφKσ =

{
x ∈ Rd :

0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)

xσ(i) < xσ(i+1) if i ∈ Des
(
τ−1 ◦ σ

)
}
.

Proof. We need to determine the indices i for which φσ(i) > φσ(i+1). By
construction,

φs > φt if and only if τ−1(s) > τ−1(t) (6.2.3)

for 1 ≤ s, t ≤ d. Hence φσ(i) > φσ(i+1) if and only if

τ−1(σ(i)) > τ−1(σ(i+ 1)) ,

that is, if and only if i ∈ Des(τ−1 ◦ σ). �

If i is not a descent of ρ, then it is an ascent: ρ(i) < ρ(i+ 1). We likewise
record the ascents of ρ in the set Asc(ρ). The half-open cone reciprocal to
HφKσ excludes the complementary facets, that is, those corresponding to
ascents of τ−1 ◦ σ and, additionally, the facet xσ(1) = 0:

HφKσ =

{
x ∈ Rd :

0 < xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)

xσ(i) < xσ(i+1) if i ∈ Asc(τ−1 ◦ σ)

}
.

If Π is naturally labelled, then the identity permutation τ(i) = i for i ∈ [d]
is in JH(Π) and we can conveniently construct a half-open decomposition
with respect to φ(i) := i for all i ∈ Π. In anticipation of the following
sections, we exercise this on the antichain Ad. Corollary 5.3.5 gives in this
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case

Rd≥0 =
⊎

σ∈Sd

{
x ∈ Rd :

0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)

xσ(i) < xσ(i+1) if i ∈ Des(σ)

}
, (6.2.4)

Rd>0 =
⊎

σ∈Sd

{
x ∈ Rd :

0 < xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)

xσ(i) < xσ(i+1) if i ∈ Asc(σ)

}
. (6.2.5)

6.3. Order Polytopes and Order Polynomials

For a given poset (Π,�), let

Π̂ := Π ∪
{

1̂
}
,

the poset obtained by adding an element 1̂ to Π that is larger than any
member of Π and keeping the remaining relations. By construction, every
order-preserving map φ ∈ K

Π̂
satisfies φ(a) ≤ φ(1̂) for all a ∈ Π. In particular,

all nonempty filters of Π̂ contain 1̂ and, using Theorem 6.1.6, we find that
every ray of K

Π̂
inevitably meets the hyperplane H = {φ : φ(1̂) = 1}. The

polytope H ∩ K
Π̂

is called the order polytope of Π and is given by

OΠ :=

{
φ ∈ RΠ :

0 ≤ φ(p) ≤ 1 for all p ∈ Π
φ(a) ≤ φ(b) for all a � b

}
. (6.3.1)

Our two polyhedral constructions for posets Π are intimately connected:
the homogenization hom(OΠ) is canonically isomorphic to K

Π̂
; see Exer-

cise 6.7. The correspondence between polytopes and their homogenizations
allows us to deduce several properties of OΠ from those of K

Π̂
. To start with

a simple implication,

dimOΠ = dimK
Π̂
− 1 =

∣∣Π̂
∣∣− 1 = |Π| .

More importantly, all nonempty filters of Π̂ contain 1̂ and hence are connected.
Theorem 6.1.6 thus shows the following.

Corollary 6.3.1. Let Π be a finite poset. The vertices of OΠ are exactly
eF , where F ⊆ Π ranges over all filters of Π.

Proof. The vertices of OΠ correspond to the rays of K
Π̂

. Theorem 6.1.6

says that the rays are spanned by the nonempty connected filters of Π̂. All

nonempty filters of Π̂ are connected and the map F 7→ F ∪ {1̂} gives a

bijection between the filters of Π and the nonempty filters of Π̂. �

We can verify this corollary for the sample posets we have seen so far: if
Π = Ad is an antichain, every subset is a filter, and so the vertices of OΠ are
all possible vectors with 0/1 entries. This confirms that OΠ = [0, 1]d.

If Π = [d] is a (naturally labelled) chain, the filters are of the form
{j, j+ 1, . . . , d} for any 0 ≤ j ≤ d, and so OΠ is a (unimodular) simplex with
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vertices 0, ed, ed−1 + ed, . . . , e1 + e2 + · · ·+ ed. (Similar simplices surfaced
in Section 5.1.)

If Π = 3, the filters are the ones shown in Figure 6.3 plus the empty
filter, and so OΠ has vertices 0, e1, e1 + e2, e1 + e3, e1 + e2 + e3, and
e1 + e2 + e3 + e4.

Corollary 6.3.1 says, in particular, that any order polytope is a lattice
polytope. Stronger even, its vertices have coordinates in {0, 1} and so an
order polytope is a 0/1-polytope (like those appearing in Exercise 5.48). By
Ehrhart’s Theorem (Corollary 5.1.2), ehrOΠ

(n) is a polynomial in n. In fact,
we know this polynomial quite well.

Proposition 6.3.2. Let Π be a finite poset. Then

ΩΠ(n) = ehrOΠ
(n− 1) .

Proof. Let f ∈ (n−1)OΠ∩ZΠ. Thus, by definition, f is an order-preserving
map with range f(Π) ⊆ {0, 1, . . . , n − 1}. So, if we define the map φ by
φ(p) := f(p) + 1 for p ∈ Π, then φ is order preserving with φ(Π) ⊆ [n]. This
argument works also in the other direction and proves that the lattice points
in (n−1)OΠ are in bijection with order-preserving maps into the n-chain. �

Proposition 6.3.2, with assistance from Corollaries 5.1.2 and 6.3.1, gives
an alternative, geometric proof that ΩΠ(n) agrees with a polynomial of
degree |Π| (Proposition 1.3.1). This geometric point of view also yields an
alternative proof for the reciprocity theorem for order polynomials.

Second proof of Theorem 1.3.2. Essentially by the same argument as in
our proof of Proposition 6.3.2, we realize that the lattice points in (n+ 1)O◦Π
are in bijection with strictly order-preserving maps into the n-chain and
hence

Ω◦Π(n) = ehrO◦Π(n+ 1) . (6.3.2)

Thus, by Ehrhart–Macdonald reciprocity (Theorem 5.2.3),

Ω◦Π(−n) = ehrO◦Π(−n+ 1) = (−1)|Π| ehrOΠ
(n− 1) = (−1)|Π|ΩΠ(n) . �

Much more can be said about the facial structure of OΠ, and we defer this
to Exercises 6.8 and 6.12. In the remainder of this section, we will focus on
a canonical subdivision of OΠ. Of course, Theorem 6.2.2 and, in particular,
Corollary 6.2.3 apply to OΠ. We choose, however, to use the combinatorial
triangulation of Section 5.7. To start, we need to fix an ordering on the
vertices of OΠ, that is, the filters of Π. We already used a partial order on
filters: we recall from Section 2.1 that the collection of filters J (Π) of Π
ordered by inclusion is the Birkhoff lattice. Now choose any refinement to a
total order, i.e., pick any linear extension of J (Π). In Exercise 6.13, you will
show that this choice will not affect the resulting triangulation.
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Following the procedure outlined in (5.7.1), we pick the first vertex in
our chosen order, which is the unique minimum F = ∅ of J (Π). Next, we
need to determine the faces of OΠ that do not contain eF = 0. Actually, we
need to know only the facets of OΠ, and from Proposition 6.1.1 applied to
K

Π̂
, we infer that these are exactly

FM = OΠ ∩
{
φ ∈ RΠ : φ(M) = 1

}

for a maximum M ∈ Π.

Theorem 6.3.3. Let Π be a finite poset. The simplices of a pulling triangu-
lation of OΠ for an ordering that refines that of J (Π) are given by

Z(F) := conv (eF0 , eF1 , . . . , eFk) ,

where F = {F0 ⊂ F1 ⊂ · · · ⊂ Fk} is a chain of filters in Π. In particular, as
a partially ordered set, Pull(OΠ) is isomorphic to the order complex ∆(J (Π)).

Proof. We prove the claim by induction on d = |Π|. For d = 1 and Π = {a},
OΠ is already a simplex with vertices e∅ = 0 and eΠ = 1.

For d ≥ 2, according to (5.7.1), the pulling triangulation of OΠ is obtained
by adding the vertex e∅ to all simplices of Pull(FM ) for a maximum M ∈ Π.

Now, FM is linearly isomorphic to OΠ\{M} by projecting onto RΠ\{M}. The
vertex to pull in FM is e{M} which, under the linear isomorphism, corresponds
to the empty filter in Π\{M}. Hence, by induction, the simplices in Pull(FM )
are given by chains of filters of the form

{M} ⊆ F1 ⊂ F2 ⊂ · · · ⊂ Fk ,

and adding F0 = ∅ to these chains completes the proof. �

We will denote the triangulation of Theorem 6.3.3 by TΠ and refer to it as
the canonical triangulation of OΠ. To be honest, the pulling triangulation
of Theorem 6.3.3 is actually the triangulation of K

Π̂
given in Corollary 6.2.3

restricted to the hyperplane
{
φ ∈ RΠ̂ : φ(1̂) = 1

}
.

To make this more concrete, we need to relate linear extensions of Π to
saturated chains in J (Π). We saw this connection already a couple of times.
If l ∈ Lin(Π) is a linear extension of Π, then

Fi := {a ∈ Π : l(a) > |Π| − i} , (6.3.3)

for i = 0, . . . , |Π|, yields a maximal chain of filters. Conversely, if F0 ⊂
F1 ⊂ · · · ⊂ Fk is a saturated chain of filters, then F0 = ∅, Fk = Π, and
|Fi \ Fi−1| = 1 for all 1 ≤ i ≤ k; see Exercise 6.14. In particular, k = |Π|. If
we define a map l : Π→ [k] by

l(a) := min (i : a ∈ Fi) (6.3.4)
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for a ∈ Π, then you may verify that l is a linear extension. This shows the
following.

Lemma 6.3.4. Saturated chains in J (Π) are in bijection with linear exten-
sions of Π.

Every linear extension of Π̂ yields a linear extension of Π and vice versa.

Proposition 6.3.5. Let F be a saturated chain of filters in Π and let l be
the corresponding linear extension. The simplex Z(F) of TΠ satisfies

Z(F) =
{
φ : 0 ≤ φ

(
l−1(1)

)
≤ φ

(
l−1(2)

)
≤ · · · ≤ φ

(
l−1(d)

)
≤ 1
}
.

Proof. Let a1, . . . , ad be the elements of Π such that Fi \ Fi−1 = {ad+1−i}
and l(ai) = i for i = 1, . . . , d. In particular, Fj = {ad+1−j , . . . , ad} for
j = 0, . . . , d. Therefore, eFj (a1) ≥ 0 for all j and = 0 only if j = d.
Likewise, eFj (ad) ≤ 1 for all j and < 1 only if j = 0. By the same token,
eFj−1(ai) ≤ eFj (ai) for all j, and the inequality is strict only if j + i = d+ 1.
Thus, the d+ 1 linear inequalities given in the proposition are facet defining
for Z(F). �

If we assume that Π = {1, 2, . . . , d} carries a natural labeling, then the
Jordan–Hölder set JH(Π) is comprised of all permutations τ ∈ Sd such that
τ−1 is a linear extension of Π. The inequality description featured in Propo-
sition 6.3.5 then says that the maximal cells in the canonical triangulation
are exactly the simplices

4τ =
{

x ∈ Rd : 0 ≤ xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(d) ≤ 1
}

from Section 5.1. By Exercise 5.6, these are unimodular simplices.

Corollary 6.3.6. The canonical triangulation TΠ of OΠ is regular and
unimodular.

In Exercise 6.15 you will show that all pulling triangulations of OP are
unimodular. In particular, if Π = Ad, then OΠ = [0, 1]d and the canonical
triangulation is exactly the one from Proposition 5.1.9.

Next, we zoom in on the faces triangulating the interior of OΠ.

Proposition 6.3.7. Let F = {F0 ⊂ · · · ⊂ Fk} be a chain of filters of Π.
The corresponding simplex Z(F) in TΠ is contained in the boundary of OΠ if
and only if F0 6= ∅, Fk 6= Π, or there are a, b ∈ Fj \Fj−1 for some 1 ≤ j ≤ k
such that a ≺Π b.

Proof. If F0 6= ∅, then there is some p ∈ ⋂k
i=0 Fi. Consequently, eFi(p) = 1

for all i and by (6.3.1), Z(F) lies in the supporting hyperplane {φ : φ(p) = 1}.
Similarly, if there is some p ∈ Π \ Fk, then Z(F) ⊂ {φ : φ(p) = 0}. The
last condition implies that there is no i with b ∈ Fi and a 6∈ Fi. Thus, the
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defining property of filters forces eFi(a) = eFi(b) for all i, and so Z(F) lies in
the boundary of OΠ. Conversely, if Z(F) lies in the boundary of OΠ, then all
points in Z(F) satisfy one of the defining inequalities of OΠ, and reversing
the arguments yields the claim. �

Since the triangulation TΠ is unimodular, we know from Corollary 5.6.6
that the Ehrhart polynomial of OΠ depends only on the combinatorics of
∆(J (Π)). We write f int

k = f int
k (TΠ) for the number of k-dimensional faces

that are contained in the interior of OΠ. Recalling that
(
n−1
k

)
is the Ehrhart

polynomial for the interior of a unimodular k-simplex, we deduce that

Ω◦Π(n) = ehrO◦Π(n+1) = f int
d

(
n

d

)
+f int

d−1

(
n

d− 1

)
+· · ·+f int

1

(
n

1

)
. (6.3.5)

From the proof of Proposition 1.3.1, we can interpret the numbers f int
k ,

and Exercise 6.16 asks for bijective proof.

Corollary 6.3.8. Let Π be a finite poset. The number of interior k-faces in
the canonical triangulation TΠ of OΠ equals the number of surjective strictly
order-preserving maps from Π to the k-chain.

Corollary 6.3.8 also gives a clear geometric reason for Corollary 2.2.3.
All full-dimensional cells in TΠ are contained in the interior. This yields the
following beautiful fact that we will revisit in the next chapter.

Corollary 6.3.9. Let Π be a poset on d elements. The leading coefficient
of d! · ΩΠ(n) equals the number of linear extensions of Π.

Proof. The leading coefficient of ΩΠ(n) = (−1)d Ω◦Π(−n) is 1
d!f

int
d (TΠ). The

claim then follows with help from Lemma 6.3.4 or Exercise 6.16. �

The existence of a unimodular triangulation of OΠ brings forward the
question of what the h∗-vector of EhrOΠ

(z) might tell us about Π. This is
what we will look into next. As a first step, we observe that the simplices
triangulating OΠ are restrictions of the simplicial cones of Section 6.2. By a
slight abuse of notation, we set τ(d+ 1) = d+ 1 for any permutation τ ∈ Sd.

Corollary 6.3.10. The canonical triangulation TΠ is the restriction of the
triangulation of K

Π̂
given in Corollary 6.2.3 by

4τ = Kτ ∩ {φ : φd+1 = 1}
for τ ∈ JH(Π).

Theorem 5.5.3 states that h∗i (OΠ) equals the number of simplices in
a half-open decomposition of the canonical triangulation TΠ, from which
i facets were removed. Since we assume that Π = {1, . . . , d} is naturally
labelled, we can use φ ∈ Rd with φ(i) = i

d+1 for i ∈ Π as the point from
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which we construct a half-open decomposition. Lemma 6.2.4 together with
Corollary 6.3.10 then yields

Hφ4τ =

{
x ∈ Rd :

0 ≤ xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(d)

xτ(i) < xτ(i+1) if i ∈ Des (τ)

}
. (6.3.6)

We write des(τ) := |Des(τ)| for the number of descents of τ ∈ Sd.

Theorem 6.3.11. Let Π = {1, . . . , d} be a naturally labelled poset with
Jordan–Hölder set JH(Π) ⊆ Sd. Then

h∗OΠ
(z) =

∑

τ∈JH(Π)

zdes(τ) .

That is, h∗i (OΠ) equals the number of permutations τ ∈ JH(Π) with i descents.

Proof. Equation (6.3.6) together with Lemma 5.5.4 gives

h∗Hφ4τ (z) = zdes(τ)

for τ ∈ JH(Π). By the additivity (5.5.2) of h∗-vectors of half-open polytopes
in a half-open decomposition, we then conclude

h∗OΠ
(z) =

∑

τ∈JH(Π)

h∗Hφ4τ (z) =
∑

τ∈JH(Π)

zdes(τ) . �

With Proposition 6.3.2, we can rephrase Theorem 6.3.11 in terms of order
polynomials.

Corollary 6.3.12. Let Π = {1, . . . , d} be a naturally labelled poset with
Jordan–Hölder set JH(Π) ⊆ Sd. Then

1

z

∑

n≥1

ΩΠ(n) zn =

∑
τ∈JH(Π) z

des(τ)

(1− z)d+1
.

To see Theorem 6.3.11 in action, we consider our favorite two families of
posets. First, if Π is a (naturally labelled) chain, we already know that OΠ

is unimodular simplex, and consequently h∗OΠ
(z) = 1. This is confirmed by

the fact that, in this case, JH(Π) consists only of the identity permutation.
For the special case that Π = Ad is the antichain on d elements and hence

OΠ = [0, 1]d is the unit cube, Theorem 6.3.11 recovers the famous Eulerian
polynomial

sd(z) := s(d, 0) + s(d, 1) z + · · ·+ s(d, d− 1) zd−1 .

The Eulerian numbers s(d, k) count permutations τ ∈ Sd with k descents
and were introduced in Theorem 5.7.7.

Corollary 6.3.13. For d ≥ 1,

h∗[0,1]d(z) = h∗OAd
(z) =

∑

τ∈Sd
zdes(τ) = sd(z) .
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6.4. The Arithmetic of Order Cones and P -Partitions

We now bring in the machinery of Chapter 4. We start by translating (6.2.4)
into an identity of rational generating functions (and leave the analogous
integer-point transform version of (6.2.5) to Exercise 6.19). The integer-point
transform of the left-hand side of (6.2.4) is easy:

σRd≥0
(z) =

1

(1− z1) (1− z2) · · · (1− zd)
.

And from our experience gained in Section 4.8, we effortlessly compute for
the half-open cones of Lemma 6.2.4 with φ = (1, 2, . . . , d)

HφKσ =
∑

j∈Des(σ)

R>0 uσj +
∑

j∈{0,1,...,d−1}\Des(σ)

R≥0 uσj , (6.4.1)

which comes with the integer-point transform

σHφKσ(z) =

∏
j∈Des(σ) zu

σ
j

∏d−1
j=0

(
1− zu

σ
j

) =

∏
j∈Des(σ) zσ(j+1) · · · zσ(d)

∏d−1
j=0

(
1− zσ(j+1) · · · zσ(d)

) (6.4.2)

(Exercise 6.6). So the integer-point transform version of (6.2.4) is as follows.

Theorem 6.4.1.

1

(1− z1) (1− z2) · · · (1− zd)
=

∑

σ∈Sd

∏
j∈Des(σ) zu

σ
j

∏d−1
j=0

(
1− zu

σ
j

) .

Thinking back to Section 4.7, at this point we cannot help specializing
the identity in Theorem 6.4.1 to z1 = z2 = · · · = zd = q, which gives

1

(1− q)d =

∑
σ∈Sd

∏
j∈Des(σ) q

d−j

(1− q)(1− q2) · · · (1− qd) =

∑
σ∈Sd

∏
j∈Asc(σ) q

d−j

(1− q)(1− q2) · · · (1− qd)

=

∑
σ∈Sd

∏
d−j∈Asc(σ) q

j

(1− q)(1− q2) · · · (1− qd) . (6.4.3)

Here the second equation follows from the observation

{Des(σ) : σ ∈ Sd} = {Asc(σ) : σ ∈ Sd} .
We can make (6.4.3) look even nicer by defining, for each σ ∈ Sd, the
complementary permutation

σop(j) := σ(d+ 1− j) .
Complementing a permutation switches the roles of ascents and descents in
the sense that

d− j ∈ Asc(σ) if and only if j ∈ Des(σop) . (6.4.4)
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This allows us to rewrite (6.4.3) as

1

(1− q)d =

∑
σ∈Sd

∏
j∈Des(σop) q

j

(1− q)(1− q2) · · · (1− qd)

=

∑
σ∈Sd

∏
j∈Des(σ) q

j

(1− q)(1− q2) · · · (1− qd) , (6.4.5)

where the last equation follows from the fact that {σop : σ ∈ Sd} = Sd.
The right-hand side of (6.4.5) motivates the definition

maj(σ) :=
∑

j∈Des(σ)

j ,

the major index of σ. Now the summands in the numerator on the right-
hand side of (6.4.5) are simply qmaj(σ), and in fact (6.4.5) gives a distribution
of this statistic:

∑

σ∈Sd
qmaj(σ) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qd−1) . (6.4.6)

The factors on the right are q-integers, commonly abbreviated through

[n]q := 1 + q + · · ·+ qn−1. (6.4.7)

We can thus rewrite (6.4.6) compactly as
∑

σ∈Sd
qmaj(σ) = [1]q [2]q · · · [d]q ,

and the right-hand side is, in turn, (naturally!) often abbreviated as [d]q!,
an example of a q-factorial.

With a small modification, we can see the permutation statistic from
Section 6.3 appearing. Namely, the order cone of an antichain appended by
a maximal element is

K
Âd

=
{

x ∈ Rd+1 : 0 ≤ x1, x2, . . . , xd ≤ xd+1

}
.

The contemplations of the previous two pages apply almost verbatim to this
modified situation. The analogues of (6.2.4) and (6.2.5) are the half-open
unimodular triangulations

K
Âd

=
⊎

σ∈Sd

{
x ∈ Rd+1 :

0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d) ≤ xd+1

xσ(j) < xσ(j+1) if j ∈ Des(σ)

}
,

(6.4.8)

K◦
Âd

=
⊎

σ∈Sd

{
x ∈ Rd+1 :

0 < xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d) < xd+1

xσ(j) < xσ(j+1) if j ∈ Asc(σ)

}
,

(6.4.9)
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and the analogue of (6.4.2), i.e., the integer-point transforms of one of the
cones on the right-hand side of (6.4.8), is

∏
j∈Des(σ) zu

σ
j +ed+1

∏d
j=0

(
1− zu

σ
j +ed+1

) =

∏
j∈Des(σ) zσ(j+1) · · · zσ(d)zd+1

∏d
j=0

(
1− zσ(j+1) · · · zσ(d)zd+1

) . (6.4.10)

On the other hand, the integer-point transform of K
Âd

is, practically by

definition,

σK
Âd

(z) =
∑

n≥0

(1 + z1 + · · ·+ zn1 ) · · · (1 + zd + · · ·+ znd ) znd+1 ,

and so (6.4.8) implies
∑

n≥0

(1 + z1 + · · ·+ zn1 ) · · · (1 + zd + · · ·+ znd ) znd+1

=
∑

σ∈Sd

∏
j∈Des(σ) zu

σ
j +ed+1

∏d
j=0

(
1− zu

σ
j +ed+1

) . (6.4.11)

It is evident, already from the definition of Âd, that the role of zd+1 is
different from that of the other variables, and so we now specialize (6.4.11)
to zd+1 = z and z1 = z2 = · · · = zd = q:

∑

n≥0

(1 + q + · · ·+ qn)d zn =

∑
σ∈Sd

∏
j∈Des(σ) q

d−jz

(1− z)(1− qz)(1− q2z) · · · (1− qdz)

=

∑
σ∈Sd

∏
j∈Des(σ) q

jz

(1− z)(1− qz)(1− q2z) · · · (1− qdz) . (6.4.12)

Here the last equation follows with the same change of variables as in (6.4.3)
and (6.4.5); you ought to check this in Exercise 6.22. In the numerator of the
right-hand side of (6.4.12) we again see the major index of the permutation
σ appearing, alongside its descent number des(σ) = |Des(σ)|, which made
its first appearance in Section 6.3. With the abbreviation (6.4.7), we can
thus write (6.4.12) compactly in the following form.

Theorem 6.4.2.
∑

n≥0

[n+ 1]dq z
n =

∑
σ∈Sd q

maj(σ)zdes(σ)

(1− z)(1− qz)(1− q2z) · · · (1− qdz) .

