Weighted lattice point sums in lattice polytopes

Matthias Beck San Francisco State University Freie Universität Berlin math.sfsu.edu/beck Paul Gunnels University of Massachusetts

Evgeny Materov Siberian Fire and Rescue Academy of EMERCOM of Russia

The Bott–Brion–Dehn–Ehrhart–Euler– Khovanskii–Maclaurin–Pukhlikov– Sommerville–Vergne formula for simple lattice polytopes

Matthias Beck San Francisco State University Freie Universität Berlin math.sfsu.edu/beck Paul Gunnels University of Massachusetts

Evgeny Materov

Siberian Fire and Rescue Academy of EMERCOM of Russia

The Menu

- Lattice-point counting in lattice polytopes: (weighted) Ehrhart polynomials and their reciprocity
- Face-counting for simple polytopes: (generalized) Dehn–Sommerville relations

Our goal Give a unifying reciprocity theorem

Secondary goal Entice (some of) you to study weighted Ehrhart polynomials

Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice $M \subset V$

 $P \subset V$ — (*n*-dimensional) lattice polytope (i.e., vertices in M)

For $t \in \mathbb{Z}_{>0}$ let $E_P(t) := |M \cap tP|$

Ehrhart–Macdonald (1960s) $E_P(t)$ is a polynomial in t (of degree dim(P) and with constant term 1) that satisfies

$$E_P(-t) = (-1)^{\dim(P)} E_{P^\circ}(t).$$

Example $P = \operatorname{conv}\{(\pm 1, \pm 1, 1), (0, 0, 1)\}$

$$E_P(t) = \frac{4}{3}t^3 + 4t^2 + \frac{11}{3}t + 1$$

Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice $M \subset V$

 $P \subset V$ — (*n*-dimensional) lattice polytope (i.e., vertices in M)

For $t \in \mathbb{Z}_{>0}$ let $E_P(t) := |M \cap tP|$

Ehrhart–Macdonald (1960s) $E_P(t)$ is a polynomial in t (of degree dim(P) and with constant term 1) that satisfies

$$E_P(-t) = (-1)^{\dim(P)} E_{P^{\circ}}(t).$$

- In the dictionary $P \leftrightarrow toric$ variety (if P is a very ample), $E_P(t)$ equals the Hilbert polynomial of this toric variety under the projective embedding given by the very ample divisor associated with P.
- Ehrhart–Macdonald is part of an illustrious series of combinatorial reciprocity theorems

Ehrhart Polynomials

V — real vector space of dimension n equipped with a lattice $M \subset V$

 $P \subset V$ — (*n*-dimensional) lattice polytope (i.e., vertices in M)

For $t \in \mathbb{Z}_{>0}$ let $E_P(t) := |M \cap tP|$

Ehrhart–Macdonald (1960s) $E_P(t)$ is a polynomial in t (of degree dim(P) and with constant term 1).

Natural, currently *en vogue* questions:

- (Sub-)Classification of Ehrhart polynomials
- ► Families of polytopes with positive/unimodal/... Ehrhart coefficients

Weighted Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice $M \subset V$

 $P \subset V$ — (*n*-dimensional) lattice polytope (i.e., vertices in M)

For $t \in \mathbb{Z}_{>0}$ let $E_P(t) := |M \cap tP|$

Ehrhart–Macdonald (1960s) $E_P(t)$ is a polynomial in t (of degree dim(P) and with constant term 1) that satisfies

$$E_P(-t) = (-1)^{\dim(P)} E_{P^{\circ}}(t).$$

For a homogeneous polynomial φ let $E_{\varphi,P}(t) := \sum_{m \in M \cap tP} \varphi(m)$

Brion–Vergne (1997) $E_{\varphi,P}(t)$ is a polynomial in t (of degree $\dim(P) + \deg(\varphi)$ and with constant term $\varphi(0)$) that satisfies

$$E_{\varphi,P}(-t) = (-1)^{\dim(P) + \deg(\varphi)} E_{\varphi,P^{\circ}}(t).$$

Weighted Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice $M \subset V$

 $P \subset V$ — (*n*-dimensional) lattice polytope (i.e., vertices in M)

For a homogeneous polynomial φ let $E_{\varphi,P}(t) := \sum_{m \in M \cap tP} \varphi(m)$

Brion–Vergne (1997) $E_{\varphi,P}(t)$ is a polynomial in t (of degree $\dim(P) + \deg(\varphi)$ and with constant term $\varphi(0)$).

