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Act 1: Binomial Coefficients

“Not everything that can be counted counts, and not everything that counts
can be counted.”
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Act 2: Chromatic Polynomials of Graphs

Proper n-coloring of G — labeling of the nodes of G with 1, 2, . . . , n such
that adjacent nodes get different labels

χG(n) := # (proper k-colorings of G)
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Proper n-coloring of G — labeling of the nodes of G with 1, 2, . . . , n such
that adjacent nodes get different labels

χG(n) := # (proper k-colorings of G)

Theorem (Birkhoff 1912, Whitney 1932) χG(n) is a polynomial in n.

Proof Let ck be the number of ways of breaking up the nodes V into k
monochromatic subsets. Then

χG(n) =

|V |∑
k=1
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Theorem (Stanley 1973) (−1)|V |χG(−1) equals the number of acyclic
orientations of G . More generally, (−1)|V |χG(−n) equals the number of
pairs (acyclic orientation α of G, compatible n-coloring).
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Act 3: Eulerian Polynomials

〈n
k

〉
— number of permutations of {1, 2, . . . , n} with exactly k descents

Exercise 1 Show that
〈n
k

〉
=

〈
n

n− k − 1

〉
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Exercise 1 Show that
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k
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=

〈
n

n− k − 1

〉

Let En(x) :=

n−1∑
k=0

〈n
k

〉
xk, the nth Eulerian polynomial. Exercise 1 says

xn−1En

(
1

x

)
= En(x)

Exercise 2 Show that
∞∑
t=0

tn−1 xt =
En(x)

(1− x)n

Exercise 3 Re-prove Exercise 1 via Exercise 2.

(−5
12

)
and Other Combinatorial Reciprocity Instances Matthias Beck



Act 4: Pick’s Theorem

For a lattice polygon P containing I interior and B boundary lattice point,
Pick’s Theorem (1899) tells us how to compute the area of P :

A = I +
1

2
B − 1
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Do-it-yourself proof:

(1) Convince yourself that Pick’s formula is “additive”.

(2) Reduce to rectangles and right-angled triangles.

(3) Prove Pick’s formula for these two cases.
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Act 4: Pick’s Theorem

For a lattice polygon P containing I interior and B boundary lattice point,
Pick’s Theorem (1899) tells us how to compute the area of P :

A = I +
1

2
B − 1

For k ∈ Z>0 let LP(k) := #
(
kP ∩ Z2

)
LP(k) = Ak2 +

1

2
B k + 1

LP◦(k) = Ak2 − 1

2
B k + 1
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Example Triangle ∆ with vertices (0, 0), (1, 0), and (0, 1)

L∆(k) =

(
k + 2

2

)
L∆◦(k) =

(
k − 1

2
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For a lattice polygon P containing I interior and B boundary lattice point,
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Theorem (Ehrhart 1962, Macdonald 1971) If P is a d-dimensional lattice
polytope, then LP(k) is a polynomial in k and (−1)dLP(−k) = LP◦(k)
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