Specializing this identity for q = 1 recovers the special case Π = Ad of
Theorem 6.3.11:

∑

n≥0

(n+ 1)d zn =

∑
σ∈Sd z

des(σ)

(1− z)d+1
,
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and the numerator polynomial
∑

σ∈Sd z
des(σ) is an Eulerian polynomial. The

joint distribution for (maj,des) given by Theorem 6.4.2 is known as an
Euler–Mahonian statistic.

The computations for order cones of an antichain, leading up to The-
orem 6.4.1 and (6.4.11), are surprisingly close to those for a general finite
poset Π, even though an antichain seems to be a rather special poset. The
reason for this similarity is geometric: in the general case, the unimodular
triangulation (6.2.2)—which resulted in (6.2.4) and thus ultimately in the
integer-point transform identities above—gets replaced by the more general
Corollary 6.2.3. The “only” difference is that the unions and sums on the
right-hand sides of the various decomposition formulas of the previous section
will now be taken not over the full set Sd of permutations of [d], but rather
only over those τ ∈ Sd that are in the Jordan–Hölder set of Π.

The next step is to make the triangulation

KΠ =
⋃

τ∈JH(Π)

Kτ

of Corollary 6.2.3 disjoint, analogous to (6.2.4). For the rest of this section,
except for Theorem 6.4.9 at the very end, we will assume that Π = [d] is nat-
urally labelled. This has the convenient consequence that φ = (1, 2, . . . , d) ∈
K◦Π, which means, in turn, that ascents and descents play exactly the same
role in our decomposition formulas as in the previous section, and we can
literally repeat their proofs to arrive at the following results.

Theorem 6.4.3. Let Π = [d] be a naturally labelled poset. Then

KΠ =
⊎

τ∈JH(Π)

{
x ∈ Rd :

0 ≤ xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(d)

xτ(j) < xτ(j+1) if j ∈ Des(τ)

}
,

K◦Π =
⊎

τ∈JH(Π)

{
x ∈ Rd :

0 < xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(d)

xτ(j) < xτ(j+1) if j ∈ Asc(τ)

}
,

K
Π̂

=
⊎

τ∈JH(Π)

{
x ∈ Rd :

0 ≤ xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(d) ≤ xd+1

xτ(j) < xτ(j+1) if j ∈ Des(τ)

}
,

K◦
Π̂

=
⊎

τ∈JH(Π)

{
x ∈ Rd :

0 < xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(d) < xd+1

xτ(j) < xτ(j+1) if j ∈ Asc(τ)

}
.

Corollary 6.4.4. Let Π = [d] be a naturally labelled poset. Then

σKΠ
(z) =

∑

τ∈JH(Π)

∏
j∈Des(τ) zu

τ
j

∏d−1
j=0

(
1− zu

τ
j

)
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and

σK
Π̂

(z) =
∑

τ∈JH(Π)

∏
j∈Des(τ) zu

τ
j+ed+1

∏d
j=0

(
1− zu

τ
j+ed+1

) .

The analogous integer-point transforms for K◦Π and K◦
Π̂

are the subject of

Exercise 6.23. Stanley reciprocity (Theorem 5.4.2) gives an identity between
the rational functions σK

Π̂
(z) and σK◦

Π̂
(z). In the case of order cones, Stanley

reciprocity is equivalent to the following interplay of ascents and descents.

Corollary 6.4.5. Let Π = [d] be naturally labelled. Then

∑

τ∈JH(Π)

∏
j∈Des(τ) z−u

τ
j

∏d−1
j=0

(
1− z−u

τ
j

) = (−1)d z1z2 · · · zd
∑

τ∈JH(Π)

∏
j∈Asc(τ) zu

τ
j

∏d−1
j=0

(
1− zu

τ
j

) .

A natural next step, parallel to the beginning of this section, is to
specialize the variables in the integer-point transforms of order cones. This
yields two applications of the theorems in the previous section; the first
concerns order polynomials and parallels part of our treatment of order
polytopes in Section 6.3. Given a poset Π = [d], we consider

K
Π̂

=

{
x ∈ Rd+1 :

0 ≤ xj ≤ xd+1 for all 1 ≤ j ≤ d
j � k ⇒ xj ≤ xk

}
.

Integer points in this order cone with a fixed xd+1-coordinate are precisely
order-preserving maps Π→ [0, xd+1] ∩ Z. Thus

σK
Π̂

(1, 1, . . . , 1, z) =
∑

n≥0

#(order-preserving maps Π→ [0, n] ∩ Z) zn

=
∑

n≥1

#(order-preserving maps Π→ [0, n− 1] ∩ Z) zn−1

=
1

z

∑

n≥1

#(order-preserving maps Π→ [1, n] ∩ Z) zn

=
1

z

∑

n≥1

ΩΠ(n) zn, (6.4.13)

and so the second identity in Corollary 6.4.4 gives another derivation of
Corollary 6.3.12. This line of reasoning allows us to give yet another proof
of the reciprocity theorem for order polynomials.

Third proof of Theorem 1.3.2. One object of Exercise 6.23 is the integer-
point transform of K◦

Π̂
, whose specialization involves the number asc(τ) of

ascents of a permutation τ :

σK◦
Π̂

(1, 1, . . . , 1, z) =

∑
τ∈JH(Π) z

2+asc(τ)

(1− z)d+1
.
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On the other hand, a computation exactly parallel to (6.4.13) gives (Exer-
cise 6.25)

σK◦
Π̂

(1, 1, . . . , 1, z) = z
∑

n≥0

Ω◦Π(n) zn, (6.4.14)

and so we obtain

∑

n≥0

Ω◦Π(n) zn =

∑
τ∈JH(Π) z

1+asc(τ)

(1− z)d+1
.

Now Asc(τ) ]Des(τ) = [d− 1] for every τ ∈ Sd, and so by Theorem 4.1.6,

∑

n≥1

Ω◦(−n) zn = −
∑

τ∈JH(Π) z
−1−asc(τ)

(
1− 1

z

)d+1

= (−1)d
zd+1

∑
τ∈JH(Π) z

des(τ)−d

(1− z)d+1

= (−1)d
∑

τ∈JH(Π) z
des(τ)+1

(1− z)d+1

= (−1)d
∑

n≥1

ΩΠ(n) zn. �

An important special evaluation at the beginning of this section was
z = (q, q, . . . , q) in the integer-point transform of Rd≥0, the order cone of the
antichain Ad. For a general order cone, this gives, with the first identity of
Corollary 6.4.4,

σKΠ
(q, q, . . . , q) =

∑
τ∈JH(Π)

∏
j∈Des(τ) q

d−j

(1− q)(1− q2) · · · (1− qd)

=

∑
τ∈JH(Π)

∏
j∈Asc(τop) q

j

(1− q)(1− q2) · · · (1− qd) ; (6.4.15)

here the second equation follows from (6.4.4). With the definition of the
comajor index

comaj(τ) :=
∑

j∈Asc(τ)

j ,

the denominator on the right-hand side of (6.4.15) can be compactly written

as
∑

τ∈JH(Π) q
comaj(τop).

This brings back memories of Chapter 4, and in fact the generating
function on the left-hand side of (6.4.15) enumerates certain compositions:

σKΠ
(q, q, . . . , q) =

∑
qa1+a2+···+ad ,

where the sum is over all (a1, a2, . . . , ad) ∈ Zd≥0 such that

j � k =⇒ aj ≤ ak . (6.4.16)
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In this case we say that the composition (a1, a2, . . . , ad) respects the poset Π.
In this language, a partition is a composition that respects a chain,1 a general
composition (in the sense of Section 4.2) is a composition that respects an
antichain (yes, that’s as close to an oxymoron as we will get in this book), and
the plane partitions of Section 4.3 are situated between these two extremes:
in their simplest instance (4.3.1), they are compositions that respect the
diamond poset 3.

Furthermore, if we interpret the composition (a1, a2, . . . , ad) as a function
Π → Zd≥0, then (6.4.16) says that this function is order preserving. The

rational functions in (6.4.15) represent the generating function of the counting
function for compositions satisfying (6.4.16). Here is what we have proved.

Theorem 6.4.6. Let Π = [d] be naturally labelled, and let cΠ(n) be the
number of compositions of n that respect Π. Then

∑

n≥0

cΠ(n) qn =

∑
τ∈JH(Π) q

comaj(τop)

(1− q)(1− q2) · · · (1− qd) .

For example, when Π = 3 is the diamond poset, the two permutations
in S4 that respect 3 are the identity [1234] and the permutation [1324]
switching 2 and 3. Here

comaj ([1234]op) = 0 and comaj ([1324]op) = 2

and so Theorem 6.4.6 gives

∑

n≥0

c3(n) qn =
1 + q2

(1− q)(1− q2)(1− q3)(1− q4)

=
1

(1− q)(1− q2)2(1− q3)
,

confirming once more (4.3.2).
By now you might expect a reciprocity theorem for cΠ(n), and the natural

candidate for a counting function that is reciprocal to cΠ(n) is the number
of compositions of n whose parts satisfy

j ≺ k =⇒ aj < ak .

(As above, we allow 0 as a part, i.e., such a composition might have less than
d positive parts.) We say that such a composition strictly respects Π, and
we count them with the function c◦Π(n). We define the two accompanying
generating functions as

CΠ(q) :=
∑

n≥0

cΠ(n) qn and C◦Π(q) :=
∑

n≥0

c◦Π(n) qn.

1 More generally, as long as Π is connected and naturally labelled, compositions that respect
Π are partitions.
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Theorem 6.4.7. The rational generating functions CΠ(q) and C◦Π(q) are
related via

CΠ

(
1

q

)
= (−q)|Π|C◦Π(q) .

Proof. A composition that strictly respects Π, viewed as an integer point
(a1, a2, . . . , ad) ∈ Zd, satisfies

(a1 + 1, a2 + 1, . . . , ad + 1) ∈ K◦Π ,

which directly translates to

qd
∑

n≥0

c◦Π(n) qn = σK◦Π(q, q, . . . , q) . (6.4.17)

Stanley reciprocity (Theorem 5.4.2) applied to the order cone KΠ specializes
to

σKΠ

(
1

q
,
1

q
, . . . ,

1

q

)
= (−1)d σK◦Π(q, q, . . . , q) .

Now use (6.4.17) and the fact that σKΠ
(q, q, . . . , q) = CΠ(q). �

While our composition counting function cΠ(n) appears most naturally
from the viewpoint of posets and order preserving maps, the right-hand side
of the formula in Theorem 6.4.6 is not quite as aesthetic as, say, that of
Theorem 6.4.2. The remedy is to instead consider order reversing maps,
which gives rise to the theory of P -partitions.2 On the one hand, this point
of view is philosophically no different from our treatment of compositions
respecting a given poset; on the other hand, its history is older and, again,
the ensuing formulas are prettier.

Given a poset Π = [d], we call (a1, a2, . . . , ad) ∈ Zd≥0 a Π-partition3 of n
if

n = a1 + a2 + · · ·+ ad

and

j � k =⇒ aj ≥ ak ,
that is, the map Π→ Z≥0 given by (a1, a2, . . . , ad) is order reversing. The
reciprocal concept is that of a strict Π-partition of n, for which the last
condition is replaced by

j ≺ k =⇒ aj > ak .

We count all Π-partitions of n with the function pΠ(n) and the strict Π-
partitions of n with p◦Π(n), with accompanying generating functions PΠ(q)
and P ◦Π(q), respectively. The easiest way to state and prove the Π-partition
analogues of Theorems 6.4.6 and 6.4.7 is to change our convention that Π is

2 Here P stands for a specific poset—for which we tend to use Greek letters such as Π to

avoid confusions with polyhedra.
3 Despite the name, a Π-partition might not be a partition when Π is not connected.
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naturally labelled to Π being dual naturally labelled, namely, when i � j
implies i ≥ j for all i, j ∈ [d]. In other words, the elements of Π are now
labelled with order-reversing indices. We can now safely leave the proof of
the following two theorems to you (Exercise 6.31).

Theorem 6.4.8. Let Π = [d] be a dual naturally labelled poset. Then

PΠ(q) =

∑
τ q

maj(τ)

(1− q)(1− q2) · · · (1− qd) ,

where the sum is over all τ ∈ Sd that satisfy τ(j) �Π τ(k) =⇒ j ≥ k.

Theorem 6.4.9. The rational generating functions PΠ(q) and P ◦Π(q) are
related by

PΠ

(
1

q

)
= (−q)|Π| P ◦Π(q) .

Notes

The order polytope was first studied by Ladnor Geissinger [69] but its full
potential was uncovered by Richard Stanley in his seminal Two poset polytopes
paper [166] in 1986. The order cone systematically studied here not only
captures the order polytopes but also many variations of it; see [9,95,171].
We will see order polytopes in a more general context in Section 7.4.

The canonical triangulation of Theorem 6.3.3 has important computa-
tional consequences: given a rational polytope in terms of inequalities, is
there a polynomial-time algorithm to compute its volume? If so, then we
could compute the number of linear extensions of a poset Π in polynomial-
time. However, Graham Brightwell and Peter Winkler [39] showed that this
is not possible.

The Eulerian numbers go back to (surprise!) Leonard Euler. For a bit
of history on how Euler got interested in these numbers, see [86]. Descent
statistics of permutations go back to at least Percy MacMahon, who proved
Theorem 6.4.2 and numerous variations of it [117]. Back then maj(σ) was
called the greater index of σ; in the 1970’s Dominique Foata suggested to
rename it major index in honor of MacMahon, who was a major in the
British army (and usually published his papers including this title) [65]. The
geometric treatment of Eulerian polynomials stemming from integer-point
transforms of suitable cones was spearheaded in [20], which also contains
analogous results when Sd is replaced by other reflection groups.

Permutation statistics, q-integers, and q-factorials are indispensable in
combinatorial number theory, in particular, the theory of partitions; see,
e.g., [4,5].

MacMahon’s study [116] of plane partitions (which we introduced in
Section 4.3) can be viewed as a first step towards P -partitions, including his
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insight that the major index of a permutation is useful here. Much later,
Knuth [101] used MacMahon’s approach to enumerate solid partitions (a
3-dimensional variant of plane partitions) by recognizing there is a poset
structure underlying MacMahon’s computations. The full glory and power
of P -partitions—in fact, their generalization treated in Exercise 6.34—were
introduced in Richard Stanley’s Ph.D. thesis [160]; a modern treatment,
from a more algebraic perspective than ours, can be found in [170]. The main
decomposition and reciprocity theorems (Theorems 6.4.8 and 6.4.9) are due
to Stanley. An application to the enumeration of Young tableaux is hinted
at in Exercise 6.35. For a sampler of other applications and generalizations
of P -partitions, see [3, 10, 47, 64, 67, 85, 118, 128, 132, 135, 177]. A nice
survey about (the history of) P -partitions is [72].

Exercises

Throughout the exercises, Π is a finite poset.

6.1 D Prove Lemma 6.1.3: KΠ1]Π2 = KΠ1 × KΠ2 .

6.2 D Verify the claims in the proof of Theorem 6.1.4: The set qΠ′ := qΠ/∼
equipped with �′ is naturally a partially ordered set and the map
qΠ→ qΠ′ is order preserving.

6.3 D Let (Π,�) be a poset and N = N (Π,�) the poset of refinements of
(Π,�).
(a) Show that any two elements in N have a join.

(b) Denote by |N the poset N extended by a minimal element 0̂. Is |N
a distributive lattice?

6.4 D Show that the binary relation �φ constructed in the proof of Theo-
rem 6.2.2 is a total order on Π.

6.5 D Show that the dissection given in Corollary 6.2.3 describes the max-
imal cells in a triangulation of KΠ. Conversely, show that not every
dissection from Theorem 6.2.2 is a subdivision.

6.6 D Prove (6.4.1): For φ = (1, 2, . . . , d),

HφKσ =
∑

j∈Des(σ)

R>0 uσj +
∑

j∈{0,1,...,d−1}\Des(σ)

R≥0 uσj ,

and conclude from this (6.4.2):

σHφKσ(z) =

∏
j∈Des(σ) zu

σ
j

∏d−1
j=0

(
1− zu

σ
j

) =

∏
j∈Des(σ) zσ(j+1) · · · zσ(d)

∏d−1
j=0

(
1− zσ(j+1) · · · zσ(d)

) .
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6.7 D Verify that hom(OΠ) = K
Π̂

.

6.8 D Let F, F ′ ⊆ Π be two distinct filters. Show that [eF , eF ′ ] is an edge
of OΠ if and only if F ⊂ F ′ and F ′ \ F is a connected poset.

6.9 What is the maximal number of vertices that a 2-face of OΠ can have?

6.10 Let F, F ′ ⊆ Π be two distinct filters. Let F ⊆ OΠ be the join of
eF and eF ′ , that is, the inclusion-minimal face that contains both
vertices. Show that F is combinatorially isomorphic to [0, 1]r, where
r = |max(F \ F ′)|+ |max(F ′ \ F )|.

6.11 Let Π be a poset and Π̂ := Π∪{1̂}. Show that O
Π̂

is a pyramid over OΠ.

6.12 Let J be a lattice. A subset J ′ ⊆ J is an induced sublattice if J ′
is a lattice and meets/joins in J ′ agree with the meets/joins in J . An
embedded sublattice is an induced sublattice J ′ ⊆ J if

a ∧ b, a ∨ b ∈ J ′ =⇒ a, b ∈ J ′ .
(a) Let Φ : Π → Π′ be a surjective order preserving map. Show that

the induced map Φ∗ : J (Π′)→ J (Π) that sends F ⊆ Π′ to Φ−1(F )
is injective.

(b) Show that the image of Φ∗ is an embedded sublattice of J (Π) and
that every embedded sublattice arises this way.

(c) Show that the face lattice of OΠ is isomorphic to the poset of
embedded sublattices of J (Π) ordered by inclusion.

6.13 D Show that the pulling triangulation of OΠ in Theorem 6.3.3 is inde-
pendent of the chosen linear extension of J (Π).

6.14 D Show that if F ′ ⊂ F ⊆ Π are two filters such that |F \ F ′| ≥ 2, then
there is a filter F ′′ with F ′ ⊂ F ′′ ⊂ F .

6.15 D Show that any pulling triangulation of OΠ is unimodular. Are they
always isomorphic to the canonical triangulation TΠ?

6.16 Prove that the number of strictly order-preserving maps of Π into a
k-chain are in bijection with chains of filters in Π of length k − 1.

6.17 Revisiting Exercise 1.19, compute Ω◦D10
(n) via linear extensions.

6.18 D Prove (6.3.2): Ω◦Π(n) = ehrO◦Π(n+ 1) .

6.19 D Theorem 6.4.1 is the generating-function analogue of (6.2.4). Derive
the generating-function analogue of (6.2.5).

6.20 Let inv(σ) := |{(j, k) : j < k and σ(j) > σ(k)}|, the number of inver-
sions of σ ∈ Sd. Show that

∑

σ∈Sd
qinv(σ) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qd−1) .

(Looking back at (6.4.6), this implies
∑

σ∈Sd q
maj(σ) =

∑
σ∈Sd q

inv(σ),

i.e., the statistics maj and inv are equidistributed.)
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6.21 Explain how (6.2.4) and (6.2.5), and subsequently Theorem 6.4.3, would
change if we had chosen φ in Sections 6.2 and 6.4 differently—still with
entries 1, 2, . . . , d, but now in some other order.

6.22 D Verify (6.4.10), (6.4.11), and (6.4.12).

6.23 D Prove the following open analogues of Corollary 6.4.4: Let Π = [d]
be naturally labelled. Then

σK◦Π(z) =
∑

τ∈JH(Π)

z1z2 · · · zd
∏
j∈Asc(τ) zu

τ
j

∏d−1
j=0

(
1− zu

τ
j

) ,

σK◦
Π̂

(z) =
∑

τ∈JH(Π)

z2
0z1z2 · · · zd

∏
j∈Asc(τ) zu

τ
j+ed+1

∏d
j=0

(
1− zu

τ
j+ed+1

) .

Deduce Corollary 6.4.5.

6.24 Give a direct proof of Corollary 6.4.5 (i.e., one that does not use
Theorem 5.4.2).

6.25 D Show (6.4.14): σK◦
Π̂

(1, 1, . . . , 1, z) = z
∑

n≥0 Ω◦Π(n) zn.

6.26 Recompute the generating function for plane partition diamonds from
Exercise 4.20 by way of the theorems in this chapter.

6.27 Show that the generating function

∑

n≥1

ΩΠ(n)zn−1 =
hΠ(z)

(1− z)d+1

has a palindromic numerator polynomial hΠ (i.e., its coefficients form a
symmetric sequence) if and only if Π is a graded poset.

6.28 Show that every Eulerian polynomial is palindromic.

6.29 Compute the order polynomial of Âd, an antichain appended by a
maximal element. (Hint: The Bernoulli polynomials from (4.9.6) will
make an appearance.)

6.30 Revisiting Exercise 2.8, let Π be the poset on 2d elements a1, a2, . . . , ad,
b1, b2, . . . , bd, defined by the relations

a1 ≺ a2 ≺ · · · ≺ ad and aj � bj for 1 ≤ j ≤ d .
Compute

∑
n≥0 ΩΠ(n)zn. (Hint: Consider permutations of the multiset

{1, 1, 2, 2, . . . , d, d}.)
6.31 D Prove Theorems 6.4.8 and 6.4.9: Let Π = [d] be dual naturally

labelled. Then

PΠ(q) =

∑
τ q

maj(τ)

(1− q)(1− q2) · · · (1− qd) ,
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where the sum is over all τ ∈ Sd that satisfy τ(j) �Π τ(k)⇒ j ≥R k.
Furthermore, the rational generating functions PΠ(q) and P ◦Π(q) are
related by

PΠ

(
1

q

)
= (−q)|Π| P ◦Π(q) .

6.32 Derive from Theorem 6.4.9 a reciprocity theorem that relates the
quasipolynomials pΠ(t) and p◦Π(t).

6.33 Let Π = [d] be dual naturally labelled. Prove that

P ◦Π(z) =

∑
τ z

comaj τ

(1− z)(1− z2) · · · (1− zd) ,

where the sum is over all τ ∈ Sd that satisfy τ(j) �Π τ(k)⇒ j ≥R k.

6.34 Given a poset Π on [d], fix a bijection ω : [d] → [d] which we call a
labeling of Π. We say (a1, a2, . . . , ad) ∈ Zd≥0 is a (Π, ω)-partition of
n if

n = a1 + a2 + · · ·+ ad ,

j � k =⇒ aj ≥ ak ,
and

j ≺ k and ω(j) > ω(k) =⇒ aj > ak .

Thus if ω is natural, then a (Π, ω)-partition is simply a Π-partition.
Generalize Theorems 6.4.8 and 6.4.9 to (Π, ω)-partitions. (Hint: Exer-
cise 6.21.)

6.35 A Young diagram associated to a partition λ = (λ1 ≥ λ2 ≥ · · · ≥
λk ≥ 1) is a collection of rows of left-justified boxes with λi boxes in
the i-th row for i = 1, . . . , k. Figure 6.7 shows a Young diagram for the
partition λ = (5, 3, 3, 1).

4

5

7

12

5

6

8

7

8

9

9 20

Figure 6.7. Young diagram and a Young tableau for λ = (5, 3, 3, 1).

(a) Putting natural numbers in the boxes of a Young diagram is called
a filling if
- the numbers weakly increase along each row, and
- the numbers strictly increase down each column.
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Find a suitable poset and use Exercise 6.34 to give them a geometric
incarnation.

(b) Let n = λ1 + · · · + λk. A filling with numbers in [n] yields a
(standard) Young tableau if the numbers also strictly increase
along rows. Show that standard Young tableaux for λ are in
bijection to linear extensions of certain posets.

6.36 Recompute the order polynomials of an antichain, a chain, and the
diamond poset 3 via (6.3.5) and Exercise 6.16.





Chapter 7

Hyperplane
Arrangements

The purely formal language of geometry describes adequately the reality of space. We
might say, in this sense, that geometry is successful magic. I should like to state a
converse: is not all magic, to the extent that it is successful, geometry?
René Thom

We begin the final chapter of this book with a look back to its first. Our
very first family of polynomials in Chapter 1 came from proper colorings of
graphs, but chromatic polynomials made no real appearance beyond that first
chapter—though they have been waiting backstage all along: Corollary 1.3.4
gave an intimate connection between chromatic and order polynomials. The
latter have played a prominent (geometric) role in several chapters since, and
one of our goals in this chapter is to illustrate how chromatic polynomials
exhibit a parallel geometric existence. The second family of polynomials in
Chapter 1, related to flows on graphs, have been all but orphaned; they will
make a well-deserved comeback here.