Possible (and possibly *en vogue*) questions:

Structural theorems (à $la h_P^* \ge 0$) under certain conditions

► Families of polytopes with positive/unimodal/... Ehrhart coefficients

▶ Special cases, e.g.,
$$\varphi(m) = m_1$$
 or $\varphi(m) = m_1 + m_2 + \cdots + m_n$

Dehn–Sommerville Relations

P is simple if each vertex meets n edges

 \mathcal{F} — set of faces of P

The *h*-polynomial of *P* is
$$h_P(y) := \sum_{F \in \mathcal{F}} (y-1)^{\dim(F)}$$

Dehn–Sommerville (early 1900s) If P is simple then $y^n h_P(\frac{1}{y}) = h_P(y)$.

Example If P is a simplex then $h_P(y) = y^n + y^{n-1} + \cdots + 1$

Dehn–Sommerville Relations

P is simple if each vertex meets n edges

 \mathcal{F} — set of faces of P

The *h*-polynomial of *P* is $h_P(y) := \sum_{F \in \mathcal{F}} (y-1)^{\dim(F)}$

Dehn–Sommerville (early 1900s) If P is simple then $y^n h_P(\frac{1}{y}) = h_P(y)$.

Example If P is a simplex then $h_P(y) = y^n + y^{n-1} + \cdots + 1$

- In the dictionary $P \leftrightarrow toric$ variety, Dehn–Sommerville corresponds to Poincaré duality for the rational cohomology of the toric variety attached to P.
- Combinatorially, Dehn–Sommerville follows from the fact that the face lattice of a polytope is Eulerian and thus its zeta polynomial is even/odd.

Dehn–Sommerville Relations

P is simple if each vertex meets n edges

 \mathcal{F} — set of faces of P

The *h*-polynomial of *P* is $h_P(y) := \sum_{F \in \mathcal{F}} (y-1)^{\dim(F)}$

Dehn–Sommerville (early 1900s) If P is simple then $y^n h_P(\frac{1}{y}) = h_P(y)$.

Example If P is a simplex then $h_P(y) = y^n + y^{n-1} + \cdots + 1$

Natural, equally *en vogue* questions:

- (Sub-)Classification of *h*-polynomials
- Extensions to simplicial/polyhedral/... complexes

Main Theorem (1st Version)

$$E_{\varphi,P}(t) := \sum_{m \in M \cap tP} \varphi(m) \qquad E_{\varphi,P}(-t) = (-1)^{\dim(P) + \deg(\varphi)} E_{\varphi,P^{\circ}}(t)$$

$$h_P(y) := \sum_{F \in \mathcal{F}} (y-1)^{\dim(F)} \qquad y^n h_P(\frac{1}{y}) = h_P(y)$$

Let
$$G_{\varphi,P}(t,y) := (y+1)^{\deg(\varphi)} \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_{\varphi,F}(t)$$

Theorem (MB–Gunnels–Materov) If P is a simple lattice polytope then

$$G_{\varphi,P}(t,y) = (-y)^{\dim(P) + \deg(\varphi)} G_{\varphi,P}(-t,\frac{1}{y}).$$

Main Theorem (1st Version)

Let $G_{\varphi,P}(t,y) := (y+1)^{\deg(\varphi)} \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_{\varphi,F}(t)$

Theorem (MB–Gunnels–Materov) If P is a simple lattice polytope then

$$G_{\varphi,P}(t,y) = (-y)^{\dim(P) + \deg(\varphi)} G_{\varphi,P}(-t,\frac{1}{y}).$$

If $\varphi = 1$ then $E_{\varphi,F}(t) = E_F(t)$ and the constant terms (in y) of

$$(-1)^{\dim(P)} G_{\varphi=1,P}(-t,y) = \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_F(-t)$$
$$y^{\dim(P)} G_{\varphi=1,P}(t,\frac{1}{y}) = \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-1)^{\operatorname{codim}(F)} E_F(t)$$

are
$$\sum_{F \in \mathcal{F}} E_{F^{\circ}}(t) = E_P(t)$$
 and $\sum_{F \in \mathcal{F}} (-1)^{\operatorname{codim}(F)} E_F(t) = E_{P^{\circ}}(t)$

Main Theorem (1st Version)

Let
$$G_{\varphi,P}(t,y) := (y+1)^{\deg(\varphi)} \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_{\varphi,F}(t)$$

Theorem (MB–Gunnels–Materov) If P is a simple lattice polytope then

$$G_{\varphi,P}(t,y) = (-y)^{\dim(P) + \deg(\varphi)} G_{\varphi,P}(-t,\frac{1}{y}).$$

