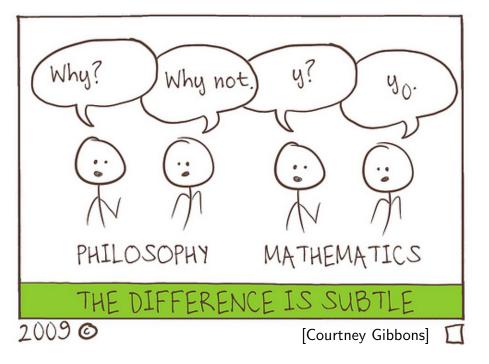
$\binom{-5}{12}$ and Other Combinatorial Reciprocity Instances

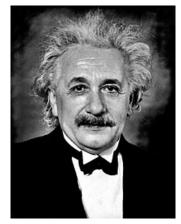
Matthias Beck

San Francisco State University math.sfsu.edu/beck



Act 1: Binomial Coefficients

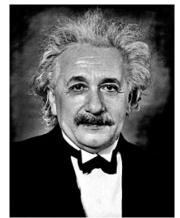
"Not everything that can be counted counts, and not everything that counts can be counted."



Act 1: Binomial Coefficients

"Not everything that can be counted counts, and not everything that counts can be counted."

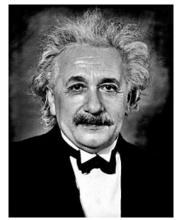
$$\binom{n}{k} = \frac{1}{k!} n(n-1)(n-2) \cdots (n-k+1)$$



Act 1: Binomial Coefficients

"Not everything that can be counted counts, and not everything that counts can be counted."

$$\binom{n}{k} = \frac{1}{k!}n(n-1)(n-2)\cdots(n-k+1)$$



$$(-1)^k \binom{-n}{k} = \binom{n+k-1}{k}$$

Act 2: Chromatic Polynomials of Graphs

Proper *n*-coloring of G — labeling of the nodes of G with 1, 2, ..., n such that adjacent nodes get different labels

 $\chi_G(n) := \# (\text{proper } k\text{-colorings of } G)$

Act 2: Chromatic Polynomials of Graphs

Proper *n*-coloring of G — labeling of the nodes of G with 1, 2, ..., n such that adjacent nodes get different labels

 $\chi_G(n) := \#$ (proper k-colorings of G)

Theorem (Birkhoff 1912, Whitney 1932) $\chi_G(n)$ is a polynomial in n.

Proof Let c_k be the number of ways of breaking up the nodes V into k monochromatic subsets. Then

$$\chi_G(n) = \sum_{k=1}^{|\mathbf{v}|} c_k \binom{n}{k}$$

Act 2: Chromatic Polynomials of Graphs

Proper *n*-coloring of G — labeling of the nodes of G with 1, 2, ..., n such that adjacent nodes get different labels

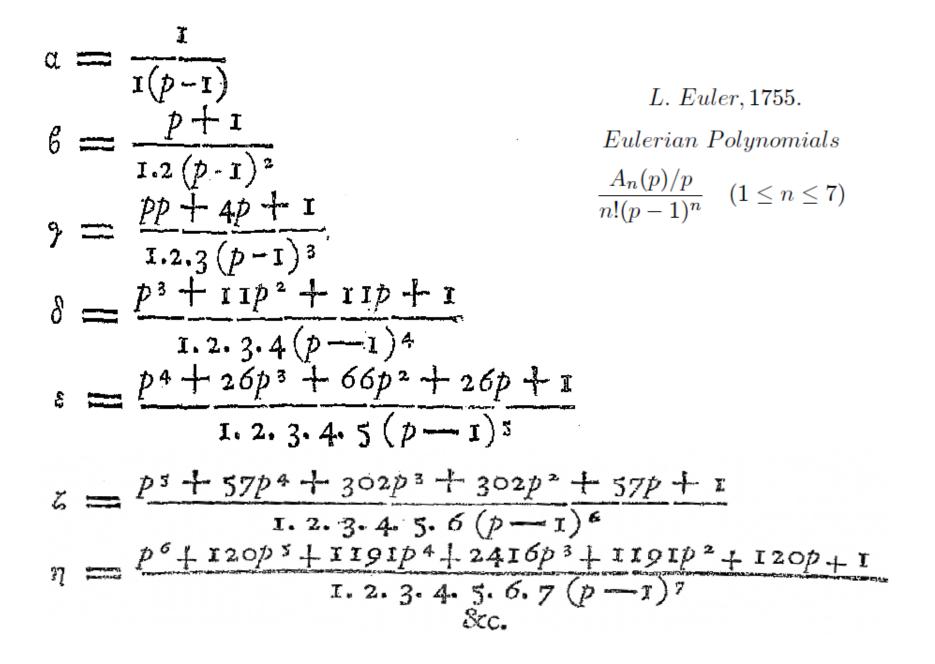
 $\chi_G(n) := \#$ (proper k-colorings of G)

Theorem (Birkhoff 1912, Whitney 1932) $\chi_G(n)$ is a polynomial in n.