In this chapter we will develop a general framework that gives a coherent
picture for polynomial counting functions such as chromatic or flow poly-
nomials. The evolving theory will gently force us to revitalize hyperplane
arrangements, which we briefly introduced in Section 3.6. These, in turn, will
naturally lead us to study two special classes of polytopes: alcoved polytopes
and zonotopes.

231
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7.1. Chromatic, Order Polynomials, and Subdivisions
Revisited

Our geometric intuition behind order polynomials guided us in Chapter 6 to
realize them as Ehrhart polynomials (of order polytopes). While a chromatic
polynomial cannot be the Ehrhart polynomial of some lattice polytope (e.g.,
the constant term of a chromatic polynomial is 0, not 1), the geometric
picture implicitly painted by Corollary 1.3.4 is attractive: rewritten in the
language of Chapter 6, it says that a chromatic polynomial is the sum of
Ehrhart polynomials of open (order) polytopes, all of the same dimension
and without overlap. We will now continue this painting.

We start by recalling the construction underlying Corollary 1.3.4: an
acyclic orientation ρ of a graph G = (V,E) can be viewed as a poset Π(ρG)
by starting with the binary relations given by ρG and adding the necessary
transitive and reflexive relations. Corollary 1.3.4 states that the chromatic
polynomial can be expressed as

χG(n) =
∑

ρ

Ω◦Π(ρG)(n) , (7.1.1)

where the sum is over all acyclic orientations ρ of G, which we can rewrite
with (6.3.2) as

χG(n) =
∑

ρ

ehrO◦
Π(ρG)

(n+ 1) . (7.1.2)

The case G = K2 is depicted in Figure 7.1. The geometric expression (7.1.2)

n+ 1

n+ 1

(n+ 1)O◦

(n+ 1)O◦

x1

x2

K2

v1 v2

Figure 7.1. The geometry behind (7.1.2) for G = K2.

for the chromatic polynomial, in a sense, actually goes back to basics: what
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we are counting on the right-hand side are integer lattice points in the open
cube

(0, n+ 1)V =
{
c ∈ RV : 0 < c(v) < n+ 1 for v ∈ V

}

minus those points for which c(j) = c(k) for some edge jk ∈ E; the resulting
set naturally represents precisely the proper n-colorings c of G. The param-
eter n acts like a dilation factor, and the underlying polytope is the unit
cube in RV , which gets dissected by the hyperplanes {c(j) = c(k)}, one for
each edge jk ∈ E. This gives a subdivision that we already know—at least
a refinement of it: Proposition 5.1.9 gives a regular triangulation of [0, 1]V

into unimodular simplices, indexed by permutations of V . If G is a complete
graph (i.e., E consists of all possible pairs from V ), the above dissection is
precisely the triangulation from Proposition 5.1.9. In the general case (7.1.2),
we essentially use the triangulation from Proposition 5.1.9 but glue some
of the (open) simplices along faces; we note that the resulting subdivision
consists of lattice polytopes.

This motivates the following general geometric construct: for a polyhedral
complex S of dimension d, we write S(−1) for the codimension-1 skeleton,
that is, the subcomplex of faces F ∈ S of dimension ≤ dimS − 1. We define

ehr
[1]
S (n) to count lattice points in the n-th dilate of |S| \ |S(−1)|. That is,

ehr
[1]
S (n) = ehrS(n)− ehrS(−1)(n) =

∑

F∈S
dimF=dimS

ehrF◦(n) . (7.1.3)

Figure 7.2 shows an example.

S S \ S(−1)

Figure 7.2. Removing the codimension-1 skeleton of a polyhedral complex.

If S is a complex of lattice polytopes, then ehr
[1]
S (n) agrees with a

polynomial of degree dimS for all integers n > 0.

Proposition 7.1.1. Let S be a pure complex of lattice polytopes. Then

(−1)dimS ehr
[1]
S (−n)

is the number of lattice points in n|S|, each counted with multiplicity equal
to the number of maximal cells containing the point.
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Proof. By (7.1.3) and Ehrhart–Macdonald reciprocity (Theorem 5.2.3),

(−1)dimS ehr
[1]
S (−n) =

∑

F∈S
dimF=dimS

ehrF(n) ,

and the right-hand side counts lattice points in
⋃

F F = |S|, each weighted
by the number of facets F containing it. �

Our first concrete goal in this chapter is to adapt the above setup to
give a geometric proof of the reciprocity theorem for chromatic polynomials
(Theorem 1.1.5). We recall its statement: (−1)|V | χG(−n) equals the number
of compatible pairs (ρ, c), where c is an n-coloring and ρ is an acyclic
orientation.

We start by drawing a picture of (7.1.2) (the case G = K2 is depicted in
Figure 7.1): the order polynomials Ω◦Π(ρG)(n) on the right-hand side of (7.1.2)

are, by (6.3.2), the Ehrhart polynomials of the interiors of the respective
order polytopes, evaluated at n+ 1. Since every proper coloring gives rise
to a compatible acyclic orientation, these dilated order polytopes combined
must contain all proper n-colorings of G as lattice points. In other words,

⋃

ρ acyclic

(n+ 1)O◦Π(ρG) (7.1.4)

equals (0, n+ 1)V minus any point x with xj = xk for jk ∈ E.

Proof of Theorem 1.1.5. We consider the subdivision

S :=
{
OΠ(ρG) : ρ acyclic

}
(7.1.5)

of the cube [0, 1]V ; Exercise 7.1 asks you to verify that this is indeed a
subdivision. With (7.1.2), we can now rewrite

χG(n) = ehr
[1]
S (n+ 1) ,

and so Proposition 7.1.1 says that

(−1)|V |χG(−n) = (−1)|V | ehr
[1]
S (−n+ 1)

counts the number of lattice points in (n − 1)[0, 1]V = [0, n − 1]V , each
weighted by the number of order polytopes OΠ(ρG) containing the point.
This count equals the number of n-colorings (where we shifted the color
set to {0, 1, . . . , n− 1}), each weighted by the number of compatible acyclic
orientations. �

There is a picture reciprocal to Figure 7.1 that underlies our proof of
Theorem 1.1.5. Namely, with Proposition 6.3.2, we may think of

∑

ρ acyclic

ΩΠ(ρG)(n) (7.1.6)
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as a sum of the Ehrhart polynomials of the order polytopes OΠ(ρG) evaluated
at n− 1. As in our geometric interpretation of Corollary 1.3.4, we can think
of a lattice point in (n− 1)OΠ(ρG) as an n-coloring of G that is compatible
with ρ. Contrary to the picture behind Corollary 1.3.4, here the dilated order
polytopes overlap, and so each n-coloring gets counted with multiplicity
equal to the number of its compatible acyclic orientations (see Figure 7.3).

n− 1

n− 1

(n− 1)O

(n− 1)O

x1

x2

Figure 7.3. The geometry behind our proof of Theorem 1.1.5 for G = K2.

There is an alternative, and more general, way of looking at the above
setup and the combinatorial reciprocity exhibited by (our geometric proof
of) Theorem 1.1.5. Before we can introduce it, we need to take another look
at the combinatorics of hyperplane arrangements.

7.2. Flats and Regions of Hyperplane Arrangements

We recall from Section 3.4 that a hyperplane arrangement is a collection
H = {H1, . . . ,Hk} of affine hyperplanes in Rd. For I ⊆ [k], we write HI for
the affine subspace obtained by intersecting {Hi : i ∈ I}. In Section 3.4 we
also defined the intersection poset L(H) of H as

L(H) = {HI : HI 6= ∅, I ⊆ [k]} ,
ordered by reverse inclusion, with minimum 0̂ = Rd. This poset has a maxi-
mum precisely when all hyperplanes have a common point or, equivalently,
H is the translate of a central arrangement.

Our motivating and governing example in this section is an arrangement
stemming from a given simple graph G = (V,E). To an edge ij ∈ E we
associate the hyperplane Hij := {x ∈ RV : xi = xj}. The graphical
arrangement of G is then

HG := {Hij : ij ∈ E} . (7.2.1)
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This is a central but not essential arrangement in RV : in Exercise 7.2 you will
investigate the lineality spaces of graphical arrangements, and your findings
will imply the following.

Proposition 7.2.1. Let G = (V,E) be a simple and connected graph. The
lineality space of HG is

lineal(HG) = R1 .

Here 1 ∈ RV denotes a vector all of whose entries are 1.

Our main motivation for considering this special class of hyperplane
arrangements is that they geometrically carry quite a trove of information
about the underlying graph. Let’s take a closer look at the flats of a graphical
arrangement. The flat corresponding to S ⊆ E is

HS =
⋂

ij∈S
Hij =

{
x ∈ RV : xi = xj for all ij ∈ S

}
.

There are potentially many different sets S′ ⊆ E with HS = HS′ . Indeed,
let G[S] := (V, S), the graph with the same node set V as G but with the
(smaller) edge set S. If ij ∈ E \ S is an edge such that the nodes i and j are
in the same connected component of G[S], then xi = xj for all x ∈ HS and
hence HS∪{ij} = HS .

In general, there is always a unique inclusion-maximal S̄ ⊆ E with
HS̄ = HS . What does S̄ look like? For any edge ij ∈ E \ S̄, the endpoints i
and j should be in different connected components of G[S̄]; that is, G[S̄∪{ij}]
has strictly fewer connected components than G[S̄]. We already came across
this back in Section 2.4 where we showed that S = S̄ if and only if S ⊆ E is
a flat of G. This way, we can extend (2.4.5) from colorings to all p ∈ RV .
We define

SG(p) := {ij ∈ E : pi = pj} .
Then HSG(p) is the maximal element in L(HG) (i.e., the inclusion-minimal
affine subspace of HG) that contains p. Our way of describing the elements
of L(HG) will lead you (in Exercise 7.5) to realize that flats of HG can be
naturally identified with flats of G defined in Section 2.4.

Proposition 7.2.2. Let G = (V,E) be a graph. Then L(G) and L(HG) are
canonically isomorphic as posets.

The description of flats is reminiscent of a construction on graphs that we
introduced, somewhat informally, in Section 1.1, namely, the contraction of
an edge. To reintroduce this construct thoroughly, for e = ij ∈ E we define

G/e to be the graph (Ṽ , Ẽ), where Ṽ := V \ {j} and Ẽ consists of E \ {e}
plus all edges {ik : jk ∈ E, k 6= i}. We chose to define G/e so that no new
loops are created; all edges between i and j disappear in G/e.
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It is a short step to extend contraction from one to several edges: for S ⊆
E, we define G/S to be the graph resulting from consecutively contracting
all edges in S; Exercise 7.3 makes sure that this definition is independent
on the order with which we contract. In particular, G/S ∼= G/S̄, where S̄ is
the smallest flat of G that contains S. Figure 7.4 shows a contraction at an
edge. Of course, G/S also comes with a graphical hyperplane arrangement
and we can actually find it within HG.

u

v

w w
u = v

Figure 7.4. Contracting the edge uv.

Let F ∈ L(H) be a flat of an arrangement H. We define the restriction
of H to F as

H|F := {H ∩ F : H ∈ H, ∅ ( H ∩ F ( F} .
Since F ∩ H 6= F and F ∩ H 6= ∅, we know that F ∩ H is an affine subspace
of F of dimension dimF − 1. Hence H|F is an arrangement of hyperplanes
in F ∼= RdimF , and we invite you to establish the following in Exercise 7.6.

Proposition 7.2.3. Let G = (V,E) be a graph, S ⊆ E a flat of G, and
F ∈ L(HG) the corresponding flat of HG. Then

HG|F ∼= HG/S and L(HG|F ) ∼= L(HG/S) ,

in the sense that there is a bijection between HG|F and HG/S that induces
an order-preserving bijection between L(HG|F ) and L(HG/S).

Any hyperplane arrangement H dissects Rd into regions, and we studied
the number of regions r(H) and the number of relative bounded regions b(H)
in Section 3.6. The arrangement HG is central and hence has no relatively
bounded regions. The number of all regions of HG turns out to be a familiar
face.

We study the regions of HG based on the methodology developed in
Section 3.6. If p ∈ RV is not contained in any of the hyperplanes of HG, then
for each edge ij ∈ E, we have pi > pj or pi < pj . Each of these inequalities,
in turn, can be thought of as orienting the edge: if pj > pi, then orient ij
from i to j, and if pj < pi then orient ij from j to i. That is, we orient
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3

1 2

x2 = x3

x1 = x2

x1 = x3

Figure 7.5. The regions ofHK3 (projected to the plane x1+x2+x3 = 0)
and their corresponding acyclic orientations.

an edge so that the edge ij ∈ E is oriented towards the node having the
larger of the two distinct values pi and pj . In this way, each region of HG
gives rise to an orientation of G; see Figure 7.5 for an illustration in the
case G = K3, the complete graph on three nodes. The orientations that
we can associate with the regions of HG are precisely the acyclic ones—a
directed circle would correspond to a sequence of the nonsensical inequalities
xi1 > xi2 > · · · > xik > xi1 . We summarize:

Lemma 7.2.4. Let G = (V,E) be a graph. The regions of HG are in one-to-
one correspondence with the acyclic orientations of G. Moreover, for any flat
S ⊆ E of G with corresponding flat F ∈ L(HG), the region count r(HG|F )
equals the number of acyclic orientations of G/S.

Proof. We still need to argue that every acyclic orientation actually deter-
mines a region of HG. Let ρ be an acyclic orientation of G. A source of ρG
is a node v with no oriented edges entering v. Pick M > 1 and define p ∈ RV
iteratively as follows. Set pv = M if v is a source of ρG. As the next step,
we remove all sources from G, which leaves us with a subgraph G′ = (V ′, E′)
with V ′ ⊂ V , and G′ still carries an induced acyclic orientation. We now
repeat the procedure with M2 instead of M , etc. At some point, when we
removed the last node, we are left with a well-defined point p ∈ RV . If ρ
orients an edge ij ∈ E from i to j, then i was removed before j and hence
pj ≥M · pi > pi, which proves the first claim.

For the second claim, we simply appeal to Proposition 7.2.3. �
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The intersection poset L(H) of any arrangement in Rd is graded with
rank function

rkL(H)(F ) = d− dim lineal(H)− dimF ,

and the characteristic polynomial of H, as defined in Section 3.6, is

χH(n) =
∑

F∈L(H)

µL(H)(0̂, F )ndimF .

Our central result in Section 3.6 was Zaslavsky’s Theorem 3.6.4: if H is an
arrangement in Rd with e-dimensional lineality space lineal(H), then

r(H) = (−1)d χH(−1) and b(H) = (−1)d−e χH(1) .

This connects geometric and combinatorial quantities. Next we show how
we can use region counts to determine the Möbius function of L(H).

Complementary to the restriction, we define the localization of H at a
flat F ∈ L(H) by

H|F := {H ∈ H : F ⊆ H} .
So H|F is the largest subarrangement of H that contains F . The upshot
is that, if S �L(H) T are two flats, then T ⊆ S and the interval [S, T ]L(H)

is canonically isomorphic to L(H|TS ). This brings us closer to the Möbius
function of intersection posets of central hyperplane arrangements.

Let H = {H1, . . . ,Hm} be a central hyperplane arrangement in Rd.
An affine hyperplane H ⊂ Rd is in general position relative to H if
lineal(H) ∩ H = ∅ and

dimF ∩ H = dimF − 1 for every F ∈ L(H) \ {lineal(H)} .
Proposition 7.2.5. Let H be a central hyperplane arrangement and H0 a
hyperplane in general position relative to H. Then

L(H|H0) ∼= L(H) \ {lineal(H)}
via F 7→ F ∩ H0.

With this result in hand (whose proof we leave to Exercise 7.7), we can
give an interpretation of the values of the Möbius function of L(H).

Theorem 7.2.6. Let H be a central hyperplane arrangement and H0 a
hyperplane in general position relative to H. Then H0 meets all but

(−1)d−dim lineal(H) µL(H)(0̂, 1̂)

many regions of H.

Proof. We observe that the regions of H that meet H0 are in bijection to
the regions of H|H0 in H0

∼= Rd−1 under the map that takes a region R to
R ∩ H0 . Hence the number of regions of H missed by H0 is

r(H)− r(H|H0) = (−1)dχH(−1)− (−1)d−1χH|H0
(−1) , (7.2.2)
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by Zaslavsky’s Theorem 3.6.4. Using the definition of the characteristic
polynomial together with Proposition 7.2.5, the right-hand side in (7.2.2)
can be rewritten as∑

0̂�F�1̂

µL(H)(0̂, F )(−1)d−dimF −
∑

0̂�F≺1̂

µL(H)(0̂, F )(−1)(d−1)−(dimF−1) .

All terms cancel except for (−1)d−dim lineal(H)µL(H)(0̂, 1̂). �

We outsource the interpretation of the full Möbius function of L(H) to
Exercise 7.12.

Theorem 7.2.6 gives a pleasing interpretation of |µL(H)(0̂, 1̂)| but the quite
fascinating implication is that the number of regions missed by a hyperplane
in relative general position is always the same! For graphs this has the
following interpretation, which is not so easy to prove without appealing to
Theorem 7.2.6; do try in Exercise 7.13.

Theorem 7.2.7. Let G = (V,E) be a connected graph and let L = L(G)
be its lattice of flats. Let u ∈ V be an arbitrary but fixed node. Then
(−1)|V |µL(0̂, 1̂) is the number of acyclic orientations for which u is the
unique source.

Proof. Using Proposition 7.2.1, we may restrict HG to the hyperplane

U :=
{
x ∈ RV : xu = 0

}
.

This makes HG central and essential restricted to U ∼= R|V |−1. Exercise 7.14
verifies that the hyperplane

H0 :=

{
x ∈ U :

∑

v∈V
xv = −1

}

is in general position relative to HG.
Proposition 7.2.2 and Theorem 7.2.6 now say that (−1)|V |µL(0̂, 1̂) is the

number of regions missed by H0. By Lemma 7.2.4, the regions R of HG
correspond exactly to the acyclic orientations of G. Pick a region R such
that the corresponding acyclic orientation ρ has u as its unique source. Thus,
for any v ∈ V , there is a directed path u = v0v1 · · · vk = v, and so

0 = xu = xv0 < xv1 < · · · < xvk = xu

for every x ∈ R. It follows that xu ≥ 0 for all u ∈ V and hence

R ⊆
{

x ∈ U :
∑

v∈V
xv ≥ 0

}
.

So R cannot meet H0.
Conversely, let R be a region such that the corresponding orientation has

a source w 6= u. Then pw < pv for all uw ∈ E and all p ∈ R. In particular,
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for p ∈ R, the point q := p− λew ∈ R for any λ > 0. For sufficiently large
λ > 0, ∑

v∈V
qv < 0 ,

and scaling q by a positive scalar shows that R ∩ H0 6= ∅. �

7.3. Inside-out Polytopes

Now we pick up the thread from the end of Section 7.1. We already remarked
that (7.1.4) can be interpreted as the open cube (0, n+ 1)V minus any point
x with xj = xk for jk ∈ E; these latter points form precisely the hyperplanes
in the graphic arrangement of G.

Our next goal is to study an analogue of this setup for a general rational
d-polytope P ⊂ Rd and a general rational1 hyperplane arrangement H in Rd.
(The case that P is not full dimensional is a little subtle; for a flavor, see
Exercises 7.40 and 7.43.) Let

IP,H(n) :=
∣∣∣n
(
P \
⋃
H
)
∩ Zd

∣∣∣ =

∣∣∣∣
(
P \

⋃
H
)
∩ 1

n
Zd
∣∣∣∣ , (7.3.1)

in words: IP,H(n) counts those points in 1
nZ

d that are in the polytope P but
off the hyperplanes in H. For example, the chromatic polynomial χG(n) of a
given graph G can thus be written as

χG(n) = I(0,1)V ,HG(n+ 1) , (7.3.2)

that is, the polytope in question is the open unit cube in RV and the
hyperplane arrangement is the one associated with G.

In the absence of H, our definition (7.3.1) matches (4.6.1) giving the
Ehrhart quasipolynomial of P counting lattice points as we dilate P or,
equivalently, shrink the integer lattice Zd. We refer to (P,H) as an inside-
out polytope because we think of the hyperplanes in H as additional
boundary inside P.

The counting function IP,H(n) can be computed through the Möbius

function µ(Rd, F ) of L(H) if we know the Ehrhart quasipolynomial of P ∩ F
for each flat F .

Theorem 7.3.1. Suppose P ⊂ Rd is a rational d-polytope and H is a rational
hyperplane arrangement in Rd with Möbius function µ = µL(H). Then

IP,H(n) =
∑

F∈L(H)

µ(Rd, F ) ehrP∩F (n) .

1 A hyperplane arrangement is rational if all of its hyperplanes can be described by linear
equalities with rational (or, equivalently, integer) coefficients.
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Proof. Given a flat F ∈ L(H), we can compute ehrP∩F (n) by counting the
lattice points in the faces of H|F in the following way: each lattice point is
in the interior of a unique minimal face Q of H|F , and Q is a region of H|G
for some flat G ⊆ F (more precisely, G is the affine span of Q). Thus our
lattice point is one of the points counted by IP∩G,H|G(n), and grouping the
lattice points in P ∩ F according to this scheme yields

ehrP∩F (n) =
∑

G⊆F
IP∩G,H|G(n) .

By Möbius inversion (Theorem 2.4.2),

IP∩F,H|F (n) =
∑

G⊆F
µ(F,G) ehrP∩G(n) ,

and so in particular for F = Rd,

IP,H(n) =
∑

G∈L(H)

µ(Rd, G) ehrP∩G(n) . �

With Theorem 5.2.4 we conclude effortlessly:

Corollary 7.3.2. If P ⊂ Rd is a rational polytope and H is a rational
hyperplane arrangement in Rd, then IP,H(n) is a quasipolynomial in n.

You have undoubtedly noticed the similarities shared by the definition
of the characteristic polynomial χH(n) and the formula for IP,H(n) given in
Theorem 7.3.1. In fact, the two functions are intimately connected, as the
following first application shows.

Corollary 7.3.3. Let (P,H) be an inside-out polytope for which there exists
a function φ(n) such that ehrP∩F (n) = φ(n)dimF for any flat F ∈ L(H).
Then

IP,H(n) = χH(φ(n)) .

Proof. If (P,H) is an inside-out polytope satisfying the conditions of Corol-
lary 7.3.3 then, by Theorem 7.3.1,

IP,H(n) =
∑

F∈L(H)

µ(Rd, F ) ehrP∩F (n) =
∑

F∈L(H)

µ(Rd, F )φ(n)dimF

= χH(φ(n)) . �

Corollary 7.3.3 allows us to compute the characteristic polynomial of
certain arrangements by counting lattice points. Here is a sample.

Corollary 7.3.4. Let H = {{xj = 0} : 1 ≤ j ≤ d}, the Boolean arrange-

ment in Rd. Then χH(n) = (n− 1)d.



7.3. Inside-out Polytopes 243

Proof. Let P be the d-dimensional unit cube [0, 1]d. Then IP,H(n) = nd,

since (nP \⋃H) ∩ Zd contains precisely those lattice points in nP that have
nonzero coordinates. On the other hand, a k-dimensional flat F ∈ L(H) is
defined by d− k equations of the form xj = 0, and so

ehrP∩F (n) = (n+ 1)k.

Thus φ(n) = n+ 1 in Corollary 7.3.3 gives χH(n+ 1) = IP,H(n) = nd. �

Note that, with Zaslavsky’s Theorem 3.6.4, Corollary 7.3.4 implies Exer-
cise 3.65, namely, that the Boolean arrangement in Rd has 2d regions.

Corollary 7.3.5. Let H = {{xj = xk} : 1 ≤ j < k ≤ d}, the real braid ar-

rangement in Rd. Then

χH(n) = n(n− 1)(n− 2) · · · (n− d+ 1) .

Proof. Again let P be the d-dimensional unit cube [0, 1]d. We can pick a
point (x1, x2, . . . , xd) ∈ (nP \⋃H)∩Zd by first choosing x1 (for which there
are n + 1 choices), then choosing x2 6= x1 (for which there are n choices),
etc., down to choosing xd 6= x1, x2, . . . , xd−1 (for which there are n− d+ 2
choices), and so

IP,H(n) = (n+ 1)n (n− 1) · · · (n− d+ 2) .