If $\varphi = 1$ and t = 0 then

$$G_{\varphi=1,P}(0,y) = \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} = (-y)^{\dim(P)} h_P(-\frac{1}{y})$$

 and

$$(-y)^{\dim(P)} G_{\varphi,P}(0,\frac{1}{y}) = \sum_{F \in \mathcal{F}} (-1-y)^{\dim(F)} = h_P(-y)$$

g-Polynomials

We define polynomials $f_P(x)$ and $g_P(x)$ recursively by dimension:

•
$$f_{\varnothing}(x) = g_{\varnothing}(x) = 1$$

• $f_{P}(x) = \sum_{F \in \mathcal{F} \setminus \{P\}} g_{F}(x)(x-1)^{n-\dim(F)-1} = \sum_{j=0}^{\dim(P)} f_{j}x^{j}$
 $g_{P}(x) = f_{0} + (f_{1} - f_{0})x + (f_{2} - f_{1})x^{2} + \dots + (f_{m} - f_{m-1})x^{m}$
where $m = \lfloor \frac{\dim(P)}{2} \rfloor$

Master Duality Theorem (Stanley 1974) $f_P(x) = x^{\dim(P)} f_P(\frac{1}{x})$

g-Polynomials

We define polynomials $f_P(x)$ and $g_P(x)$ recursively by dimension:

•
$$f_{\varnothing}(x) = g_{\varnothing}(x) = 1$$

• $f_{P}(x) = \sum_{F \in \mathcal{F} \setminus \{P\}} g_{F}(x)(x-1)^{n-\dim(F)-1} = \sum_{j=0}^{\dim(P)} f_{j}x^{j}$
 $g_{P}(x) = f_{0} + (f_{1} - f_{0})x + (f_{2} - f_{1})x^{2} + \dots + (f_{m} - f_{m-1})x^{m}$
where $m = \lfloor \frac{\dim(P)}{2} \rfloor$

Master Duality Theorem (Stanley 1974) $f_P(x) = x^{\dim(P)} f_P(\frac{1}{x})$

- ▶ This definition of $f_P(x)$ is dual to that of the *h*-polynomial. It favors simplicial polytopes, in that Dehn–Sommerville holds with no $g_P(x)$ corrections.
- ▶ In the dictionary $P \leftrightarrow toric$ variety, $g_P(x)$ takes into account the intersection cohomology of the variety.

Main Theorem (2nd Version)

Let \widetilde{F} be the dual face of F in the polar polytope of P and $\widetilde{g}_F(x) := g_{\widetilde{F}}(x)$

$$G_{\varphi,P}(t,y) := (y+1)^{\deg(\varphi)} \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_{\varphi,F}(t) \, \widetilde{g}_F(-\frac{1}{y})$$

Remark If P is simple then \tilde{F} is a simplex for every proper face F and thus $\tilde{g}_F(x) = 1$, recovering our earlier definition.

Theorem (MB–Gunnels–Materov) If P is a lattice polytope then

$$G_{\varphi,P}(t,y) = (-y)^{\dim(P) + \deg(\varphi)} G_{\varphi,P}(-t,\frac{1}{y}).$$

Main Theorem (2nd Version)

Let \widetilde{F} be the dual face of F in the polar polytope of P and $\widetilde{g}_F(x) := g_{\widetilde{F}}(x)$

$$G_{\varphi,P}(t,y) := (y+1)^{\deg(\varphi)} \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_{\varphi,F}(t) \, \widetilde{g}_F(-\frac{1}{y})$$

Remark If P is simple then \tilde{F} is a simplex for every proper face F and thus $\tilde{g}_F(x) = 1$, recovering our earlier definition.

Theorem (MB–Gunnels–Materov) If P is a lattice polytope then

$$G_{\varphi,P}(t,y) = (-y)^{\dim(P) + \deg(\varphi)} G_{\varphi,P}(-t,\frac{1}{y}).$$

Example $P = conv\{(\pm 1, \pm 1, 1), (0, 0, 1)\}$

$$G_{\varphi,P}(t,y) = \left(\frac{4}{3}t^3 - 4t^2 + \frac{11}{3}t - 1\right)y^3 + \left(4t^3 - 4t^2 - t + 2\right)y^2 + \left(4t^3 + 4t^2 - t - 2\right)y + \left(\frac{4}{3}t^3 + 4t^2 + \frac{11}{3}t + 1\right)$$

Weighted lattice point sums in lattice polytopes 🔶 Matthias Beck

Main Theorem (2nd Version)

Let \widetilde{F} be the dual face of F in the polar polytope of P and $\widetilde{g}_F(x) := g_{\widetilde{F}}(x)$

$$G_{\varphi,P}(t,y) := (y+1)^{\deg(\varphi)} \sum_{F \in \mathcal{F}} (y+1)^{\dim(F)} (-y)^{\operatorname{codim}(F)} E_{\varphi,F}(t) \, \widetilde{g}_F(-\frac{1}{y})$$

Remark If P is simple then \tilde{F} is a simplex for every proper face F and thus $\tilde{g}_F(x) = 1$, recovering our earlier definition.