Proof Let c_k be the number of ways of breaking up the nodes V into k monochromatic subsets. Then

$$\chi_G(n) = \sum_{k=1}^{|V|} c_k \binom{n}{k}$$

Theorem (Stanley 1973) $(-1)^{|V|}\chi_G(-1)$ equals the number of acyclic orientations of G. More generally, $(-1)^{|V|}\chi_G(-n)$ equals the number of pairs (acyclic orientation α of G, compatible *n*-coloring).



Act 3: Eulerian Polynomials

 ${\binom{n}{k}}$ — number of permutations of $\{1, 2, \dots, n\}$ with exactly k descents

Exercise 1 Show that
$${\binom{n}{k}} = {\binom{n}{n-k-1}}$$

Act 3: Eulerian Polynomials

 ${\binom{n}{k}}$ — number of permutations of $\{1, 2, \dots, n\}$ with exactly k descents

Exercise 1 Show that
$${\binom{n}{k}} = {\binom{n}{n-k-1}}$$

Let $E_n(x) := \sum_{k=0}^{n-1} \langle {n \atop k} \rangle x^k$, the n^{th} Eulerian polynomial. Exercise 1 says $x^{n-1} E_n\left(\frac{1}{x}\right) = E_n(x)$

Exercise 2 Show that
$$\sum_{t=0}^{\infty} t^{n-1} x^t = \frac{E_n(x)}{(1-x)^n}$$

Exercise 3 Re-prove Exercise 1 via Exercise 2.

For a lattice polygon \mathcal{P} containing I interior and B boundary lattice point, Pick's Theorem (1899) tells us how to compute the area of P:

$$A = I + \frac{1}{2}B - 1$$

For a lattice polygon \mathcal{P} containing I interior and B boundary lattice point, Pick's Theorem (1899) tells us how to compute the area of P:

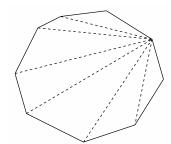
$$A = I + \frac{1}{2}B - 1$$

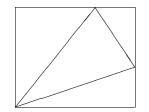
Do-it-yourself proof:

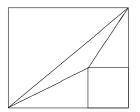
(1) Convince yourself that Pick's formula is "additive".

(2) Reduce to rectangles and right-angled triangles.

(3) Prove Pick's formula for these two cases.







For a lattice polygon \mathcal{P} containing I interior and B boundary lattice point, Pick's Theorem (1899) tells us how to compute the area of P:

$$A = I + \frac{1}{2}B - 1$$

For $k \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(k) := \# \left(k \mathcal{P} \cap \mathbb{Z}^2 \right)$

$$L_{\mathcal{P}}(k) = A k^2 + \frac{1}{2}B k + 1$$

$$L_{\mathcal{P}^{\circ}}(k) = A k^2 - \frac{1}{2}B k + 1$$

For a lattice polygon \mathcal{P} containing I interior and B boundary lattice point, Pick's Theorem (1899) tells us how to compute the area of P:

$$A = I + \frac{1}{2}B - 1$$

For $k \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(k) := \# \left(k \mathcal{P} \cap \mathbb{Z}^2 \right)$

$$L_{\mathcal{P}}(k) = A k^{2} + \frac{1}{2} B k + 1$$

$$L_{\mathcal{P}}(-k) = L_{\mathcal{P}}(k)$$

$$L_{\mathcal{P}}(-k) = L_{\mathcal{P}}(k)$$

For a lattice polygon \mathcal{P} containing I interior and B boundary lattice point, Pick's Theorem (1899) tells us how to compute the area of P:

$$A = I + \frac{1}{2}B - 1$$

For $k \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(k) := \# \left(k \mathcal{P} \cap \mathbb{Z}^2 \right)$

$$L_{\mathcal{P}}(k) = A k^{2} + \frac{1}{2}B k + 1$$

$$L_{\mathcal{P}}(-k) = L_{\mathcal{P}}(k)$$

$$L_{\mathcal{P}}(k) = A k^{2} - \frac{1}{2}B k + 1$$

Example Triangle Δ with vertices (0,0), (1,0), and (0,1)

$$L_{\Delta}(k) = \binom{k+2}{2} \qquad \qquad L_{\Delta^{\circ}}(k) = \binom{k-1}{2}$$

For a lattice polygon \mathcal{P} containing I interior and B boundary lattice point, Pick's Theorem (1899) tells us how to compute the area of P:

$$A = I + \frac{1}{2}B - 1$$

For $k \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(k) := \# \left(k \mathcal{P} \cap \mathbb{Z}^2 \right)$

$$L_{\mathcal{P}}(k) = A k^{2} + \frac{1}{2}B k + 1$$

$$L_{\mathcal{P}}(-k) = L_{\mathcal{P}}(k)$$

$$L_{\mathcal{P}}(-k) = L_{\mathcal{P}}(k)$$

Theorem (Ehrhart 1962, Macdonald 1971) If \mathcal{P} is a *d*-dimensional lattice polytope, then $L_{\mathcal{P}}(k)$ is a polynomial in k and $(-1)^d L_{\mathcal{P}}(-k) = L_{\mathcal{P}^\circ}(k)$