On the other hand, a k-dimensional flat F ∈ L(H) is defined by d − k
equations of the form xi = xj , and so again

ehrP∩F (n) = (n+ 1)k.

Thus we take φ(n) = n+ 1 in Corollary 7.3.3, whence

χH(n+ 1) = IP,H(n) = (n+ 1)n (n− 1) · · · (n− d+ 2) . �

Again we can use Zaslavsky’s Theorem 3.6.4, with which Corollary 7.3.5
implies Exercise 3.66.

Corollary 7.3.6. Let H = {{xj = ±xk}, {xj = 0} : 1 ≤ j < k ≤ d}. Then

χH(n) = (n− 1)(n− 3) · · · (n− 2d+ 1) .

Proof. Let P be the cube [−1, 1]d. We can pick a point (x1, x2, . . . , xd) ∈
(nP \⋃H) ∩ Zd by first choosing x1 6= 0 (for which there are 2n choices),
then choosing x2 6= ±x1, 0 (for which there are 2n− 2 choices), etc., down
to choosing xd 6= ±x1,±x2, . . . ,±xd−1, 0 (for which there are 2n − 2d + 2
choices), and so

IP,H(n) = 2n(2n− 2) · · · (2n− 2d+ 2) .
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On the other hand, a k-dimensional flat F ∈ L(H) is defined by d − k
equations of the form xi = ±xj or xj = 0, and so ehrP∩F (n) = (2n + 1)k.
Thus we take φ(n) = 2n+ 1 in Corollary 7.3.3, whence

χH(2n+ 1) = IP,H(n) = 2n(2n− 2) · · · (2n− 2d+ 2) . �

It’s time to return to proper colorings of a graph G = (V,E). Let P =
[0, 1]V , the unit cube in RV . Just like in the case of real braid arrangements—
i.e., our proof of Corollary 7.3.5—, any k-dimensional flat F of the graphical
arrangementHG will give rise to the Ehrhart polynomial ehrP∩F (n) = (n+1)k,
and with Corollary 7.3.3 we obtain

IP,HG(n) = χHG(n+ 1) .

We can play the same game with the open unit cube P◦ = (0, 1)V : if F is a
k-dimensional flat of HG, then ehrP◦∩F (n) = (n− 1)k, and so

IP◦,HG(n) = χHG(n− 1) . (7.3.3)

The left-hand side already appeared in (7.3.2) in connection with the chro-
matic polynomial of G, and so combining (7.3.2) and (7.3.3) yields something
you might have suspected by now.

Corollary 7.3.7. For any graph G we have χG(n) = χHG(n) .

In particular, this reconfirms that χG(n) is a polynomial, as we have
known since Section 1.1. There are a few more immediate consequences,
reproving parts of Theorem 1.1.5.

Corollary 7.3.8. The chromatic polynomial χG(n) of G is monic, has degree

|V |, and constant term 0. Its evaluation (−1)|V | χG(−1) equals the number
of acyclic orientations of G.

Proof. Since the unit cube P = [0, 1]V has volume one, the polynomial
χG(n) = IP◦,HG(n + 1) is monic, of degree |V |, and has constant term
χG(0) = IP◦,HG(1) = 0. The final statement in Corollary 7.3.8 follows from

Lemma 7.2.4 whose last part can now be restated as: (−1)|V | χG(−1) equals
the number of acyclic orientations of G. �

We recall that Lemma 7.2.4 seemingly effortlessly gave us an instance of
the reciprocity theorem for chromatic polynomials (Theorem 1.1.5). In fact,
we can give a second proof of this reciprocity theorem with the machinery
developed in this chapter. We’ll do so for the more general class of inside-
out Ehrhart quasipolynomials and specialize to chromatic polynomials soon
thereafter.

Let P ⊂ Rd be a rational polytope, and let H be a rational hyperplane
arrangement in Rd. Then P◦ \⋃H is the union of the (relative) interiors of
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some rational polytopes, each of dimension dim(P):

P◦ \
⋃
H = Q◦1 ∪ Q◦2 ∪ · · · ∪ Q◦k .

(In the graphic case, this leads to (7.1.2).) In the language of Chapter 5,
the Qjs and their faces form a subdivision of P—one that is induced by H.

Thus IP◦,H(n) =
∑k

j=1 ehrQ◦j (n), and Ehrhart–Macdonald reciprocity (Theo-

rem 5.2.4) gives

IP◦,H(−n) = (−1)dim(P)
k∑

j=1

ehrQj (n) . (7.3.4)

The sum on the right can be interpreted purely in terms of the inside-out

polytope (P,H). Namely, each point in 1
nZ

d that is counted by
∑k

j=1 ehrQj (n)
lies in P, and it gets counted with multiplicity equal to the number of closed
regions of (P,H) that contain it. Here, by analogy with our hyperplane
arrangement terminology from Section 3.6, a (closed) region of (P,H) is
(the closure of) a connected component of P \⋃H.

These observations motivate the following definitions. The multiplicity
of p ∈ Rd with respect to (P,H) is2

multP,H(p) := # closed regions of (P,H) that contain p .

Note that this definition implies multP,H(p) = 0 if p /∈ P. Thus

OP,H(n) :=
∑

p∈ 1
n
Zd

multP,H(p)

equals the sum
∑k

j=1 ehrQj (n) in (7.3.4), which gives the following reciprocity
theorem.

Theorem 7.3.9. Suppose P ⊂ Rd is a rational d-polytope, and H is a
rational hyperplane arrangement in Rd. Then OP,H(n) and IP◦,H(n) are
quasipolynomials that satisfy

IP◦,H(−n) = (−1)dOP,H(n) .

There is a version of this theorem when P is not full dimensional, but
one has to be a bit careful; see Exercise 7.40.

We can say more: first, the periods of the quasipolynomials OP,H(n) and
IP◦,H(n) divide the least common multiple of the denominators of the vertex
coordinates of all of the regions of (P,H), by Theorem 5.2.4. Second, the
leading coefficient of both OP,H(n) and IP◦,H(n) equals the volume of P, by
Exercise 5.10. Finally, since ehrQj (0) = 1 (Exercise 5.15), we conclude the
following.

2 In the definition of multP,H(p), we can replace the phrase closed regions of (P,H) by

closed regions of H if P and H are transversal, i.e., if every flat of L(H) that intersects P also
intersects P◦.
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Corollary 7.3.10. The constant term OP,H(0) equals the number of regions
of (P,H).

Now we apply the inside-out machinery to graph coloring.

Second proof of Theorem 1.1.5. We recall that (7.3.2) said

χG(n) = IP◦,HG(n+ 1) ,

where P = [0, 1]V . With Theorem 7.3.9 we thus obtain

(−1)|V | χG(−n) = OP,HG(n− 1) .

In the absence of the graphical arrangement HG, the function on the right
counts the integer lattice points in the cube [0, n−1]V ; each such lattice point
can naturally be interpreted as an n-coloring. Now taking HG into account,
OP,HG(n− 1) counts each such lattice point with multiplicity equal to the
number of closed regions the point lies in. But Lemma 7.2.4 asserts that
these regions correspond exactly to the acyclic orientations of G. So if we
think of a lattice point in [0, n− 1]V as an n-coloring, the region multiplicity
gives the number of compatible acyclic orientations. Because OP,HG(n− 1)
takes these multiplicities into account, the theorem follows. �

7.4. Alcoved Polytopes

Many of the combinatorially-rich polytopes that we encountered throughout
can be put on common ground. One way to construct inside-out polytopes
is from hyperplane arrangements: given a hyperplane arrangement H, its
regions are convex polyhedra and, similar to what we did in Section 3.4, we
can form polyhedra from unions of regions. An H-polytope is a convex
polytope that is a union of closed (and bounded) regions ofH. Such polytopes
automatically come with a dissection by an arrangement of hyperplanes, that
is, H-polytopes are inside-out polytopes.

The focus here will be on one particularly interesting class of hyper-
plane arrangements. For fixed d ≥ 1, we label the coordinates of Rd+1 by
x0, x1, . . . , xd. For 0 ≤ i < j ≤ d and a ∈ Z, we define

Haij :=
{

x ∈ Rd+1 : xj − xi = a
}
,

giving rise to an infinite hyperplane arrangement in Rd+1. (We should not
worry that this is an infinite arrangement; at any moment we will only work
with a finite subarrangement.) Note that each hyperplane is parallel to the
line R1. So, this arrangement is not essential but we can make it essential by
restricting it to the hyperplane {x ∈ Rd+1 : x0 = 0}. We define Ad to be the
essential (but still infinite) arrangement of hyperplanes Haij for 1 ≤ i ≤ j ≤ d
and a ∈ Z as well as the hyperplanes

Hai :=
{

x ∈ Rd : xi = a
}
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for 1 ≤ i ≤ d and a ∈ Z; see Figure 7.6 for the two-dimensional picture.
Note that we will keep in mind that here Rd corresponds to the hyperplane
{x0 = 0} in Rd+1, and hence for every point p ∈ Rd, we will conveniently
add p0 = 0.

Figure 7.6. The alcoved arrangement in dimension 2 and an alcoved hexagon.

What are the regions of Ad? We pick an arbitrary point p ∈ Rd that is
not contained in any of the hyperplanes of Ad. Hence, pi 6∈ Z for i = 1, . . . , d
and we can write p = q + r with q ∈ Zd and r ∈ (0, 1)d. Since p also misses
all of the hyperplanes Haij , we note that ri 6= rj for all i 6= j. We have seen
this before: as in Section 5.1, there is a unique permutation τ ∈ Sd such
that

0 < rτ−1(1) < rτ−1(2) < · · · < rτ−1(d) < 1 .

The hyperplanes bounding the simplex

4τ :=
{

x ∈ Rd : 0 ≤ xτ−1(1) ≤ xτ−1(2) ≤ · · · < xτ−1(d) ≤ 1
}

are contained in Ad and the unique closed (and bounded) region of Ad
that contains p is given by q +4τ−1

. Of course, 4τ is exactly the simplex
4τ−1 defined in Section 5.1, but you will soon see that it is nicer to work
with τ−1 instead of τ , and our new notation reflects that. Since all points
p ∈ Rd \⋃Ad are of the form p = q + r as above, our reasoning proves the
following fact.

Proposition 7.4.1. The closed regions of Ad, called alcoves, are given by
q +4τ for q ∈ Zd and τ ∈ Sd. In particular all regions of Ad are bounded.

An alcoved polytope is a polytope P ⊂ Rd that is the union of alcoves.
In particular, P is of the form

P =

{
x ∈ Rd :

αi ≤ xi ≤ βi for 1 ≤ i ≤ d
αij ≤ xj − xi ≤ βij for 1 ≤ i < j ≤ d

}
, (7.4.1)
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for some αi, βi, αij , βij ∈ Z. Since alcoves are lattice polytopes and the
vertices of P are among the vertices of the alcoves it contains, we put the
following on record.

Corollary 7.4.2. Alcoved polytopes are lattice polytopes.

From their very definition (6.3.1) we remark that order polytopes OΠ

and thus cubes [0, 1]d are alcoved polytopes. What is less obvious is that
the hypersimplices that we considered in Section 5.7 are up to a change of
coordinates alcoved polytopes as well. For 0 ≤ k ≤ d− 1, we recall that the
(d + 1, k + 1)-hypersimplex 4(d + 1, k + 1) is the d-dimensional polytope
given by all points s ∈ [0, 1]d+1 with s1 + · · · + sd+1 = k + 1. The linear
equation says that if we know any d coordinates of s, then we can infer
the last one. Hence, we might as well project 4(d + 1, k) onto the first d
coordinates (s1, . . . , sd) to get a full-dimensional embedding. In the following
we will identify

4(d+ 1, k + 1) =

{
y ∈ Rd :

0 ≤ yi ≤ 1 for i = 1, . . . , d
k ≤ y1 + · · ·+ yd ≤ k + 1

}
.

To unmask 4(d + 1, k + 1) as an alcoved polytope, we define the linear
transformation T : Rd → Rd by

T (y)i := y1 + y2 + · · ·+ yi for i = 1, . . . , d . (7.4.2)

Following Exercise 7.41, the map T is invertible, lattice-preserving (i.e.,
T (Zd) = Zd), and

4̃(d+ 1, k + 1) := T (4(d+ 1, k + 1))

=



p ∈ Rd :

0 ≤ p1 ≤ 1,
k ≤ pd ≤ k + 1, and
0 ≤ pi − pi−1 ≤ 1 for 1 < i ≤ d



 .

(7.4.3)

This is an alcoved polytope par excellence.
An attractive feature of alcoved polytopes is that they automatically

come equipped with a (regular) unimodular triangulation—the alcoved
triangulation—with maximal cells corresponding exactly to the alcoves
they contain. The combinatorics of these triangulations is intimately related
to that of permutations. To illustrate, we give a more combinatorially-flavored
proof of Theorem 5.7.7.

Theorem 7.4.3. For 1 ≤ k < d, the number of unimodular simplices (i.e.,

alcoves) in the alcoved triangulation of 4̃(d+ 1, k + 1) equals the number of
permutations τ ∈ Sd with k descents.

To set the stage for the proof, let P ⊂ Rd be a general full-dimensional
alcoved polytope. Since P is by definition a union of alcoves, we note that
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an alcove q + 4τ is part of the alcoved triangulation of P if and only if
q +4τ ⊆ P. By definition, no two alcoves intersect in their interiors and
hence q +4τ ⊆ P if and only if q + b ∈ P for some b ∈ (4τ )◦ in the interior.
A canonical choice for such a point b is the barycenter of 4τ ,

bτ := 1
d+1(v0 + v1 + · · ·+ vd) = 1

d+1 (τ(1), τ(2), . . . , τ(d)) ,

where vert(4τ ) = {v0, . . . ,vd}. This, at least in principle, leads to a counting
formula for the number of alcoves in a given alcoved polytope P.

Corollary 7.4.4. Let P ⊂ Rd be an alcoved polytope. For τ ∈ Sd, let

Iτ (P) := Zd ∩ (−bτ + P ) , (7.4.4)

the lattice points in the rational polytope −bτ + P. Then the number of
full-dimensional unimodular simplices in the alcoved triangulation of P is
given by

∑
τ∈Sd |Iτ (P)|.

Proof. We have

q +4τ ⊆ P ⇐⇒ q + bτ ∈ P ⇐⇒ q ∈ −bτ + P . �
The question, of course, is how to determine Iτ (P). At least for hyper-

simplices this can be done explicitly.

Proof of Theorem 7.4.3. Let τ ∈ Sd and q ∈ Zd. As argued above,

q +4τ ⊆ 4̃(d+ 1, k + 1) ⇐⇒ q + bτ ∈ 4̃(d+ 1, k + 1) .

So we need to check when the defining inequalities (7.4.3) are satisfied. The
first inequality in (7.4.3) yields

0 ≤ (q + bτ )1 = q1 + τ(1)
d+1 ≤ 1 .

But q is an integer vector, and so the inequality is satisfied if and only if
q1 = 0. For 1 ≤ i < d, we compute

0 ≤ (q + bτ )i+1 − (q + bτ )i = qi+1 − qi + τ(i+1)−τ(i)
d+1 ≤ 1 .

With δi := 1
d+1(τ(i+ 1)− τ(i)), we rewrite this as

qi − δi ≤ qi+1 ≤ qi + 1− δi ,
and again because q is an integer vector, this set of inequalities is satisfied if
and only if

qi+1 =

{
qi + 1 if δi < 0,

qi otherwise.

Now (d + 1) δi = τ(i + 1) − τ(i) < 0 if i is a descent of τ . Thus, qi is the
number of descents j ∈ Des(τ) with j ≤ i.

The final inequality for 4̃(d, k) in (7.4.3) now states that

k ≤ qd +
τ(d)

d+ 1
≤ k + 1 ,
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which holds if and only if τ has exactly k descents. Thus the number of

alcoves in 4̃(d+ 1, k + 1) equals the number of permutations τ ∈ Sd with k
descents. �

Let’s see one more alcoved polytope in action. Let Π be a finite poset.
We will assume that Π is naturally labelled, that is, Π = {1, . . . , d} and
i ≺π j implies i < j. Much of what we have done in this book is centered
around the notion of order-preserving maps φ : Π→ Z≥0. Looking back at
Chapter 6, we counted those by bounding

max{φ(a) : a ∈ Π} ,
which led us to order polynomials and order polytopes, or we fixed

φ(1) + φ(2) + · · ·+ φ(d) ,

which gave us the notion of Π-partitions. In both cases, this led to a plethora
of combinatorial results, most of which related to permutations. We now
explore one more variation. To motivate this, we appeal to analysis: a
function f : Rd → R is k-Lipschitz continuous in a given metric D on Rd
if

|f(y)− f(x)| ≤ k ·D(x,y)

for all x,y ∈ Rd. If we set DΠ(a, b) to be the length of a shortest saturated
chain a = a0 ≺· · · · ≺· as = b, then this defines not a metric on Π but a
quasimetric, i.e., DΠ(a, b) satisfies all requirements of a metric except for
symmetry. Quasimetrics are fine, as long as we measure distance in the right
way. This perfectly fits with order-preserving functions.

An order-preserving function f : Π→ R≥0 is k-Lipschitz if

f(b)− f(a) ≤ k ·DΠ(a, b)

for all a, b ∈ Π. We simply say that f is Lipschitz if k = 1. Since we
assume Π to be finite, the collection of k-Lipschitz functions is a polyhedron
in RΠ but it is not bounded. Indeed, if g : Π → R≥0 is any constant (and
thus order-preserving!) function, then f + g is again k-Lipschitz. We take

the following measures. We recall that qΠ := Π ∪ {0̂} is the poset obtained
from Π by adjoining a minimal element, irrespective of whether Π already
had a unique minimal element. We define LipΠ to be the collection of all

order-preserving Lipschitz functions f : qΠ → R≥0 such that f(0̂) = 0. A
little thinking (to be done in Exercise 7.17) reveals that

LipΠ =

{
x ∈ Rd :

0 ≤ xi ≤ 1 for i ∈ min(Π)
0 ≤ xj − xi ≤ 1 for i ≺· j

}
. (7.4.5)

Thus k ·LipΠ captures exactly the k-Lipschitz functions up to adding constant
functions supported on connected components of Π. We call LipΠ the
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Lipschitz polytope of Π. In particular, looking at (7.4.5), it is crystal clear
that LipΠ is an alcoved polytope.

If Π is the antichain Ad on d elements, then DΠ = [0, 1]d, the standard
cube. On the other hand, if Π = [d] is the d-chain, then you should verify
that D[d] = T ([0, 1]d) and hence is linearly isomorphic to a cube. This is
illustrated in Figure 7.7. In fact, in Exercise 7.18 you will learn about a class
of posets all of whose Lipschitz polytopes are cubes.

1

1

2

x1

x2

1

1

2

x1

x2

Figure 7.7. Applying T (x) to the unit cube.

Exercise 7.19 says that the inequalities given in (7.4.5) are facet defining.
What we do not yet know are the vertices of LipΠ. Note that if Π = Π1 ]Π2,
then LipΠ = LipΠ1

× LipΠ2
. Thus, we need to only worry about connected

posets and, henceforth, we assume that Π is connected. Let F ⊆ Π be a
filter. We denote by

N(F ) :=
{
a ∈ qΠ \ F : a ≺· b for some b ∈ F

}

the neighborhood of F in qΠ. A chain of filters ∅ 6= Fm ⊂ · · · ⊂ F1 ⊆ Π is
neighbor closed if Fi+1 ∪N(Fi+1) ⊆ Fi; that is, there is no cover relation

a ≺· b in qΠ such that b ∈ Fi and a 6∈ Fi−2.
By Corollary 7.4.2, LipΠ is a lattice polytope and we only have to

determine which lattice points are vertices.

Theorem 7.4.5. Let Π be a finite poset and v ∈ Zd. Then v is a vertex
of LipΠ if and only if there is a neighbor-closed chain of nonempty filters
Fm ⊂ · · · ⊂ F1 ⊆ Π such that

v = eFm + · · ·+ eF1 .

Proof. We first observe that if p ∈ LipΠ ∩ Zd, then

pb − pa = 0 or pb − pa = 1

for every a ≺· b in qΠ. Hence, every lattice point can be recovered from the
knowledge of which linear inequalities of (7.4.5) are satisfied with equality.
It follows that the only lattice points in LipΠ are its vertices. Since points
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in LipΠ are, in particular, order-preserving maps, by Theorem 6.1.6 every
vertex is of the form

v = eFm + · · ·+ eF1

for some chain of nonempty filters Fm ⊂ · · · ⊂ F1 ⊆ Π. Now, for a, b ∈ qΠ
with a ≺· b, observe that vb− va ≤ 1 if and only if there is at most one i such
that b ∈ Fi and a 6∈ Fi. But since Fi ⊆ Fi−1, this is the case if and only if
the chain is neighbor closed. �

To determine the alcoves that comprise LipΠ, we can reuse the arguments
in our proof of Theorem 7.4.3. This yields an amalgamation of posets and
permutations not unlike those of Section 6.4. To make the description more

palpable, we need some definitions. As a reminder, qΠ is a poset whose
elements we identified with 0̂ = 0, 1, . . . , d using a linear extension. For a
permutation τ ∈ Sd, we use the convention τ(0̂) = τ(0) := 0. Any chain

C = {c1 ≺ c2 ≺ · · · ≺ ck} ⊆ qΠ yields a subword of τ via

τ |C := τ(c1)τ(c2) · · · τ(ck) .

As before, a descent of τ |C is an index 1 ≤ i ≤ k−1 such that τ(ci) > τ(ci+1),
and we write des(τ |C) for the number of descents. A permutation τ ∈ Sd

is descent compatible with Π if for each a ∈ Π the number of descents
des(τ |C) for C = {0̂ = c1 ≺· c2 ≺· · · · ≺· ck = a} is independent of C. In this
case, we write desΠ,τ (a) := des(τ |C) for any such chain C. The collection of
descent-compatible permutations of Π is denoted by DC(Π) ⊆ Sd.

Theorem 7.4.6. Let Π = ([d],�) be a partially ordered set. An alcove q+4τ

with q ∈ Zd and τ ∈ Sd is contained in LipΠ if and only if τ ∈ DC(Π) and
qa = desΠ,τ (a) for all a ∈ Π.

Proof. Looking back at our proof of Theorem 7.4.3, we now realize that the
methodology can, in fact, handle LipΠ. We can follow the arguments to infer
that if q + bτ ∈ LipΠ, then q is uniquely determined by

qb =

{
qa if a ≺· b and τ(a) < τ(b),

qa + 1 if a ≺· b and τ(a) > τ(b).

Together with q0̂ = 0, this shows that q+bτ ∈ LipΠ if and only if qb = des(τ |C)
for any saturated chain ending in b. �

Lipschitz polytopes are particularly nice when Π is a poset for which
qΠ is ranked, that is, for a, b ∈ qΠ with a � b, any two maximal chains
in [a, b]

qΠ
have the same length. Graded posets are ranked but not vice

versa. If qΠ is ranked, then there is a unique function ρ : Π → Z≥0, called

the rank function, such that ρ(0̂) = 0 and ρ(b) = ρ(a) + 1 for a ≺· b. A
polytope P ⊂ Rd is centrally symmetric if there is a point q ∈ Rd such
that P = q− P.
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Proposition 7.4.7. If Π is a poset for which qΠ is ranked, then LipΠ is
centrally symmetric.

Proof. If qΠ is ranked, we define r ∈ Rd by ri = ρ(i), where ρ is the rank

function of qΠ. We claim that

LipΠ = KΠ ∩ (r− KΠ) ,

where KΠ is the order cone of Π. A point q ∈ Rd is contained in r− KΠ if

and only if r− q ∈ KΠ. This is the case if and only if for a, b ∈ qΠ with a ≺· b
ra − qa ≤ rb − qb ⇐⇒ qb − qa ≤ rb − ra = 1 .

Since q0̂ = r0̂ = 0, this also implies that qb ≤ 1 for all b ∈ min(Π). Thus
a point q ∈ KΠ is contained in LipΠ if and only if q ∈ r − KΠ. With
this representation, central symmetry with respect to the point p = 1

2r is
apparent. �

It follows from our proof of Proposition 7.4.7 that 2 LipΠ is centrally-
symmetric with respect to the point r = ρ and r is the only lattice point in
2 Lip◦Π.

Proposition 7.4.8. Let Π be a poset on d elements for which qΠ is ranked.
Then for any k ≥ 0,

(k + 2) Lip◦Π ∩ Zd = (r + k LipΠ) ∩ Zd

and, consequently,

(−1)d ehrLipΠ
(−(k + 2)) = ehrLipΠ

(k) .

Proof. Let r = ρ be the point representing the rank function of qΠ. A point
q ∈ Zd is contained in (k + 2) Lip◦Π if and only if

0 < qb − qa < k + 2

⇐⇒ 1 ≤ qb − qa ≤ k + 1

⇐⇒ 0 ≤ qb − qa − 1 ≤ k

⇐⇒ 0 ≤ qb − qa − (rb − ra) ≤ k

for all a, b ∈ qΠ with a ≺· b, that is, if and only if q− r ∈ k LipΠ. The second
claim follows from Theorem 5.2.3. �

In the language of Exercise 5.13, this means that if qΠ is ranked, then
LipΠ is a Gorenstein polytope and

h∗i (LipΠ) = h∗d−i−1(LipΠ) (7.4.6)

for all 0 ≤ i ≤ bd−1
2 c. If Π = Ad, an antichain, and so LipΠ = [0, 1]d,

then h∗(LipΠ) is an Eulerian polynomial, and Proposition 7.4.8 together
with (7.4.6) yields an alternative solution to Exercise 6.28: the number of
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permutations of [d] with i descents is equal to the number of permutations
of [d] with d− 1− i descents.

This brings us to the question of how to compute h∗-polynomials of
alcoved polytopes. The most elegant way to do this is to determine a half-open
decomposition of the infinite subdivision of Rd by alcoves. We will compute
the half-open decomposition with respect to the point w = 1

d+1(1, 2, . . . , d)
and the next lemma states that this point is good enough.

Lemma 7.4.9. Let P ⊂ Rd be a full-dimensional alcoved polytope. Then
there are a lattice translation and a relabeling of coordinates such that

4id ⊆ P ⊂ Rd≥0 .

Proof. For p,q ∈ P define the point r ∈ Rd by ri = min(pi, qi) for 1 ≤ i ≤ d.
We claim that r ∈ P as well. Indeed, assume that x, x′, y, y′ ∈ R are real
numbers such that α ≤ x − x′ ≤ β and α ≤ y − y′ ≤ β for some α, β ∈ R;
then

α ≤ min(x, y)−min(x′, y′) ≤ β .

Hence, if p and q satisfy the inequalities given in (7.4.1), then so does r.
This implies that there is a point b ∈ P such that bi ≤ qi for all q ∈ P and
1 ≤ i ≤ d. Thus,

P′ := P− b ⊆ Rd≥0

differs from P by a lattice translation. The origin is contained in P′ and any
alcove in P′ that contains 0 is of the form 4τ for some τ ∈ Sd. Relabeling
coordinates turns 4τ into 4id and finishes the proof. �

The benefit of using w = 1
d+1(1, 2, . . . , d) for the half-open decomposition

is captured by the following slightly technical lemma. We recall that the
h∗-polynomial of a (half-open) polytope Q ⊂ Rd is given by

h∗Q(z) = h∗0(Q) + h∗1(Q)z + · · ·+ h∗d(Q)zd .

Also note that by our convention, 0 ∈ Asc(τ) for all τ ∈ Sd.

Lemma 7.4.10. For τ ∈ Sd and q ∈ Zd≥0, let

a(τ,q) :=
∣∣{i ∈ Asc(τ−1) : qτ−1(i) < qτ−1(i+1)

}∣∣ ,
d(τ,q) :=

∣∣{i ∈ Des(τ−1) : qτ−1(i) ≤ qτ−1(i+1)

}∣∣ .
Then h∗Hw(q+4τ )(z) = za(τ,q)+d(τ,q) .

One proof consists of checking which inequalities of q +4τ are violated
for the point w = 1

d+1(1, 2, . . . , d); we leave it for Exercise 7.22.

If Π is a finite poset and τ ∈ DC(Π) is a descent-compatible permutation,

we define ldesΠ(τ) to be number of pairs (a, b) ∈ qΠ × qΠ such that τ(a) =
τ(b)− 1 and

desΠ,τ (a) < desΠ,τ (b) or (desΠ,τ (a) = desΠ,τ (b) and a > b) .
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Theorem 7.4.11. Let Π = ([d],�) be a naturally labelled poset. Then

h∗LipΠ
(z) =

∑

τ∈DC(Π)

zldesΠ(τ) .

Proof. Using the additivity of h∗-polynomials stated in (5.5.2),

h∗LipΠ
(z) =

∑

τ∈DC(Π)

h∗Hw(qτ+4τ )(z) =
∑

τ∈DC(Π)

za(τ,qτ )+d(τ,qτ ) .

To complete the proof, let 0 ≤ i < d and (a, b) ∈ qΠ× qΠ such that τ(a) = i
and τ(b) = i+ 1. Then i is counted by a(τ,qτ ) + d(τ,qτ ) if and only if

qτa = qττ−1(i) < qττ−1(i) = qτb ,

or qτa = qτb and a = τ−1(i) > τ−1(i+ 1) = b. �

For the case that Π = [d] is a chain, this gives quite a nice result. For a
permutation τ ∈ Sd, we call an index 0 ≤ i < d a big ascent or 2-ascent if
τ(i+ 1)− τ(i) ≥ 2. In particular, i = 0 is a big ascent if τ(1) > 1. We write

asc(2)(τ) for the number of big ascents of τ .

Theorem 7.4.12. Let Π = [d] be the d-chain. Then DC(Π) = Sd and

h∗Lip[d]
(z) =

∑

τ∈Sd
zasc(2)(τ) .

Proof. What we will actually prove is that ldes[d](τ) = asc(2)(τ−1). But
since DC([d]) = Sd and we are thus summing over all permutations of d to
compute the h∗-polynomial of Lip[d], that’s fine.

For the case of the chain, we note that qτi = des[d],τ (i) is the number
of descents in the sequence τ(0)τ(1)τ(2) · · · τ(i). In particular, qτa ≤ qτb for
a < b and qτa = qτb if there is no descent in τ(a)τ(a+ 1) · · · τ(b). Now pick
(a, b) ∈ {0, 1, . . . , d}2 such that τ(a) = i and τ(b) = i+ 1. If a > b, then the
sequence i+ 1 = τ(b)τ(b+ 1) · · · τ(a) = i inevitably contains a descent and
thus will not be counted by ldes[d](τ). If a < b, then the pair is counted if
and only if i = τ(a)τ(a+ 1) · · · τ(b) = i+ 1 contains a descent. For that to
be even possible, we need at least

2 ≤ b− a = τ−1(i+ 1)− τ−1(i) ,

that is, i is a 2-ascent of τ−1. This is also sufficient: in every sequence
of length ≥ 3 that starts with i and ends with i + 1, there has to be a
descent. �

Big ascents might seem to be less natural to consider than ordinary
ascents but they are not that outlandish.
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Corollary 7.4.13. Let d ≥ 1. Then
∑

τ∈Sd
zdes(τ) =

∑

τ∈Sd
zasc(2)(τ) .

Proof. As part of Exercise 7.18, you verified that T ([0, 1]d) = Lip[d]. Since

the linear transformation T satisfies that T (q) ∈ Zd if and only if q ∈ Zd,
we conclude that ehr[0,1](n) = ehrLip[d]

(n) for all n ≥ 0. In particular
∑

τ∈Sd
zdes(τ) = h∗[0,1]d(z) = h∗Lip[d]

(z) =
∑

τ∈Sd
zasc(2)(τ) ,

where the first equality stems from Corollary 6.3.13 and the last equality is
Theorem 7.4.12. �

This again looks very much like what we did at the beginning of the
section when dealing with hypersimplices. In fact, we can define a version
of hypersimplices for all sorts of posets. Let Π be a poset with 1̂. For a
descent-compatible permutation τ ∈ DC(Π), the number of descents along
any maximal chain, which necessarily has to end in 1̂, is the same and
we define the number of Π-descents of τ as desΠ(τ) := desΠ,τ (1̂). The
height ht(Π) of Π is the number of elements in a maximal chain of Π. For
1 ≤ k ≤ ht(Π), we define the (Π, k)-hypersimplex as

∆(Π, k) :=
{
f ∈ LipΠ : k − 1 ≤ f(1̂) ≤ k

}
.

You might want to check that ∆([d], k) = 4̃(d+ 1, k) and that

∆(Π, 1) = OΠ

is the order polytope of Π. Note that we get a dissection

LipΠ = ∆(Π, 1) ∪ ∆(Π, 2) ∪ · · · ∪ ∆(Π, ht(Π))

and, assuming that Π still adheres to our labeling convention,

LipΠ = Hw∆(Π, 1) ] Hw∆(Π, 2) ] · · · ] Hw∆(Π,ht(Π)) .

For k = 1, we have w ∈ ∆(Π, 1) and Hw∆(Π, 1) = ∆(Π, 1). For 1 < k ≤
ht(Π),

Hw∆(Π, k) =
{
f ∈ LipΠ : k − 1 < f(1̂) ≤ k

}
.

Using this half-open decomposition into hypersimplices, we can get a more
refined picture of descent-compatible permutations. For the d-chain we
record the following.

Corollary 7.4.14. For 0 ≤ k < d,

h∗Hq4̃(d+1,k+1)
(z) =

∑

τ∈Sd
des(τ)=k

zasc(2)(τ−1) .
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7.5. Zonotopes and Tilings

The line segment between two points a,b ∈ Rd is the set

[a,b] := {(1− λ) a + λb : 0 ≤ λ ≤ 1} .
We recall from Section 3.1 that the Minkowski sum of two convex sets
K1,K2 ⊆ Rd is

K1 + K2 := {p + q : p ∈ K1, q ∈ K2} .
This section is devoted to the class of polytopes we obtain from Minkowski
sums of line segments. As we will see, these polytopes are quite sympathetic
to combinatorics. A zonotope Z ⊂ Rd is a polytope of the form

Z = Z(a1, . . . ,am; b1, . . . ,bm) := [a1,b1] + · · ·+ [am,bm] (7.5.1)

for some a1,b1, . . . ,am,bm ∈ Rd. Figure 7.8 shows an example.

a1 b1

a2

b2a3

b3

Figure 7.8. A hexagon is a zonotope generated by three line segments.

If b1 − a1, . . . ,bm − am are linearly independent (and hence m ≤ d),
then Z is simply a parallelepiped. In Exercise 7.23 you will show that in this
case Z is affinely isomorphic to the cube [0, 1]m, and hence parallelepipeds
are the simplest examples of zonotopes, akin to simplices in relation to
general polytopes. The analogy is not at all far-fetched: we will soon see
that parallelepipeds indeed play the role of building blocks for zonotopes.

To ease notation, we abbreviate

Z(z1, . . . , zm) := Z(0, . . . ,0; z1, . . . , zm)

for a collection z1, . . . , zm ∈ Rd. Since [a,b] = a + [0,b− a], every zonotope
is of the form t + Z(z1, . . . , zm) for some t, z1, . . . , zm ∈ Rd. As a running
example, let G = ([d], E) be a graph, possibly with parallel edges and loops.
We define the graphical zonotope of G as

ZG :=
∑

ij∈E
[ei, ej ]
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where, as usual, ej denotes the j-th unit vector in Rd. We note that loops
only contribute translations to the above sum and hence do not change the
combinatorics or geometry of ZG.

As a first step to getting a feel for the class of zonotopes, we consider the
faces of a zonotope. To this end, we note the following general fact about
Minkowski sums of polytopes. For w ∈ Rd and a polyhedron Q ⊂ Rd, let

FwQ := {y ∈ Q : 〈w,y〉 ≥ 〈w,x〉 for all x ∈ Q} ,
the face of Q that maximizes the linear function x 7→ 〈w,x〉 over Q.

Lemma 7.5.1. Let Q1,Q2 ⊂ Rd be polytopes and w ∈ Rd. Then

Fw(Q1 + Q2) = FwQ1 + FwQ2 .

Proof. Let p ∈ Fw(Q1 + Q2). Then p = p1 +p2 for some p1 ∈ Q1 and p2 ∈
Q2. If, say, p1 6∈ FwQ1, then there is some p′1 ∈ Q1 with 〈w,p′1〉 > 〈w,p1〉.
But then

p′1 + p2 ∈ Q1 + Q2 and 〈w,p′1 + p2〉 > 〈w,p1 + p2〉 ,
a contradiction. �

For this section, the upshot of Lemma 7.5.1 is that zonotopes are closed
under taking faces.

Corollary 7.5.2. Every face of a zonotope is a zonotope.

Proof. Let Z = Z(a1, . . . ,am; b1, . . . ,bm) be a zonotope and w ∈ Rd. By
Lemma 7.5.1,

FwZ =

m∑

i=1

Fw[ai,bi]

and since Fw[ai,bi] is either {ai}, {bi}, or [ai,bi], it follows that FwZ is a
zonotope. �

Our proof of Corollary 7.5.2 suggests a natural encoding for the faces of
a zonotope Z = Z(a1, . . . ,am; b1, . . . ,bm). For w ∈ Rd, we define a vector
σ ∈ {<,=, >}m by setting, for example, σi to < if 〈w,bi〉 < 〈w,ai〉. To get
the most of our notation, we write

σ> := {i : 〈w,bi〉 > 〈w,ai〉}
and define σ= and σ< analogously. Thus, if σ is defined with respect to w,
then our proof of Corollary 7.5.2 yields

FwZ = Zσ :=
∑

i∈σ<
ai +

∑

i∈σ>
bi +

∑

i∈σ=

[ai,bi] . (7.5.2)

For example, for a graph G = ([d], E) and w ∈ Rd, let G′ = ([d], E′) be the
subgraph with E′ := {ij ∈ E : wi = wj}. Then (7.5.2) says that FZGw is a
translate of ZG′ . Does that look familiar when you think back to the graphical
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hyperplane arrangements of Section 7.2? Let’s determine the vertices of a
graphical zonotope.

Proposition 7.5.3. Let G = ([d], E) be a graph, possibly with parallel
edges but without loops. The vertices of ZG are in bijection with the acyclic
orientations of G.

Proof. Let w ∈ Rd such that FwZG is a vertex. From (7.5.2), we infer that

〈w, ei〉 6= 〈w, ej〉
for any edge ij ∈ E. We orient ij from i to j if wj > wi and from j to
i otherwise. As in our proof of Lemma 7.2.4, the resulting orientation is
acyclic, and every acyclic orientation arises this way. �

The similarity of our treatment of zonotopes and hyperplane arrange-
ments is uncanny. To get the full picture, we start afresh with a collection
a1, . . . ,am,b1, . . . ,bm ∈ Rd such that ai 6= bi for all i. In addition to
the zonotope Z = Z(a1, . . . ,am; b1, . . . ,bm), we associate to Z a central
hyperplane arrangement H(Z) := {H1, . . . ,Hm} with

Hi :=
{

x ∈ Rd : 〈bi − ai,x〉 = 0
}

for i = 1, . . . ,m. As introduced in (3.4.3), every central arrangement of
hyperplanes H = {H1, . . . ,Hm} decomposes Rd into relatively open cones.
For any such relatively open cone C◦, there is a unique σ ∈ {<,=, >}m with

C◦ = Hσ :=
⋂

i∈σ<
H<i ∩

⋂

i∈σ=

H=
i ∩

⋂

i∈σ>
H>i .

Proposition 7.5.4. Let Z = Z(a1, . . . ,am; b1, . . . ,bm) ⊂ Rd with associated
hyperplane arrangement H(Z). For σ ∈ {<,=, >}m, Zσ is a face of Z of
dimension k if and only if Hσ is a face of H of dimension d− k.

The correspondence mentioned in this proposition is illustrated in Fig-
ure 7.9.

Figure 7.9. The correspondence of Proposition 7.5.4.
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Proof. If Zσ is a face, then there is some w ∈ Rd such that Zσ = FwZ. That
is,

〈w,bi − ai〉





> 0 if i ∈ σ>,
= 0 if i ∈ σ=,

< 0 if i ∈ σ<,
for all 1 ≤ i ≤ m. This is the case if and only if w ∈ Hσii for all i ∈ [m] or,
in compact notation, w ∈ Hσ. This shows that Zσ is a face if and only if Hσ
is a face.

For the statements about dimensions, we note that the linear span
of Hσ is given by {x : 〈bi − ai,x〉 = 0 for i ∈ σ=} whereas the affine
hull of Zσ is a translate of the span of {bi − ai : i ∈ σ=}. These define
complementary and even orthogonal subspaces, and a dimension count
completes the argument. �

We can considerably strengthen Proposition 7.5.4. For a hyperplane
arrangement H, let Φ(H) be the set of closed faces Hσ for σ ∈ {<,=, >}m
ordered by inclusion, which we call the face poset of H. We call two posets
Π,Π′ anti-isomorphic if there is a bijection φ : Π→ Π′ such that a �Π b if
and only if φ(a) �Π′ φ(b). We leave the following result as Exercise 7.28.

Theorem 7.5.5. Let Z by a zonotope with associated central hyperplane
arrangement H = H(Z). Then Φ(Z) and Φ(H) are anti-isomorphic.

In particular, Proposition 7.2.2 gives the complete face lattice of the
graphical zonotope ZG.

We can associate a zonotope to any central arrangement H by picking
a nonzero normal vector zH for every hyperplane H ∈ H, and then Z =∑

H∈H[−zH, zH] recovers H by way of Proposition 7.5.4. But this already
shows that Z is not unique, even up to translation.

We can also see the lattice of flats of H by looking at Z.

Proposition 7.5.6. Let Z be a zonotope. For two faces F, F ′ of Z the
following are equivalent:

(a) The affine hulls aff(F ) and aff(F ′) are translates of each other.

(b) The faces F and F ′ are translates of each other.

Proof. Let σ, σ′ ∈ {<,=, >}m such that F = Zσ and F ′ = Zσ′ . In the proof
of Proposition 7.5.4 we saw that the affine hull of F is uniquely determined
by σ=. Hence, aff(F ) = t+ aff(F ′) for some t ∈ Rd if and only if σ= = (σ′)=.
On the other hand, it follows from (7.5.2) that this happens if and only if F
and F ′ are translates of each other. �

Proposition 7.5.6 prompts an equivalence relation on Φ(Z): two faces F
and F ′ of Z are equivalent if and only if they are translates of each other. In
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Exercise 7.29 you will show that the collection of equivalence classes of faces
yields a poset that is anti-isomorphic to L(H).

For now we have exhausted the combinatorics of zonotopes and turn
to ways to subdivide them. We could use the methods of Chapter 5 to
triangulate zonotopes but, as we shall see in a second, it is more appropriate
to subdivide zonotopes into zonotopes. A zonotopal tiling of a zonotope
Z = Z(z1, . . . , zm) is a subdivision3 P of Z such that the maximal cells
(and hence all faces) of P are translates of zonotopes defined from subsets
of z1, . . . , zm. Figure 7.10 shows a sample tiling. The finest among such
tilings decompose Z into parallelepipeds, and we call them fine or cubical
zonotopal tilings for that reason.

Figure 7.10. Tiling of a zonotope.

The trick in obtaining zonotopal tilings lies in the simple observation
that projections of line segments are line segments. Together with the fact
that linear maps distribute over Minkowski sums, this proves the following.

Corollary 7.5.7. Projections of zonotopes are zonotopes.

Given z1, . . . , zm ∈ Rd and δ = (δ1, . . . , δm) ∈ Rm, let ẑi := (zi, δi) for
i = 1, . . . ,m and define the zonotope

Ẑ := Z(ẑ1, . . . , ẑm) ⊂ Rd+1.

Borrowing from Section 5.1, we write π : Rd+1 → Rd for the linear projection
that forgets the (d+ 1)-st coordinate, and we reuse ↑R:= {0} ×R≥0 ⊂ Rd+1.
Thus

π
(
Ẑ+ ↑R

)
= π

(
Ẑ
)

= Z(z1, . . . , zm) ,

and using Lemma 7.5.1, we infer that every bounded face of Ẑ+ ↑R is a face

of Ẑ and hence a zonotope. Revisiting the arguments used in our proof of
Theorem 5.1.5, which we invite you to do in Exercise 7.31, gives the following
result.

3As the letter T is taken up by triangulations, we use P as in Pflasterung, the German word
for tiling.
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Theorem 7.5.8. Let Z = Z(z1, . . . , zm) ⊂ Rd and δ ∈ Rm with associated

zonotope Ẑ ⊂ Rd+1. Then

P(Z, δ) :=
{
π(F) : F bounded face of Ẑ+ ↑R

}

is a zonotopal tiling of Z.

For reasons pertaining to Section 5.1, we call P a regular tiling of Z if
P = P(Z, δ) for some δ. For a counterpart to Corollary 5.1.6 we first need
the following. We call a collection of vectors z1, . . . , zm ∈ Rd in general
position if no subset of k + 1 of them is contained in a linear subspace of
dimension k for any 1 ≤ k ≤ d.

Proposition 7.5.9. Let z1, . . . , zm ∈ Rd be vectors in general position. Then
all proper faces of Z(z1, . . . , zm) are parallelepipeds.

Proof. Without loss of generality, we may assume that Z = Z(z1, . . . , zm)
is full dimensional. As faces of parallelepipeds are parallelepipeds, we only
need to show that all facets of Z are parallelepipeds.

Let w ∈ Rd such that F = FwZ is a facet. Following the proof of
Corollary 7.5.2, we observe that F is a translate of the zonotope generated by
those zi with 〈w, zi〉 = 0. There are at least d− 1 such vectors, as otherwise
dimF < d − 1. On the other hand, there are exactly d − 1 vectors, as our
general position assumption forbids the hyperplane {x ∈ Rd : 〈w,x〉 = 0}
to contain more than d− 1 vectors among z1, . . . , zm. �

Corollary 7.5.10. Every zonotope has a fine zonotopal tiling.

Proof. For a generic choice of δ, the vectors ẑ1, . . . , ẑm are in general
position, and Proposition 7.5.9 finishes the proof. �

As with our construction of regular subdivisions of polytopes in Chapter 5,
the above construction of regular zonotopal tilings is elegant but hard to
analyze. However, there is a quite charming way to view regular zonotopal
tilings. Let H be a central hyperplane arrangement with hyperplanes

Hi = {x : 〈zi,x〉 = 0}
for i = 1, . . . ,m. For δ ∈ Rm, we define the affinization of H with respect
to δ as the affine hyperplane arrangement Hδ with hyperplanes

Hδii = {x : 〈zi,x〉 = δi}
for i = 1, . . . ,m. Note that H = H0 is an affinization and if δi = 〈zi, t〉 for
some t ∈ Rd, then Hδ is simply a translation of H. Nothing exciting so far.
In particular, if you look at Hδ from far, far away (by formally replacing
x with νx for some large number ν), then there is hardly any difference

between Hi and Hδii and we basically see H, as illustrated in Figure 7.11.
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H Hδ

Figure 7.11. A sample affinization.

On the other hand, Hδ has an interesting local structure. A minimal face
F ∈ Φ(Hδ) with corresponding σ ∈ {<,=, >}m is of the form t + lineal(H).
The subarrangement of H
H′ :=

{
Hδii − t : t + lineal(H) ⊆ Hδii , i = 1, . . . ,m

}
= {Hi : i ∈ σ=}

is the central arrangement of the zonotope Z′ := Z(zi : i ∈ σ=). Moreover,
setting s :=

∑
i∈σ> zi, the collection of zonotopes s + Z′ for all σ magically

fit together to a zonotopal tiling of Z; see Figure 7.12.

s+ Z′

F

Figure 7.12. Tiling of a zonotope and the corresponding affinization.

The rigorous statement behind these musings is as follows.

Theorem 7.5.11. Let Z = Z(z1, . . . , zm) with associated central hyperplane
arrangement H = {H1, . . . ,Hm}. For δ ∈ Rm, let P = P(Z, δ) be the
zonotopal tiling corresponding to Hδ. Then P is anti-isomorphic to Φ(Hδ).

Proof. Let ŵ = (w, wd+1) ∈ Rd+1 be such that Fŵ(Ẑ+ ↑R) is a bounded
face of Z. As in Proposition 5.1.4, we notice that wd+1 < 0 and hence we
can assume that wd+1 = −1. In particular,

Fŵ

(
Ẑ+ ↑R

)
= FŵẐ = Ẑσ

for some σ ∈ {<,=, >}m. For 1 ≤ i ≤ m,

〈ẑi, ŵ〉 = 〈zi,w〉 − δi .
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This translates into the fact that w is contained in the face of Hδ uniquely
determined by σ. Playing this argument backwards by starting with a face
of Hδ shows that there is a canonical bijection between P(Z, δ) and Hδ.

To see that this bijection is inclusion reversing, let τ ∈ {<,=, >}m be

such that Ẑτ is a face of Ẑσ. Then necessarily τ= ⊆ σ=, which implies that
the inclusion for the corresponding faces of Hδ is exactly the other way. �

To reap some of the benefits of the correspondence given in Theorem 7.5.11
with affinizations of H, let Z = Z(z1, . . . , zm) ⊂ Rd be a full-dimensional
zonotope, i.e., z1, . . . , zm are spanning Rd and hence H is essential.

Proposition 7.5.12. Let P be a fine regular tiling of the full-dimensional
zonotope Z(z1, . . . , zm) ⊂ Rd. Then the number of parallelepipeds equals the
number of bases of Rd among z1, . . . , zm.

Proof. Let H be the central hyperplane arrangement corresponding to
Z(z1, . . . , zm), and let Hδ be the affinization of H corresponding to P,
courtesy of Theorem 7.5.11. Since Z(z1, . . . , zm) is full dimensional, H
is essential and the cells of P correspond to the vertices of Hδ. Since the
maximal cells of P are parallelepipeds, each vertex of Hδ is the intersection
of exactly d hyperplanes of Hδ. In linear algebra terms, these correspond
exactly to the sets I = {i1 < i2 < · · · < id} ⊆ [m] such that there is a unique
x ∈ Rd with

〈zi1 ,x〉 = δi1 , 〈zi2 ,x〉 = δi2 , . . . , 〈zid ,x〉 = δid .

This, however, happens if and only if zi1 , . . . , zid are linearly independent. In
particular, the linear independence of the vectors indexed by I is independent
of the choice of a generic δ. �

The situation for graphical zonotopes is particularly appealing: in Exer-
cise 7.27, you will show that for a graph G = ([d], E) and a subset E′ ⊆ E,
the set {ei − ej : ij ∈ E′} is linearly independent if and only if the induced
graph G[E′] := ([d], E′) has no cycle. A forest is a graph that has no cycles.
A tree is a connected forest. Given a connected graph G, a spanning tree
is an inclusion-maximal cycle-free subgraph of G. We have thus proved the
following.

Corollary 7.5.13. Let G = ([d], E) be a connected graph and P a fine
regular tiling of ZG into parallelepipeds. Then the number of parallelepipeds
in P equals the number of spanning trees of G.

If S = {z1, . . . , zm} ⊂ Zd, then Z = Z(z1, . . . , zm) is a lattice polytope,
which we call a lattice zonotope. We can use Theorem 7.5.11 to deter-
mine the Ehrhart polynomial of Z. If S′ = {zi1 , . . . , zik} ⊆ S is a linearly
independent subset, let

2̂(S′) := {λ1zi1 + · · ·+ λkzik : 0 ≤ λ1, . . . , λk < 1} ,
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the half-open parallelepiped spanned by zi1 , . . . , zik . For S′ = ∅ we set
2̂(S′) = {0}. The following result is illustrated in Figure 7.13.

Figure 7.13. A fine zonotopal tiling of a hexagon.

Lemma 7.5.14. Let S ⊂ Rd be a collection of (lattice) vectors. Then for
every linearly independent subset S′ ⊆ S, there is a (lattice) vector tS′ such
that

Z(S) =
⊎(

tS′ + 2̂(S′)
)
,

where the union is over all linearly independent S′ ⊆ S.

Proof. We adopt an optimization perspective. Let S = {z1, . . . , zm}. Then
every point p ∈ Z is of the form

p = µ1z1 + µ2z2 + · · ·+ µmzm for some 0 ≤ µ1, . . . , µm ≤ 1 . (7.5.3)

The parameters µ = (µ1, . . . , µm) are in general not unique. In fact, (7.5.3)
shows that for fixed p, the set of all possible µ is a polytope Qp. We want
to construct a canonical choice of µ. For ε > 0 we define the linear function

`ε(x) := εx1 + ε2x2 + · · ·+ εmxm .

The polytope Qp has finitely many vertices. Exercise 7.24 asserts that there
is an εp > 0 such that for all 0 < ε < εp, the minimum of `ε(x) is attained at
the same vertex µ∗ = (µ∗1, . . . , µ

∗
m) of Qp. Let I := {i : 0 < µ∗i < 1}. Then

∑

i∈I
µ∗i zi = p− t ,

where t :=
∑

i :µ∗i=1 zi. We claim that the set {zi : i ∈ I} is linearly

independent. If this was not true, then there is some η ∈ Rm such that
ηi = 0 for all i 6∈ I and

∑
i ηizi = 0. But then for λ > 0 sufficiently small,
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µ∗ ± λη ∈ Qp, and this would contradict the fact that µ∗ is a vertex. Thus
for S′ = {zi : i ∈ I} and tS′ := t, we obtain p ∈ tS′ + 2̂(S′).

Exercise 7.25 shows that the choice of µ∗ is consistent for all points p ∈ Z
provided we choose ε > 0 sufficiently small. This means that for every point
p there is a unique linearly independent S′ ⊆ S and a point tS′ such that
p ∈ tS′ + 2̂(S′). �

If S = {z1, . . . , zk} ⊂ Zd is linearly independent, then

ehr2̂(S)(n) =
∣∣∣n2̂(z1, . . . , zk) ∩ Zd

∣∣∣ =
∣∣∣2̂(nz1, . . . , nzk) ∩ Zd

∣∣∣ ,

a polynomial in n of degree k. We can write down this polynomial explicitly.
Consider S ⊂ Zd as a d× k-matrix, and let det(SJ) be the determinant of
the k × k-submatrix of S obtained by selecting the rows indexed by a given
k-subset J ⊆ [d]. We define gd(S) as the greatest common divisor of det(SJ),
where J ranges over all k-subsets of [d].

Proposition 7.5.15. Let S = {z1, . . . , zk} ⊂ Zd be linearly independent.
Then

ehr2̂(S)(n) = nk |gd(S)| .
Proof. We prove only the case k = d and leave the gory details for the
general case to you as Exercise 7.26. The same arguments as in our proof of
Lemma 7.5.14 show that

2̂(nz1, . . . , nzd) =
⊎

0≤λ1,...,λd<n

(λ1z1 + · · ·+ λdzd) + 2̂(z1, . . . , zd) (7.5.4)

and hence

ehr2̂(S)(n) = nd
∣∣∣2̂(z1, . . . , zd) ∩ Zd

∣∣∣ .
Lemma 7.5.14 yields that the Ehrhart polynomial of Z(S) \ 2̂(S) has degree
< d and hence ehrZ(S)(n) and ehr2̂(S)(n) have the same leading coefficient. By
Exercise 5.10, the leading coefficient equals the volume of the parallelepiped
Z(S), which is given by |det(S)|. �

Combining Lemma 7.5.14 with Proposition 7.5.15 gives the Ehrhart
polynomial of any lattice zonotope.

Corollary 7.5.16. Let S ⊂ Zd be a finite collection of lattice vectors and
Z = Z(S) the corresponding zonotope. Then

ehrZ(n) =
∑

S′⊆S
n|S
′| ∣∣gd(S′)

∣∣ .

Proof. Note that gd(S′) = 0 whenever S′ ⊂ Zd is a finite collection of linearly
dependent vectors. Hence, the sum in the statement is actually over all
linearly independent subsets S′ ⊆ S. By Proposition 7.5.15 the corresponding
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summand is the Ehrhart polynomial of 2̂(S′), and Lemma 7.5.14 says that
the sum is the Ehrhart polynomial of Z. �

Again, for graphical zonotopes, the identity in Corollary 7.5.16 is most
charming and also follows from Exercise 7.27.

Corollary 7.5.17. Let G = ([d], E) be a graph. Then

ehrZG(n) =
d−1∑

i=0

bi(G)ni,

where bi(G) is the number of induced forests in G with i edges.

As a final thought on the relation between zonotopes and hyperplane
arrangements, we briefly discuss one more amazing connection that relies on
Theorem 7.5.11. An affine hyperplane arrangement in Rd is simple if every
vertex is contained in exactly d hyperplanes.

Theorem 7.5.18. Let H = {H1, . . . ,Hm} be a central and essential arrange-

ment in Rd. Then there is a central arrangement Ĥ in Rm whose regions are
in bijection with the simple affinizations of H.

With Theorem 7.5.11, this implies in particular:

Corollary 7.5.19. Let Z = Z(z1, . . . , zm) ⊂ Rd be a full-dimensional zono-

tope. Then there is a hyperplane arrangement Ĥ ⊂ Rm such that the regions

of Ĥ are in bijection with the fine regular tilings of Z.

Let Hδ be a given affinization of H and let v1, . . . ,vr be the vertices
of Hδ. There are unique σ1, . . . , σr ∈ {<,=, >}m such that {vi} = Hδ

σi for
1 ≤ i ≤ r. We claim that σ1, . . . , σr together with H completely determines
the face poset of Hδ. Let’s explain this for the bounded regions.

If F ∈ Φ(Hδ) is a bounded region of Hδ, then it is determined by its
vertices, which are a subset of the vertices of Hδ. Hence, all we have to
do is to determine the inclusion-maximal subsets V ⊆ {v1, . . . ,vr} whose
convex hulls yield bounded regions of Hδ. The Minkowski–Weyl theorem
(Theorem 3.2.5) assures us that every F is the bounded intersection of
halfspaces and a moment’s thought reveals that these halfspaces are among
the halfspaces induced by the hyperplanes in Hδ. The bounded regions
are Hδ-polytopes in the language of Section 7.4. In particular, no two
elements in V are separated by a hyperplane in Hδ. This gives the following
combinatorial description of bounded regions: V is the set of vertices of
a bounded region F of Hδ if and only if it is inclusion maximal with the
property that for any vs,vt ∈ V , there is no 1 ≤ i ≤ m such that i ∈ σs<
and i ∈ σt>. However, there are also unbounded regions (and faces) of Hδ

and so this is not a rigorous proof. Hence, we have Exercise 7.32 to guide
you to a proof of the following result.
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Lemma 7.5.20. Let Hδ be an essential affine hyperplane arrangement
with vertices v1, . . . ,vr given by σ1, . . . , σr ∈ {<,=, >}m. Then Φ(Hδ) is
determined by H and σ1, . . . , σr.

If Hδ is simple, then its vertices are easy to determine. Each hyperplane
is of the form Hi = {x : 〈zi,x〉 = δi}. Let Z ∈ Rm×d be the matrix whose
i-th row is zi. For J ⊆ [m] we again denote by ZJ the submatrix with rows
indexed by J . If J ⊆ [m] such that ZJ is a nonsingular d× d matrix, then

v = Z−1
J δJ

is a vertex of Hδ, and every vertex is of that form. For each vertex v
identified with J ⊆ [m] and any i ∈ [m] \ J ,

v ∈
(
Hδii

)<
if and only if 〈zi, Z−1

J δJ〉 > δi . (7.5.5)

Proof of Theorem 7.5.18. Let I be the collection of pairs (J, i) with
J ⊆ [m] such that ZJ is a nonsingular d× d-matrix and i 6∈ J . Define the
hyperplane

H(J,i) :=
{
δ ∈ Rm : 〈zi, Z−1

J δJ〉 = δi
}

and Ĥ = {H(J,i) : (J, i) ∈ I}. Now any simple affinization Hδ with δ ∈ Rm
determines a partition I = I< ] I> and a nonempty region

⋂

(J,i)∈I<
(H(J,i))

< ∩
⋂

(J,i)∈I>
(H(J,i))

>.

It follows from Lemma 7.5.20 that Φ(Hδ) = Φ(Hδ′) for each δ′ in this region.
And since each δ in general position determines a simple affinization, this
proves the claim. �

Much more can be done. Similar to our considerations about refinements
of dissections of order cones in Section 6.1, the collection of all regular tilings
of a zonotope Z is a poset T(Z) with respect to refinement: a tiling P is finer
than a tiling P ′ if for every Q ∈ P there is some Q′ ∈ P ′ with Q ⊆ Q′. With
some more work, you can prove the following consequence.

Corollary 7.5.21. Let Z = Z(z1, . . . , zm) be a full-dimensional zonotope

in Rd. Then there is an (m − d)-dimensional zonotope Ẑ ⊂ Rm such that

Φ(Ẑ) ∼= T(Z).

Exercise 7.33 gives a different construction of Ẑ.
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7.6. Graph Flows and Totally Cyclic Orientations

We finally come to the second family of polynomials and combinatorial
reciprocities that we considered in Chapter 1: the nowhere-zero flow polyno-
mials ϕG(n) of Section 1.2. Since we learned about flows on graphs almost
a whole book ago, we recapitulate the setup and the statement of Theo-
rem 1.2.5, whose proof we still owe. Throughout, let G = (V,E) be a graph
with a fixed but arbitrary orientation, which we will refer to as the base
orientation. We write u→ v if the edge uv ∈ E is oriented from u to v. A
Zn-flow is a function f : E → Zn = Z/nZ such that for every node v ∈ V

∑

u→v
f(uv) =

∑

v←u
f(uv) .

This is an equality in the finite Abelian group Zn. In this wording, it seems
rather difficult to relate the functions f to the lattice points in some polytope
and, in fact, there is no single polytope whose Ehrhart polynomial counts
nowhere-zero flows, i.e., f(e) 6= 0 for all e ∈ E for varying n.

To cut right to the chase, we identify Zn with {0, 1, . . . , n − 1}. Then
nowhere-zero flows are those functions f : E → Z such that 0 < f(e) < n for
all e ∈ E and

∑

u→v
f(uv) −

∑

v→u
f(uv) is divisible by n

for every node v ∈ V . To see why this gets us what we want, we rewrite the
conditions one more time: we seek functions f ∈ n(0, 1)E ∩ ZE such that for
every v ∈ V ∑

u→v
f(uv)−

∑

v→u
f(uv) = n bv (7.6.1)

for some bv ∈ Z. For b ∈ ZV , let FG(b) ⊆ RE be the affine subspace of all
f ∈ RE satisfying (7.6.1) with n = 1. The number ϕG(n) of nowhere-zero
Zn-flows of G is the number of lattice points in

n (0, 1)E ∩
⋃

b∈ZV
FG(nb) . (7.6.2)

We note that FG(b) ∩ FG(b′) = ∅ whenever b 6= b′. Since the cube [0, 1]E

is compact, there are only finitely many b ∈ ZV such that

(0, 1)E ∩ FG(b) 6= ∅

and we denote the set of these b by C(G) ⊂ ZV . For b ∈ ZV , let

PG(b) := [0, 1]E ∩ FG(b) ; (7.6.3)

as an intersection of halfspaces and hyperplanes, PG(b) is a polytope. We
remark that our construction of both FG(b) and PG(b) depends on the base
orientation of G.
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Iterating Exercise 3.37 shows that

dimPG(b) ≤ dimFG(b) ,

and equality is attained exactly for b ∈ C(G). We note that FG(b) =
t + FG(0) for some t ∈ RE and hence dimFG(b) is independent of b.

The linear subspace FG(0) ⊆ RE plays a prominent role. It is the linear
space of real-valued flows on G, i.e., the functions f ∈ RE such that

∑

u→v
f(uv) =

∑

v→u
f(uv) (7.6.4)

for all v ∈ V . The condition (7.6.4) is called conservation of flow at v: it
states that what flows into v also has to flow out of it.4 We call FG(0) the
flow space of G and simply denote it by FG := FG(0). Again, the flow
space depends on the base orientation of G.

We recall from Section 1.2 that the cyclotomic number of G is ξ(G) =
|E| − |V |+ c, where c is the number of connected components of G.

Proposition 7.6.1. Let G = (V,E) be a graph with a fixed base orientation.
Then dimFG = ξ(G).

It is not difficult to produce nonzero elements in FG provided G has
cycles. Let C be a cycle of G, i.e., C consists of distinct nodes v1, . . . , vk such
that vi−1vi ∈ E for i = 1, . . . , k with v0 := vk. We have implicitly given C
an orientation by labeling its nodes. The orientation from vi−1 to vi might or
might not agree with the base orientation. We define a function fC : E → Z
through

fC(vi−1vi) :=

{
1 if vi−1 → vi ,

−1 if vi−1 ← vi ,
(7.6.5)

and fC(e) := 0 for each edge e ∈ E that is not part of the cycle. Actually, fC
depends on C as well as the choice of orientation of C. However, choosing
the other orientation around C would replace fC by −fC and does not
change the statement of the following lemma, whose verification we leave to
Exercise 7.34.

Lemma 7.6.2. The function fC is an integer-valued flow for any undirected
cycle C of G.

Proof of Proposition 7.6.1. We will construct a basis with ξ(G) elements.
We first observe that, if G is the disjoint union of G1 and G2, then FG =
FG1×FG2 and hence dimFG = dimFG1 +dimFG2 . We will therefore assume
that G is connected.

Let T ⊆ G be a spanning tree, i.e., T = (V,E′) for some E′ ⊆ E, that is
connected and without cycles. Let e = uv ∈ E \E′ with orientation u→ v.

4We are stretching this physical interpretation a bit since f(e) can be negative.
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Since T is connected, there is a path v1, . . . , vk in T that connects v to u.
In particular, u =: v0, v1, . . . , vk is a cycle Ce in T ∪ {e} ⊆ G, called the
fundamental cycle with respect to T and e. The function fCe defined
by (7.6.5) is a nonzero element of FG and we claim that {fCe : e ∈ E \ E′}
is a basis of FG. Note that the elements in this collection are linearly
independent and hence we only need to show that they are spanning.

For a given f ∈ FG, we can add suitable scalar multiples of fCe to it
and can assume that f(e) = 0 for all e ∈ E \E′. Arguing by contradiction,
let’s assume that f 6= 0. Then Ef := {e ∈ E : f(e) 6= 0} is a subset of E′.
However, for (7.6.4) to be satisfied at a node v, there have to be either zero
or at least two edges in Ef incident to w. Exercise 7.35 now shows that the
graph (V,Ef ) ⊆ T contains a cycle which contradicts our assumption on T .

Since T is a spanning tree, |E′| = |V | − 1 and so FG is of dimension
|E \ E′| = ξ(G). �

For a fixed spanning tree T ⊆ G, the basis of FG constructed in the
course of the above proof is called a cycle basis. Next, we show that all
polytopes of the form (7.6.3) are lattice polytopes.

Proposition 7.6.3. Let G = (V,E) be a graph with a fixed base orientation.
Then PG(b) is a lattice polytope for every b ∈ ZV .

Proof. For most b ∈ ZV , the polytope PG(b) is empty and there is nothing
to prove. So let’s assume that PG(b) 6= ∅. Since a vertex f ∈ PG(b) is
a face, there is a linear function ` such that f uniquely maximizes ` over
PG(b). We will show that if ` has a unique maximizer f , then f has to be
integer valued. For this, we can reuse an idea that we already appealed to
in the proof of Proposition 7.6.1. Assume that f ∈ PG(b) maximizes ` and
set R := {e ∈ E : 0 < f(e) < 1}. We claim that if R 6= ∅, then the graph
Gf = (V,R) contains a cycle. Sure enough, for any v ∈ V and bv ∈ Z, the
left-hand side of (7.6.1) has to feature either zero or at least two nonintegral
evaluations of f . The claim now follows from Exercise 7.35.

For a cycle C in Gf , let fC be as in (7.6.5). Then fC is supported on
the edges in R and there is a λ ∈ R \ {0} with |λ| sufficiently small such that
f ± λfC ∈ PG(b) and

`(f − λfC) ≤ `(f) ≤ `(f + λfC) .

Since we assumed that f is the unique maximizer, it follows that R = ∅ and
hence f ∈ {0, 1}E . �

To take stock of what we have achieved so far, we note that Proposi-
tions 7.6.1 and 7.6.3 imply that PG(b) is a ξ(G)-dimensional lattice polytope
for any b ∈ C(G). With a nod to Ehrhart–Macdonald reciprocity (Theo-
rem 5.2.3) it follows from (7.6.2) that the number of nowhere-zero Zn-flows
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is

ϕG(n) =
∑

b∈C(G)

ehrP◦G(b)(n) = (−1)ξ(G)
∑

b∈C(G)

ehrPG(b)(−n) . (7.6.6)

Since PG(b) ⊆ [0, 1]E , the lattice points of PG(b) are exactly its vertices,

and so (−1)ξ(G)ϕG(−1) equals the total number of vertices of all PG(b) for
b ∈ C(G). Each vertex is of the form eR ∈ {0, 1}E for a certain R ⊆ E.
Which sets R appear is our next concern; we take a scenic detour via
arrangements. We recall that an orientation of G is totally cyclic if every
edge e ∈ E is contained in a directed cycle.

Proposition 7.6.4. Let G = (V,E) be a graph with a fixed base orientation.
This orientation is totally cyclic if and only if there is some f ∈ FG with
f(e) > 0 for all e ∈ E.

Proof. Assume that the orientation of G is totally cyclic. If C is a directed
cycle in G, then the corresponding flow fC given in (7.6.5) for this orientation
takes values in {0, 1}. Let f =

∑
C fC , where the sum is over all directed

cycles of G. Since every edge is contained in a directed cycle, f(e) > 0 for
all e ∈ E.

For the converse implication, suppose that the orientation is not totally
cyclic. Then Exercise 7.36 says that there exists a coherently oriented edge
cut, that is, a minimal set of edges whose removal increases the number of
components of G, depicted in Figure 7.14, and so there cannot be a flow
with all positive values. �

Figure 7.14. An illustration of an edge cut appearing in our proof of Proposition 7.6.4.

We defined FG and C(G) with respect to a base orientation of G. Any
other orientation of G is given by a subset R ⊆ E of edges whose orientation
will be reversed. On the level of flow spaces, the map TR : RE → RE mapping
f to f ′ = TR(f) via

f ′(e) :=

{
−f(e) if e ∈ R ,
f(e) if e ∈ E \R
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defines a linear isomorphism between the flow spaces of G and its reorientation
by R.

In Exercise 7.37 you will show that if e ∈ E is a bridge, then FG is
contained in the coordinate hyperplane

He :=
{
g ∈ RE : g(e) = 0

}
.

Hence, if G is bridgeless, then

HG := {He ∩ FG : e ∈ E}
is an arrangement of hyperplanes in FG ∼= Rξ(G). It is called the cographical
hyperplane arrangement associated to G. Exercise 7.38 gives the number of
distinct hyperplanes in HG.

The regions of the coordinate hyperplanes in RE are in bijection with the
different signs that a function f : E → R \ {0} can have and this is inherited
by HG. Thinking back to Section 7.2, you might venture a guess as to what
the regions of HG correspond to.

Theorem 7.6.5. Let G = (V,E) be a bridgeless graph and R ⊆ E. Then
the following are equivalent:

(a) The set of real-valued nowhere-zero flows f ∈ FG \
⋃HG such that

{e : f(e) < 0} = R is a region of HG.
(b) Reversing the orientation of the edges in R yields a totally cyclic orien-

tation.
(c) eR is a vertex of PG(b) for some b ∈ C(G).

Proof. Each region of HG is the set of all f ∈ FG with f(e) 6= 0 and
f(e) < 0 for all edges e in some fixed R ⊆ E. For any such f , it follows that
f ′ = TR(f) is a strictly positive element in the cycle space corresponding to
the reorientation R. The first equivalence now follows from Proposition 7.6.4.

To show that (a) implies (c), let f ∈ FG, with f(e) 6= 0 for all e ∈ E, be
a representative of a region. The region is uniquely determined by

R := {e ∈ E : f(e) < 0} .
Since HG is a central arrangement of hyperplanes, we can scale f inside its
region such that 0 < |f(e)| < 1 for all e ∈ E. We observe that f ′ := eR + f
satisfies 0 < f ′(e) < 1 for all e ∈ E and hence f ′ ∈ (0, 1)E . In particular,
there is a unique b ∈ ZV such that

f ′ ∈ FG(b) = eR + FG .
Hence f ′ ∈ P◦G(b) and b ∈ C(G). Since eR ∈ PG(b) as well and since eR is a
vertex of the cube [0, 1]E , it has to also be a vertex of PG(b).

Conversely, for a given b ∈ C(G), let f ∈ P◦G(b). For any vertex
eR ∈ PG(b),

f ′ := f − eR ∈ FG and f ′(e) 6= 0
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for all e ∈ E. This determines a region of HG, which is independent of the
choice of f . �

We are (finally!) ready to prove Theorem 1.2.5.

Proof of Theorem 1.2.5. It follows from (7.6.6) that (−1)ξ(G)ϕG(−n) is
the total number of lattice points in nPG(b) for all b ∈ C(G). The lattice
points in the relative interior of nPG(b) are nowhere-zero Zn-flows and hence
correspond to pairs (f,∅), i.e., f together with the original orientation. So
we need to only worry about the lattice points in the boundary of nPG(b).

For f ∈ n∂PG(b) ∩ ZE we set

Q := {e : f(e) = 0} and R := {e : f(e) = n} .

Note that Q∪R corresponds to the edges that get zero flow when we reduce
the values of f modulo n. Choose g ∈ nP◦G(b) such that g(e) 6= f(e) for
all e ∈ E. In particular, h := g − f is contained in the flow space FG and
h(e) 6= 0 for all e ∈ E. By Theorem 7.6.5, h determines a totally cyclic
reorientation of G, and in Exercise 7.39, you will show that the orientation
yields a totally cyclic orientation on G/ supp(f).

Conversely, let f̄ : E → {0, . . . , n−1} be a Zn-flow and letR ⊆ E\supp(f)
be a totally cyclic orientation for G/ supp(f). Define f : E → Z by setting

f(e) :=

{
n if e ∈ R ,
f̄(e) if e ∈ E \R .

Then f satisfies (7.6.1) for some unique b ∈ ZV . To finish the proof, we
need to show that b ∈ C(G). Again by Exercise 7.39, we can choose a totally
cyclic reorientation R′ ⊆ E of G such that R ⊆ R′. By Theorem 7.6.5, there
is some g ∈ FG with g(e) < 0 for e ∈ R′ and g(e) > 0 otherwise. Then

f + ε g ∈ n (0, 1)E ∩ FG(nb)

for sufficiently small ε > 0. This shows that P◦G(b) 6= ∅ and b ∈ C(G). �

The basis of FG constructed in the course of our proof of Proposition 7.6.1
furnishes an inside-out view on nowhere-zero Zn-flows, in the sense of Sec-
tion 7.3. Our proof of Proposition 7.6.1 shows that cycle bases are actually
lattice bases. You are invited to convince yourself in Exercise 7.42.

Corollary 7.6.6. Let G be a connected graph and T a spanning tree of G.
If f ∈ FG ∩ ZE is an integral flow, then there is a unique y ∈ ZE\E(T ) such
that

f =
∑

e∈E\E(T )

yefCe . (7.6.7)
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Corollary 7.6.6 means that we can parametrize integral flows on G in
terms of a cycle basis. For each e ∈ E \E(T ), we can choose the orientation
of the fundamental cycle Ce such that fCe(e) = 1. Moreover, fCe(e

′) = 0
for all e′ ∈ E \ E(T ) and e′ 6= e. Hence, if f ∈ FG is given by (7.6.7), then
f(e) = ye for each e ∈ E \ E(T ). For the remaining edges, the values are
more involved to determine. Luckily, we do not have to know the exact
values, just that they are not zero modulo n.

For e ∈ E(T ), let He,1 be the set of y ∈ RE\E(T ) such that the corre-
sponding flow defined in (7.6.7) satisfies f(e) = 1. This is a hyperplane in

RE\E(T ) ∼= Rξ(G). Defining the hyperplane He,0 for f(e) = 0 accordingly, we
obtain a hyperplane arrangement

HG :=
{
He,0, He,1 : e ∈ E(T )

}

and the following result establishes the connection to inside-out polytopes;
for more see Exercise 7.43.

Proposition 7.6.7. Let y ∈ ZE\E(T ) and let f : E → Z be the corresponding
flow given by (7.6.7). Then f is a nowhere-zero Zn-flow if and only if

1

n
y ∈ (0, 1)E\E(T ) \

⋃

e∈E(T )

(
He,0 ∪ He,1

)
.

Notes

Jakob Steiner [175] was probably among the first to consider the combina-
torics of arrangements of lines (in the plane) and planes (in 3-space); see
also [78, Ch. 18]. Studying arrangements of lines in the plane might sound
easy but this subject has many deep results and still unresolved problems as
can be found in Branko Grünbaum’s books [77,79]. Nowadays hyperplane
arrangements play important roles in many fields [129]. The lattice of flats
of an arrangement of hyperplanes was introduced by Henry Crapo and Gian-
Carlo Rota [48]. Our lattices of flats belong to the class of geometric lattices
which are cryptomorphisms for matroids; see, for example, [131,183]. We
already referenced in Chapter 3 the pioneering work of Thomas Zaslavsky
on hyperplane arrangements, starting with [187]. Much of this chapter
owes its existence to his work, including the geometric viewpoint initiated
in [25], which introduced inside-out polytopes. Lemma 7.2.4 is due to Curtis
Greene [74, 75]. The proof of Theorem 1.1.5 via inside-out polytopes ap-
peared (together with Theorem 7.3.9) in [25]. A comprehensive introduction
to the combinatorics of arrangements is in [169].

Corollary 7.3.3 is the Euclidean analogue of the finite-field method [11,48]
(see Exercise 7.15 for details); in fact, the proof of Corollary 7.3.3 is essentially
that of [11].
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The hyperplane arrangements in Corollaries 7.3.5 and 7.3.6 are examples
of Coxeter arrangements or reflection arrangements: their hyperplanes cor-
respond to finite reflection groups. The real braid arrangements in Corollary
7.3.5 correspond to root systems of type A, the arrangements in Corollary
7.3.6 to root systems of types B and C, and the arrangements in Exercise
7.11 correspond to root systems of type D. These arrangements basically
correspond to the three infinite families of reflection groups, that is, finite
groups of linear transformations generated by reflection. Much more can be
said about the interplay between properties of a Coxeter arrangement and
the associated reflection group; see, for example, [34,91].

The infinite hyperplane arrangement that gave rise to alcoved polytopes
is the affine reflection arrangement of type A. Alcoved polytopes with their
triangulations into alcoves were studied by Thomas Lam and Alexander Post-
nikov in [109]. The alcoved triangulation of hypersimplices was described
by Stanley’s comment in [65] and in the context of Gröbner bases by Sturm-
fels [178]. The Lipschitz polytopes were discovered in [149]. Theorem 7.4.12
is due to Nan Li [113], where the number of big ascents is called the cover
statistic. Alcoved polytopes for other types of affine reflection arrangements
are studied in [108].

Zonotopes naturally appear in many disciplines; see [36] for references
and the many ways to characterize zonotopes. The relation between zono-
topes and hyperplane arrangements marks only the beginning of the deep
theory of oriented matroids; see [190, Ch. 7] and [35]. Corollary 7.5.10
and Proposition 7.5.12 are due to Geoffrey Shephard [156]. Interestingly,
Proposition 7.5.12 also holds true if one considers all fine zonotopal tilings,
including the nonregular ones; see [142]. Corollary 7.5.16 was stated with-
out proof in [163] and with proof in [167]. The expression for the leading
coefficient of ehrZ(n), the volume of Z, was obtained earlier by Peter Mc-
Mullen [156, p. 321].

The most famous graphical zonotope, namely that of a complete graph, is
the permutahedron (see Exercise 7.30) which goes back to at least 1911 [151].
More geometric combinatorics surrounding the permutahedron can be found
in [138]. General graphical zonotopes first surfaced in Michael Koren’s work
on degree sequences of graphs [104] and, independently, Zaslavsky’s inception
of colorings of signed graphs [188]—he calls graphical zonotopes acyclotopes.
The first systematic study of graphical zonotopes seems to be [167]; see
also [71].

The geometric perspective on nowhere-zero Zn-flows is from [37], and
that of nowhere-zero integral flows from [26], but describing real-valued
flows on graphs via polytopes has a long history. The polytopes PG(b) are
called b-transshipments, and the value bv for v ∈ V describes how much
flow is lost or gained. For much more on flows and transshipments, see,
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e.g., [153, Chs. 10 & 11]. Properties of the cographical arrangement and, in
particular, Theorem 7.6.5 were studied in [75].

Exercises

7.1 D Verify that the order polytopes given in (7.1.5) indeed are the maximal
cells of a subdivision (as compared to just a dissection).

7.2 D Let G = ([d], E) be a simple graph and [d] = V1 ] · · · ] Vk a partition
into connected components of G. Show that the lineality space of HG
is spanned by the characteristic vectors eVi ∈ {0, 1}d for i = 1, . . . , k.

7.3 D Let G = (V,E) be a graph and S ⊆ E. Show that G/S is well
defined, i.e., independent on the order with which we contract the edges
in S.

7.4 Prove that G/S1 = G/S2 if and only if S1 and S2 differ only in edges
that complete cycles in G.

7.5 D Prove Proposition 7.2.2: Let G = (V,E) be a graph. Then L(G) and
L(HG) are canonically isomorphic as posets.

7.6 D Prove Proposition 7.2.3: Let G = (V,E) be a graph, S ⊆ E a flat of
G, and F ∈ L(HG) the corresponding flat of HG. Then

HG|F ∼= HG/S and L(HG|F ) ∼= L(HG/S) .

7.7 D Prove Proposition 7.2.5: Let H be a central hyperplane arrangement
and H0 a hyperplane in general position relative to H. Then

L(H|H0) ∼= L(H) \ {lineal(H)}
via F 7→ F ∩ H0.

7.8 Given a graph G, let F be a flat of the associated graphical arrangement
HG. Show that, as a function of n,

∣∣(n+ 1)(0, 1)V ∩ F ∩ ZV
∣∣

is a polynomial.

7.9 Show that every face of a hyperplane arrangement H is the face of a
region of H.

7.10 Let H be an arrangement in Rd consisting of k hyperplanes in general
position. Prove that

χH(n) =

(
k

0

)
nd −

(
k

1

)
nd−1 +

(
k

2

)
nd−2 − · · ·+ (−1)d

(
k

d

)
.

(Note that this implies Exercise 3.67, by Zaslavsky’s Theorem 3.6.4.)
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7.11 Let H = {{xj = ±xk} : 1 ≤ j < k ≤ d}. Prove that5

χH(n) = (n− 1)(n− 3) · · · (n− 2d+ 5)(n− 2d+ 3)(n− d+ 1) .

7.12 D Let H be a central hyperplane arrangement. For F,G ∈ L(H), give
an interpretation of µL(H)(F,G).

7.13 D Prove Theorem 7.2.7 without appealing to geometry.

7.14 D Show that the hyperplane H0 in the proof of Theorem 7.2.7 is in
general position.

7.15 This exercise gives an alternative to Corollary 7.3.3 for computing
characteristic polynomials. Given a rational hyperplane arrangement H
in Rd, let q be a prime power such that H, when viewed in Fdq , yields

the same semilattice of flats as H viewed in Rd. Prove that

χH(q) =
∣∣∣Fdq \

⋃
H
∣∣∣ .

Use this to recompute some of the characteristic polynomials above.

7.16 Prove that all the coefficients of OP,HG(n−1) are nonnegative. Conclude
that, for any graph G, the coefficients of χG(n) alternate in sign.

7.17 D Let Π be a connected poset and let Q ⊆ RΠ be the collection of
order-preserving Lipschitz functions. Show that the lineality space of Q
is given by the constant functions.

7.18 D A poset Π is a rooted tree if Π has a unique minimal element 0̂ and
for every a ∈ Π, the interval [0̂, a] is a chain. If Π is a rooted tree, then for
every i ∈ Π, there is a unique saturated chain 0̂ = i0 ≺· i1 ≺· · · · ≺· ik = i.
Let TΠ : Rd → Rd be the linear transformation given by

TΠ(y)i = yi0 + yi1 + · · ·+ yik .

(a) Show that TΠ is invertible and lattice-preserving.
(b) Show that TΠ([0, 1]d) = LipΠ.
(c) Show that LipΠ is linearly isomorphic to a cube if and only if Π is

the disjoint union of rooted trees.

7.19 D Show that the inequalities given in (7.4.5) are irredundant.

7.20 Show that Lipschitz polytopes are compressed.

7.21 Determine for which posets Π on d elements it holds that DC(Π) = Sd.

7.22 D Prove Lemma 7.4.10: For τ ∈ Sd and q ∈ Zd≥0, let

a(τ,q) :=
∣∣{i ∈ Asc(τ−1) : qτ−1(i) < qτ−1(i+1)

}∣∣ ,
d(τ,q) :=

∣∣{i ∈ Des(τ−1) : qτ−1(i) ≤ qτ−1(i+1)

}∣∣ .
Then h∗Hw(q+4τ )(z) = za(τ,q)+d(τ,q) .

5The last factor of χH(n) is not a typographical error.
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7.23 D Let a1,b1, . . . ,am,bm ∈ Rd such that b1 − a1, . . . ,bm − am are
linearly independent. Show that Z(a1, . . . ,am; b1, . . . ,bm) is affinely
isomorphic to [0, 1]m.

7.24 D Let u1, . . . ,ur ∈ Rm be a collection of r distinct points. For ε > 0,
let

`ε(x) := εx1 + ε2x2 + · · ·+ εmxm .

Show that there is an ε0 > 0 and 1 ≤ i ≤ r such that `ε(ui) < `ε(uj)
for all j 6= i and 0 < ε < ε0. (Hint: For fixed j, interpret `ε(uj) as a
polynomial in ε.)

7.25 D The lexicographic ordering on Rm is given as follows. For u,v ∈
Rm, we define u �lex v if u = v or if the smallest index 1 ≤ i ≤ m for
which ui 6= vi we have vi − ui > 0. Given a finite set u1, . . . ,um ∈ Rm
of distinct points, show that there is a sufficiently small ε > 0 such that

ui �lex uj ⇐⇒ `ε(ui) ≤ `ε(uj) ,

for all 1 ≤ i < j ≤ m.

7.26 D Complete our proof of Proposition 7.5.15: Let S = {z1, . . . , zk} ⊂ Zd
be a collection of k linearly independent lattice vectors. Then

ehr2̂(S)(n) = nk| gd(S)| .

7.27 D Let G = ([d], E) be a graph (possibly with loops and parallel edges).
Show that for E′ ⊆ E, the vectors {ei − ej : ij ∈ E′} are linearly
independent if and only if G[E′] = ([d], E′) has no cycles.

7.28 D Prove Theorem 7.5.5: Let Z be a zonotope with central hyperplane
arrangement H = H(Z). Then Φ(Z) and Φ(H) are anti-isomorphic.

7.29 D Let Z ⊂ Rd be a zonotope with face lattice Φ = Φ(Z). For faces
F,F′ ∈ Φ, we write F ∼ F′ if F = F′ + t for some t ∈ Rd. We write [F]
for the equivalence class of F and Φ/∼ for the collection of equivalence
classes.
(a) Show that

[F] � [G] :⇐⇒ F′ ⊆ G′ for some F′ ∈ [F] and G′ ∈ [G]

defines a partial order on Φ.
(b) Let H be the hyperplane arrangement H associated to Z. Use

Proposition 7.5.6 to infer that Φ/∼ and L(H) are anti-isomorphic
as posets.

7.30 The permutahedron is defined as

Pd := conv {(π(1), π(2), . . . , π(d)) : π ∈ Sd} ,
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that is, Pd is the convex hull of (1, 2, . . . , d) and all points formed by
permuting its entries. Show that it is the zonotope

Pd = 1 +
∑

1≤i<j≤d
[ei, ej ]

and compute its Ehrhart polynomial.

7.31 D Prove Theorem 7.5.8: Let Z = Z(z1, . . . , zm) ⊂ Rd and δ ∈ Rm with

associated zonotope Ẑ ⊂ Rd+1. Then

P(Z, δ) :=
{
π(F) : F bounded face of Ẑ+ ↑R

}

is a zonotopal tiling of Z. (Hint: Revise the argumentation in our proof
of Theorem 5.1.5.)

7.32 D Let H = {H1,H2, . . . ,Hm} be a central and essential hyperplane
arrangement in Rd and Hδ a fixed affinization. Let v1, . . . ,vs be the
vertices of Hδ. For every 1-dimensional flat L in L(H), pick a nonzero
element r. This yields a set {r1, . . . , rt} of nonzero vectors in Rd.
(a) Let F be a face of Hδ. Show that F is of the form

F = conv(V ) + cone(R)

for unique subsets V ⊆ {v1, . . . ,vs} and R ⊆ {±r1,±r2, . . . ,±rt}.
(b) Show that the regions ofHδ are in bijection to the inclusion-maximal

sets V ⊆ {v1, . . . ,vs} and R ⊆ {±r1,±r2, . . . ,±rt} such that

i) for any v,v′ ∈ V , there is no i with v ∈ (Hδi
i )< and v′ ∈ (Hδi

i )>;

ii) for any v ∈ V and t ∈ R, there is no i with v ∈ (Hδi
i )< and

t ∈ (Hi)
>.

(c) Deduce from this Lemma 7.5.20: Let Hδ be an essential affine hy-
perplane arrangement with vertices v1, . . . ,vr given by σ1, . . . , σr ∈
{<,=, >}m. Then Φ(Hδ) is determined by H and σ1, . . . , σr.

7.33 Let S = {z1, . . . , zm} ∈ Rd be a spanning collection of vectors. Let

L := {(λ1, . . . , λm) ∈ Rm : λ1z1 + · · ·+ λmzm = 0} ,

a linear subspace of dimension m− d.
(a) Let δ, δ′ ∈ Rm. Show that the affinizations Hδ and Hδ′ differ by a

translation if and only if δ − δ′ ∈ L.
(b) Assume that S \ {zi} is still spanning for all i ∈ [m]. Show that
{xi = 0} ∩ L is a hyperplane in L.

(c) Show that this arrangement of hyperplanes is associated to the

zonotope Ẑ of Corollary 7.5.21.

7.34 D Verify the claim made by Lemma 7.6.2: The function fC is an
integer-valued flow for any undirected cycle C of G.
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7.35 D Let G = (V,E) be a graph such that every node w ∈ V has either
no or at least two incident edges. Show that G contains a cycle.

7.36 D Show that, if an orientation of a given graph G is not totally cyclic,
then there exists a coherently oriented edge cut (as illustrated in Fig-
ure 7.14). Conclude that there cannot be a flow with all positive
values.

7.37 D Let G = (V,E) be an oriented graph and e ∈ E a bridge, i.e., G \ e
has strictly more connected components than G. Show that f(e) = 0
for every f ∈ FG.

7.38 Can you determine the number of hyperplanes of the cographical ar-
rangement from G?

7.39 D Let G = (V,E) be a bridgeless graph and R ⊆ E.
(a) Show that a totally cyclic orientation of G induces a totally cyclic

orientation of the contraction G/R.
(b) Conversely, show that every totally cyclic orientation ofG/R induces

a totally cyclic orientation of G.

7.40 Extend Theorem 7.3.9 to the case that P is not full dimensional. (Hint:
The only subtle case is when the affine span of P contains no lattice
point; thus IP◦,H(n) = OP,H(n) = 0 for certain n.)

7.41 D Show that the linear transformation T : Rd−1 → Rd−1 defined in
(7.4.2) satisfies that T (p) is a lattice point if and only if p is a lattice
point, and give an explicit inverse.

7.42 D Prove Corollary 7.6.6: Let G be a connected graph and T a spanning
tree of G. If f ∈ FG ∩ ZE is an integral flow, then there is a unique
y ∈ ZE\E(T ) such that

f =
∑

e∈E\E(T )

yefCe .

7.43 Given a graph G = (V,E) together with an orientation ρ, an integral
flow is a map f : E → Z that assigns an integer f(e) to each edge
e ∈ E such that there is conservation of flow at every node v:

∑

e→v

f(e) =
∑

v
e→

f(e) .

If |f(e)| < n for all e ∈ E, we called f an n-flow in Exercise 1.14. Let

ψG(n) := |{f nowhere-zero n-flow on ρG}| .

(a) Convince yourself that ψG(n) = IP◦,H(n), where P = [−1, 1]E ∩FG
and H is the coordinate hyperplane arrangement in RE , and use
this to show that ψG(n) is a polynomial in n.
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(b) Now assume G is bridgeless. Prove that (−1)ξ(G)ψG(−n) counts the
number of pairs (f, ρ), where f is an (n+ 1)-flow and ρ is a totally-

cyclic reorientation of G/ supp(f). (In particular, (−1)ξ(G)ψG(0)
equals the number of totally-cyclic orientations of G.)
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51. Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Algorithms
and Computation in Mathematics, vol. 25, Springer-Verlag, Berlin, 2010.

52. Max Dehn, Die Eulersche Formel im Zusammenhang mit dem Inhalt in der nicht-
euklidischen Geometrie, Math. Ann. 61 (1905), 279–298.



286 Bibliography

53. Boris N. Delaunay, Sur la sphère vide., Bull. Acad. Sci. URSS 1934 (1934), no. 6,
793–800.

54. Graham Denham, Short generating functions for some semigroup algebras, Electron.
J. Combin. 10 (2003), Research Paper 36, 7 pp.

55. The Sage Developers, Sagemath, the Sage Mathematics Software System (Version
7.6), 2017, http://www.sagemath.org.

56. Richard Ehrenborg and Margaret A. Readdy, On valuations, the characteristic poly-
nomial, and complex subspace arrangements, Adv. Math. 134 (1998), no. 1, 32–42.
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139. Jorge L. Ramı́rez Alfonśın, The Diophantine Frobenius Problem, Oxford Lecture
Series in Mathematics and its Applications, vol. 30, Oxford University Press, Oxford,
2005.

140. Ronald C. Read, An introduction to chromatic polynomials, J. Combinatorial Theory
4 (1968), 52–71.

141. Victor Reiner and Volkmar Welker, On the Charney–Davis and Neggers–Stanley
conjectures, J. Combin. Theory Ser. A 109 (2005), no. 2, 247–280.

142. Jürgen Richter-Gebert and Günter M. Ziegler, Zonotopal tilings and the Bohne–Dress
theorem, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc.,
Providence, RI, 1994, pp. 211–232.

143. John Riordan, An Introduction to Combinatorial Analysis, Dover Publications, Inc.,
Mineola, NY, 2002, Reprint of the 1958 original [Wiley, New York].

144. Neville Robbins, On Tribonacci numbers and 3-regular compositions, Fibonacci
Quart. 52 (2014), 16–19.

145. , On r-regular compositions, J. Combin. Math. Combin. Comput. 96 (2016),
195–199.

146. Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius
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Wissenschaften, Band 3 (Geometrie), Teil 3AB12 (1922), 1–139.

177. John R. Stembridge, Enriched P -partitions, Trans. Amer. Math. Soc. 349 (1997),
no. 2, 763–788.
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Notation Index

The following table contains a list of symbols that are frequently used through-
out the book. The page numbers refer to the first appearance/definition of
each symbol.

Notation Meaning Page

[a, b] an interval in a poset 12
a ≺· b cover relation in a poset 12
aff(S) affine hull of S ⊆ Rd 58
Astv(P) {F ∈ Φ(P) : v 6∈ F}, the antistar of the vertex v 183
Asc(σ) {j ∈ [d− 1] : σ(j) < σ(j + 1)}, the ascent set of σ 209
asc(σ) |Asc(σ)|, the ascent number of σ 220
Bd Boolean lattice of all subsets of [d] 34
b(H) number of relatively bounded regions of H 89
C a polyhedral cone 55
C∨ polar cone 62
cpΠ,φ(n) number of (Π, φ)-chain partitions of n 135
CPΠ,φ(n) generating function of (Π, φ)-chain partitions of n 136
CΠ vector space of functions Π→ C 41
C[x] vector space of polynomials with complex coefficients 106
C[x]≤d polynomials with complex coefficients of degree ≤ d 106
CJzK vector space of formal power series 108
cA(n) number of compositions of n with parts in A 114
cΠ(n) number of compositions of n that respect the poset Π 222
comaj(σ)

∑
j∈Ascσ j, the comajor index of σ 221
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Symbol Meaning Page

χ(P) Euler characteristic of the polyhedron P 76
χ(P) another Euler characteristic 86
χG(n) chromatic polynomial of the graph G 2
χH(t) characteristic polynomial of the arrangement H 89
χΠ(t) characteristic polynomial of the poset Π 87
cone(S) conical hull of S ⊆ Rd 61
conv(V ) convex hull of V ⊆ Rd 26
Des(σ) {j ∈ [d− 1] : σ(j) > σ(j + 1)}, the descent set of σ 208
des(σ) |Des(σ)|, the descent number of σ 215
dimQ dimension of the polyhedron Q 58
4 a simplex 63
(∆f)(n) f(n+ 1)− f(n), the difference operator of f(n) 107
4(d, k) the (d, k)-hypersimplex 186
∆(a,b),∆(Π) order complex of a poset 137
Eω(V ) convex epigraph of ω 155
ehrP(t)

∣∣tP ∩ Zd
∣∣, the Ehrhart (quasi-)polynomial of P 16

EhrP(z)
∑

t≥0 ehrP(t) zt, the Ehrhart series of P 122

EhrP◦(z)
∑

t>0 ehrP◦(t) z
t, the Ehrhart series of P◦ 135

ev for v in a set V , standard basis vectors of RV 180
ϕG(n) number of nowhere-zero Zn-flows on the graph G 11
fk(Q) number of faces of Q of dimension k 68
Φ(Q) face lattice of the polyhedron Q 67
G = (V,E) a graph with vertex set V and edge set E 1

ρG an orientation of the graph G 5
G∗ dual graph of G 8
G \ e graph G with edge e deleted 3
G/e graph G with edge e contracted 3
H an (oriented) hyperplane 53
H≥, H≤ halfspaces defined by the hyperplane H 53
H a hyperplane arrangement 73
HG {xi = xj : ij ∈ E}, the graphical arrangement of G 235
h∗P(z) h∗-polynomial of the polytope P 171
HqP P \ |Visq(P)|, a half-open polyhedron 166
HqP another half-open polyhedron 166
haC(n) Hilbert function of the cone C with grading a 126
Ha

C(n) Hilbert series of the cone C with grading a 127
hom(S) homogenization of S ⊆ Rd 56
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Symbol Meaning Page

J (Π) lattice of order ideals of the poset Π 30
(I f)(n) f(n), the identity operator applied to f(n) 107
I(Π) incidence algebra of the poset Π 30
IP,H(t) Ehrhart function of inside-out polytope (P,H) 241
JH(Π)

{
τ ∈ Sd : τ−1 ∈ Lin(Π)

}
, Jordan–Hölder set of Π 206

[k] set {1, 2, . . . , k} xi
Kd complete graph on d nodes 23
KΠ order cone of the poset Π 199
K1 + K2 Minkowski sum of K1,K2 ⊆ Rd 64
lΠ(x, y) length of a maximal chain in [x, y] in the poset Π 38
lineal(Q) lineality space of the polyhedron Q 57
Lin(Π) set of linear extensions of the poset Π 202
LipΠ Lipschitz polytope of the poset Π 251
L(G) flats of the graph G partially ordered by inclusion 42
L(H) intersection poset of the hyperplane arrangement H 88
maj(σ)

∑
j∈Desσ j, the major index of σ 217

µΠ Möbius function of the poset Π 33(
n
d

)
binomial coefficient xii

[n]q 1 + q + · · ·+ qn−1, a q-integer 217
N (Π,�) poset of refinements of the poset (Π,�) 206
OΠ order polytope of the poset Π 210
ΩΠ(n) order polynomial of the poset Π 14
Ω◦Π(n) strict order polynomial of the poset Π 13
P,Q a polyhedron or polytope 15
P◦ relative interior of the polyhedron P 15
∂P relative boundary of the polyhedron P 59
PCd collection of polyconvex sets in Rd 72
PC(H) collection of H-polyconvex sets 74
(P,H) an inside-out polytope 241
[p,q] line segment with endpoints p and q 60
Π a poset 12
pΠ(n) number of Π-partitions of the integer n 223
p◦Π(n) number of strict Π-partitions of the integer n 223
PΠ(z)

∑
t≥0 pΠ(t) zt 223

pA(n) restricted partition function for A 118
pl(n) number of plane partitions of n 115
Pull(P) pulling triangulation of a polytope P 185
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Symbol Meaning Page

r(H) number of regions of the arrangement H 89
rkΠ(x) the rank of x ∈ Π 48
rec(Q) recession cone of the polyhedron Q 55
[S] indicator function of the set S 90
|S| support of the polyhedral complex S 152
S(d, r) Stirling number of the second kind 14
c(d, r) Stirling number of the first kind 47
s(d, k) Eulerian number 188
(S f)(n) f(n+ 1), the shift operator applied to f(n) 107
supp(f) support of a flow (or vector) f 7(
S
d

)
{A ⊆ S : |A| = d} xii

σS(z) integer-point transform of S 122
Sd set of bijections/permutations of [d] 48
T a triangulation 17
Tq(Q) tangent cone of the polyhedron Q at the point q 82
TF(Q) tangent cone of the polyhedron Q at the face F 83
v ∗ P pyramid with apex v and base P 70
vert(P) vertex set of the polytope P 60
vol(S) (relative) volume of S 150
Visp(P) complex of faces of P visible from p 91
Visp(S) subcomplex of cells of S visible from p 164
ξ(G) cyclotomic number of the graph G 11
ζΠ zeta function of the poset Π 31
ZΠ(n) zeta polynomial of the poset Π 36
Z(z1, . . . , zm) a zonotope 257

0̂ minimum of a poset 32

1̂ maximum of a poset 32
x ∨ y join of elements in a poset 37
x ∧ y join of elements in a poset 37
�, �Π partial order relation (of a poset Π) 12
2 (half-open) parallelpiped 124
2̂, q2 fundamental parallelpipeds 131
D an exercise used in the text xiv
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acyclic orientation, 5, 238, 259

unique source, 240

acyclotope, 276

admissible hyperplane, 66

affine hull, 58

affine linear combination, 98

affine subspace, 53

skew, 100

affinely independent, 63

alcove, 247

alcoved polytope, 247

alcoved triangulation, 248

Andrews, George, 141

antichain, 14, 30, 200

antistar, 183

Appel, Kenneth, 2, 21

Archimedes, 93

arrangement of hyperplanes, 73

ascent, 187, 209

2-ascent, 255

big, 255

number of, 220

Barlow, Peter, 142

Barvinok, Alexander, 190

barycentric subdivision, 191

base orientation, 269

Batyrev, Victor, 189

Bell, Eric Temple, 45

beneath, 91

beneath-beyond method, 189

Bernoulli number, 145

Bernoulli polynomial, 145, 227

Betke, Ulrich, 190

beyond, 91, 164

big ascent, 255

Billera, Louis J., 95

binomial coefficient, 106, 113

binomial theorem, 32, 45, 106

Birkhoff lattice, 30, 211

Birkhoff’s theorem, 37

Birkhoff, Garrett, 45

Birkhoff, George, 2, 21

Boolean arrangement, 103

characteristic polynomial of, 242

Boolean lattice, 34, 40, 140

boundary, 59

boundary complex, 178

braid arrangement, 103

characteristic polynomial of, 243

Brianchon, Charles Julien, 95

Brianchon–Gram relation, 90, 171

bridge, 8, 273

Brion’s theorem, 171

Brion, Michel, 190

Bruggesser, Heinz, 94

b-transshipments, 276

calculus of finite differences, 107

Cayley, Arthur, 141

cell, 152

chain, 13, 200

in a poset, 35

length, 35

maximal, 35

saturated, 35
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unrefineable, 35
chain partition, 135, 183

reciprocity theorem, 138
characteristic polynomial

of a graded poset, 87
of a graphical arrangement, 244
of a hyperplane arrangement, 89, 239
of the Boolean arrangement, 242
of the braid arrangement, 243

chromatic polynomial, 3, 15, 39, 232
reciprocity theorem, 6
reciprocity theorem for, 246

cographical arrangement, 273
coin-exchange problem, 141
coloring, 1

color gradient, 5
proper, 2

comajor index, 221
combinatorial reciprocity theorem, xii

for P -partitions, 224
for binomial coefficients, xii
for chain partitions, 138
for chromatic polynomials, 6, 234, 246
for compositions respecting a poset,

223
for flow polynomials, 11, 274
for half-open lattice polytopes, 169
for half-open lattice simplices, 168
for half-open rational cones, 170
for Hilbert series, 134, 170
for inside-out polytopes, 245
for integer-point transforms, 131, 170
for lattice polygons, 17
for lattice polytopes, 162
for order polynomials, 14, 36, 220
for plane partition diamonds, 146
for rational cones, 170
for rational polytopes, 163
for restricted partition functions, 119
for Stirling numbers, 47
for zeta polynomials of Eulerian

posets, 38, 84
for zeta polynomials of finite

distributive lattices, 38
complete bipartite graph, 24
complete graph, 23
composition, 113, 221

part of, 113
strictly respects, 222
with odd parts, 114
with parts ≥ 2, 114

cone, 55, 60
finitely generated, 61
generators, 61
graded, 122
half-open, 131
order, 199
pointed, 57, 61, 78, 126
polar, 62, 98
polyhedral, 55
rational, 61, 126
simplicial, 63, 126
unimodular, 124

conical hull, 61
connected component, 7
conservation of flow, 7, 270
constituent, 120
contraction, 3, 236
convex, 15, 60
convex epigraph, 155
convex hull, 60
convolution, 119, 146
cover relation, 12, 200
Coxeter arrangements, 276
Cramer’s rule, 148
Crapo, Henry, 275
cross polytope, 59, 192
crosscut, 207
cube, 59, 233

face lattice of, 71
pulling triangulation of, 186
regular unimodular triangulation, 158

cycle, 23, 264
basis, 271
fundamental, 271

cyclotomic number, 11, 270

Dedekind, Richard, 45
Dehn, Max, 94
Dehn–Sommerville relations, 85, 145,

182
generalized, 150

Delaunay, Boris, 189
deletion, 3
delta function, 31
derangement number, 49
derivative, 108
descent, 187, 208, 252

Π-descents, 256
number of, 215

descent-compatible permutation, 252
difference operator, 84, 107
dilate, 15
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dimension, 58, 63
of a polyhedron, 58
of an order cone, 201
of an abstract simplicial complex, 180

directed cycle, 5
directed path, 5
disjoint union, 69, 130
displacement, 53
dissection, 152

unimodular, 174
distributive lattice, 37, 72
divisor, 47
dual graph, 8
dual order ideal, 30

edge, 66
contraction of, 3
deletion of, 3
interior, 18
of a graph, 1
of a polygon, 15
of a polyhedron, 66

edge cut, 272
Ehrhart function, 16, 122, 151
Ehrhart polynomial, 17, 124, 157, 264

of a lattice polytopal complex, 177
Ehrhart series, 122, 171

of an open polytope, 135
Ehrhart’s theorem, 126, 157
Ehrhart, Eugène, 142, 189
Ehrhart–Macdonald reciprocity, 17, 162,

245, 271
embedded sublattice, 226
eta function, 32
Euler characteristic, 76, 85, 157
Euler, Leonhard, 94, 141, 224
Euler–Mahonian statistic, 219
Euler–Poincaré formula, 76
Eulerian complex, 179
Eulerian number, 188, 215
Eulerian polynomial, 215, 253
Eulerian poset, 38
eventually polynomial, 112, 144

face, 17, 65, 152
boundary, 18
figure, 102
interior, 18
numbers, 68
proper, 66

face lattice, 67
face poset

of a hyperplane arrangement, 260
of a polyhedron, 67

facet, 66
facet-defining hyperplane, 68
fan, 152
Feller, William, 141
Fibonacci number, 110
filter, 30, 203

connected, 204
neighbor closed chain, 251
neighborhood of, 251

finite reflection group, 276
finite-field method, 275
Five-flow Conjecture, 11, 21
fixed point, 49
flag f -vector, 136
flat, 88

of a graph, 42, 236
of a hyperplane arrangement, 88

flow, 7
conservation of, 270
integral, 274, 281
nowhere zero, 269

flow polynomial, 11, 269
reciprocity theorem, 11, 274

flow space, 270
forest, 264
formal Laurent series, 123
formal power series, 108
Four-color Theorem, 2
f -polynomial, 175
fractional part, 147
Freudenthal, Hans, 189
Frobenius number, 141
Frobenius problem, 142
Frobenius, Georg, 141
fundamental cycle, 271
fundamental parallelepiped, 131, 172
fundamental theorem of calculus, 46
f -vector

of a polyhedron, 68
of a simplicial complex, 140

Gelfand, Israel, 189
general position, 103, 262
generating function, 108

derivative, 108
formal reciprocity, 111
rational, 109

generic relative to, 166
geometric lattice, 275
geometric series, 115
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Gorenstein polytope, 193, 253
Grünbaum, Branko, 189, 275
graded poset, 38

characteristic polynomial of, 87
Gram, Jørgen, 95
graph, 1

acyclic orientation, 259
chromatic polynomial of, 3
complete, 23
complete bipartite, 24
connected, 7
connected component of, 7
contraction, 236
dual, 8
flat, 236
flat of, 42, 236
flow space of, 270
isomorphic, 22
orientation on, 5
planar, 2
source, 238

graphical arrangement, 235
characteristic polynomial of, 244

graphical zonotope, 257
vertices of, 259

greater index, 224
greatest lower bound, 37
Greene, Curtis, 275
g-Theorem, 95
Guthrie, Francis, 2

Haken, Wolfgang, 2, 21
half-open decomposition, 167
half-open polyhedron, 166
halfspace, 53

irredundant, 55
open, 74

Hall, Philip, 45
Hardy, Godfrey Harold, 141
Hasse diagram, 12
height

of a poset, 256
Hibi, Takayuki, 189
Hilbert function, 126
Hilbert series, 127, 170

reciprocity theorem, 134, 170
homogenization, 56, 122
H-polyconvex set, 74
h∗-polynomial, 149, 172
Huh, June, 22
h-vector, 95, 140, 181
hyperplane, 53

admissible, 66
arrangement of, 73
facet-defining, 68
halfspace, 53
oriented, 53
separating, 62
supporting, 66

hyperplane arrangement, 73, 88, 95, 235
affine reflection, 276
affinization, 262
central, 88, 235
cographical, 273
Coxeter, 276
essential, 89
flat of, 88, 235
general position, 103
graphical, 235
lineality space of, 89
localization of, 239
rational, 241
real braid, 243
reflection, 276
region, 89
restriction of, 237
simple, 267
vertices, 267

hypersimplex, 93, 186, 248
(Π, k)-hypersimplex, 256
pulling triangulation of, 187

identity operator, 107
incidence algebra, 30, 41

invertible elements, 33
operating on functions, 41

inclusion–exclusion, 17, 39, 73, 152
incomparable, 206
indicator function, 90, 171
induced sublattice, 226
inner product, 53
inside-out polytope, 241

reciprocity theorem, 245
integer partition, 117
integer-point transform, 122

reciprocity theorem, 131, 170
integral flow, 274, 281
interior, 15, 58

relative, 58
topological, 58

interior point, 96
intersection poset, 43, 88, 235

closed set of, 43
interval, 35
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inversion, 226
irredundant halfspace, 55
isomorphic posets, 35
isthmus, 8

Jaeger, François, 21
Jochemko, Katharina, 190
join, 37, 71
join irreducible, 48
Jordan normal form, 143
Jordan–Hölder set, 206

Kapranov, Mikhail, 189
Katz, Eric, 22
Klee, Victor, 190
Knuth, Donald, 225
Köppe, Matthias, 190
Koren, Michael, 276

Lam, Thomas, 276
lattice

(poset), 37
Birkhoff, 30
Boolean, 34
distributive, 37, 72
face, 67
integer, 16
of flats, 42, 239
of order ideals, 30

lattice basis, 123, 148
lattice length, 26
lattice path, 198
lattice polygon, 18
lattice polytope, 60, 93

reciprocity theorem, 162
lattice segment, 26
Laurent series, 123
least upper bound, 37
Lee, Carl W., 95
length

of a chain, 35, 44
of a poset, 35

lexicographic ordering, 279
Li, Nan, 276
line free, 57
line segment, 60, 257
lineality space, 57
linear extension, 32, 202
linear optimization, 93
linear programming, 93
linear recurrence, 110
linear subspace, 53

linearly ordered, 12
Lipschitz continuity, 250
Lipschitz polytope, 251
log concave, 22
loop, 1

Macdonald, I. G., 189
MacMahon, Percy, 141, 224
major index, 217
Mani, Peter, 94
map coloring, 21
maximal chain, 38
McMullen, Peter, 95, 189, 276
meet, 37
meet semilattice, 46, 68, 103
Minkowski sum, 64, 257
Minkowski, Hermann, 93, 189
Minkowski–Weyl theorem, 64, 166
Möbius function, 18, 33, 160

number theoretic, 47
of a face lattice, 81, 103
of order ideals, 35
of the lattice of flats, 239

Möbius inversion, 41, 154, 242
multichain, 30
multiplicity, 245
multisubset, xii, 39

n-flow, 24
augmenting path, 24

nilpotent, 46, 105
node, 1
normal, 53
nowhere-zero flow, 7, 269, 281

octahedron, 192
order complex, 137, 212
order cone, 199, 253

dimension of, 201
faces of, 203
irredundant representation of, 200
unimodular triangulation of, 208

order ideal, 30
principal, 30

order polynomial, 14, 32, 211
reciprocity theorem, 14, 36, 220

order polytope, 210, 248
canonical triangulation of, 212

order-preserving map, 13, 29, 220
ranked, 136
strictly, 13
surjective, 46
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orientation, 5
acyclic, 5, 238
base, 269
induced by a coloring, 5
totally cyclic, 11, 272

oriented matroids, 276

parallelepiped, 71, 124, 257
half-open, 124

part, 117
partially ordered set, 12
partition, 45, 117, 222

function, 147
part of, 117

path, 23
Paule, Peter, 141
periodic function, 116
permutahedron, 276, 279
permutation, 47, 158

2-ascent of, 255
big ascent of, 255
descent of, 249
descent-compatible, 252
fixed point of, 49
inversion of, 226
major index of, 217
statistics, 219

Petersen graph, 25
Philip Hall’s theorem, 44
Pick, Georg, 22
placing triangulation, 165
plane partition, 114, 128, 222

diamond, 146
Plato, 93
Poincaré, Henri, 94
pointed cone, 78
polar cone, 98
polyconvex, 72
polygon, 15

lattice, 18
polyhedral complex, 152, 183

dimension, 177
Eulerian, 179
of visible faces, 164
pure, 179
support of, 152

polyhedral cone, 55
polyhedron, 52

admissible hyperplane, 66
admissible projective transform, 96
convex, 60
direct sum, 101

face of, 66
free sum, 101
half-open, 166
join, 100
line free, 57
linearly isomorphic, 56
pointed, 66
product, 71, 100
projection, 65, 67
projectively isomorphic, 96
proper, 54, 68
rational, 52
supporting hyperplane, 66
unbounded, 55
wedge, 101

polynomial, 14, 32, 105, 107, 120
basis, 14, 106
Bernoulli, 145
characteristic, 87, 239
chromatic, 3, 232
Ehrhart, 17, 124, 157, 264
Eulerian, 215, 253
f , 175
flow, 11, 269
generating function of, 109
h∗, 172
order, 13, 32, 211
zeta, 36, 106

polytopal complex, 152
self-reciprocal, 177

polytope, 15, 16, 60
0/1, 197, 211
2-level, 197
alcoved, 247
centrally-symmetric, 252
compressed, 187, 197, 278
Gorenstein, 193, 253
inside-out, 241
lattice, 60, 93
Lipschitz, 251
order, 210
rational, 60, 129, 163
reflexive, 193
simplicial, 70, 85, 138, 184
vertex set, 60
vertices, 60
zonotope, 257

poset, 12, 29, 199
anti-isomorphic, 260
connected, 202
direct product, 34, 46
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dual naturally labelled, 224
Eulerian, 38, 48, 84, 138, 179
from graph, 14
graded, 38, 67, 179, 227
intersection, 43
interval, 35
isomorphic, 35
isomorphism, 13
linear extension of, 202
Lipschitz function on, 250
maximum of, 32
minimum of, 32
naturally labelled, 200
of partitions, 45
rank of, 38
rank of an element, 48
ranked, 252
refinement, 206
rooted tree, 278

Postnikov, Alexander, 276
P -partition, 223

reciprocity theorem, 224
(P, ω)-partition, 228
principal order ideal, 30
product in an incidence algebra, 30
product of simplices, 198
projection, 65
projective transformation, 96
proper coloring, 2
pulling triangulation, 185

of an order polytope, 212
pushing triangulation, 165
pyramid, 67, 70, 164, 192

q-factorial, 217
q-integer, 217
quasipolynomial, 116

constituents of, 120
convolution of, 119, 146
degree of, 120
Ehrhart, 129, 163
period of, 120

Rademacher, Hans, 141
Ramanujan, Srinivasa, 141
rank, 48

of a poset, 38
rational cone, 61

reciprocity theorem, 170
rational function, 108

improper, 112
rational generating function, 109

rational polytope, 60, 129
reciprocity theorem, 163

ray, 66
Read, Ronald, 22
real braid arrangement, 103
recession cone, 55
reciprocal domain, 190
refinement, 45
reflection arrangements, 276
reflexive polytope, 193
region, 89

(relatively) bounded, 89
of an inside-out polytope, 245

regular triangulation, 158
relative boundary, 59
relative interior, 58
relative volume, 150
restricted partition function, 118, 135

reciprocity theorem, 119
ridge, 66
Riese, Axel, 141
Riordan, John, xi
root system, 276
rooted tree, 278
Rota’s crosscut theorem, 35
Rota, Gian-Carlo, 45, 275

Sanyal, Raman, 190
Schläfli, Ludwig, 94
Schrijver, Alexander, 93
self-reciprocal, 117, 177
separating hyperplane, 62
separation theorem, 62, 93
Seymour, Paul, 11
Shephard, Geoffrey, 276
shift operator, 107
simplex, 63

barycenter, 249
unimodular, 126

simplicial complex, 138, 152
abstract, 138, 152, 180
canonical realization of, 180
dimension of, 180
face, 139
geometric, 152, 180
order complex, 138
pure, 138

simplicial cone, 63, 125
simplicial polytope, 70, 85, 95, 138
solid partition, 225
Sommerville, D. M. Y., 94
source, 238
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spanning tree, 264, 270
square, 54
Stanley reciprocity, 131, 170
Stanley, Richard, xi, 5, 21, 22, 45, 94,

142, 190, 225, 276
Stanley–Reisner ring, 142
Steiner, Jakob, 275
Steinitz’s theorem, 95
Steinitz, Ernst, 95
Stirling number

of the first kind, 47
of the second kind, 14, 47, 48

strict order polynomial, 13
strictly order-preserving map, 30
Sturmfels, Bernd, 276
subdivision, 153, 164

barycentric, 191
coherent, 157
proper, 153
regular, 157

sublattice
embedded, 226
induced, 226

support, 7, 139, 152
supporting hyperplane, 66
surjective order-preserving map, 46
symmetric group, 158

tangent cone, 82, 90, 161
tiling, 261

regular, 262
zonotopal, 261

total order, 13
totally cyclic, 11, 272
totally ordered, 12
transversal, 245
tree, 264
triangle, 15, 123

unimodular, 26
triangulation, 17, 153, 165, 169

alcoved, 248
lattice, 153
placing, 165
pulling, 185
pushing, 165
rational, 169
unimodular, 181

Tutte polynomial, 21
Tutte, William, 10
Tutte–Grothendieck invariant, 21

unimodal, 22

unimodular
cone, 124
dissection, 174
simplex, 126
triangulation, 158

unipotent, 105
unit disc, 101

valuation, 17, 72, 94, 151, 189
vector space

of polynomials, 106, 143
of valuations, 103

Verdoolaege, Sven, 190
vertex, 60, 66

figure, 102
of a polygon, 15
of a polyhedron, 66
of a simplicial complex, 152

visible, 91, 164
volume, 150

wedge, 57, 101
Weyl, Hermann, 94
wheel, 23
Whitney, Hassler, 2, 21
Wilf, Herbert, 22

Young diagram, 228
Young tableau, 229

Zaslavsky’s theorem, 89, 239
Zaslavsky, Thomas, 95, 275
Zelevinsky, Andrei, 189
zeta function, 31
zeta polynomial, 36, 105, 135, 182

for Boolean lattices, 48
for Eulerian posets, 38

Zn-flow, 7, 269
zonotopal tiling, 261

cubical, 261
fine, 261

zonotope, 257
graphical, 257
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