Theorem (MB–Gunnels–Materov) If P is a lattice polytope then

$$G_{\varphi,P}(t,y) = (-y)^{\dim(P) + \deg(\varphi)} G_{\varphi,P}(-t,\frac{1}{y}).$$

Ingredients Brion–Vergne reciprocity and

$$x^{\dim(P)+1}g_P(\frac{1}{x}) = \sum_{F \in \mathcal{F}} g_F(x)(x-1)^{n-\dim(F)}$$

We perturb a given polytope

 $P = \{x \in V : \langle x, u_F \rangle + \lambda_F \ge 0 \text{ for each facet } F\}$ $P_{t,y}(h) := \{x \in V : \langle x, u_F \rangle + t(y+1)\lambda_F + h_F \ge 0 \text{ for each facet } F\}$

using a vector $h = (h_F : F \text{ facet of } P)$

We perturb a given polytope

 $P = \{x \in V : \langle x, u_F \rangle + \lambda_F \ge 0 \text{ for each facet } F\}$ $P_{t,y}(h) := \{x \in V : \langle x, u_F \rangle + t(y+1)\lambda_F + h_F \ge 0 \text{ for each facet } F\}$ using a vector $h = (h_F : F \text{ facet of } P)$

Euler-Maclaurin Todd
$$(\frac{\partial}{\partial h}) := \frac{\frac{\partial}{\partial h}}{1 - e^{-\frac{\partial}{\partial h}}} = \sum_{k \ge 0} (-1)^k \frac{B_k}{k!} \left(\frac{\partial}{\partial h}\right)^k$$

$$\operatorname{Todd}(\frac{\partial}{\partial h_1})\operatorname{Todd}(\frac{\partial}{\partial h_2})\int_{a-h_2}^{b+h_1} e^{zx} dx \bigg|_{h_1=h_2=0} = \sum_{k=a}^{b} e^{kz}$$

We perturb a given polytope

 $P = \{x \in V : \langle x, u_F \rangle + \lambda_F \ge 0 \text{ for each facet } F\}$ $P_{t,y}(h) := \{x \in V : \langle x, u_F \rangle + t(y+1)\lambda_F + h_F \ge 0 \text{ for each facet } F\}$

using a vector $h = (h_F : F \text{ facet of } P)$

Theorem (MB–Gunnels–Materov) Let P be a simple lattice polytope. There is an (explicitly defined) differential operator $\operatorname{Todd}_{y,P}(\frac{\partial}{\partial h})$ such that

$$G_{\varphi,P}(t,y) = \operatorname{Todd}_{y,P}(\frac{\partial}{\partial h}) \left(\int_{P_{t,y}(h)} \varphi(x) \, dx \right) \Big|_{h=0}.$$

We perturb a given polytope

 $P = \{x \in V : \langle x, u_F \rangle + \lambda_F \ge 0 \text{ for each facet } F\}$ $P_{t,y}(h) := \{x \in V : \langle x, u_F \rangle + t(y+1)\lambda_F + h_F \ge 0 \text{ for each facet } F\}$ using a vector $h = (h_F : F \text{ facet of } P)$

Theorem (MB–Gunnels–Materov) Let P be a simple lattice polytope. There is an (explicitly defined) differential operator $\operatorname{Todd}_{y,P}(\frac{\partial}{\partial h})$ such that

$$G_{\varphi,P}(t,y) = \operatorname{Todd}_{y,P}(\frac{\partial}{\partial h}) \left(\int_{P_{t,y}(h)} \varphi(x) \, dx \right) \Big|_{h=0}$$

- Euler-Maclaurin (ancient): $\varphi = 1$, $\dim(P) = 1$, contant term in y
- ► Khovanskii–Pukhlikov (1992): $\varphi = 1$, *P* smooth, contant term in *y* (closely related to the Hirzebruch-Riemann-Roch Theorem for smooth projective toric varieties)

We perturb a given polytope

 $P = \{x \in V : \langle x, u_F \rangle + \lambda_F \ge 0 \text{ for each facet } F\}$ $P_{t,y}(h) := \{x \in V : \langle x, u_F \rangle + t(y+1)\lambda_F + h_F \ge 0 \text{ for each facet } F\}$ using a vector $h = (h_F : F \text{ facet of } P)$

Theorem (MB–Gunnels–Materov) Let P be a simple lattice polytope. There is an (explicitly defined) differential operator $\operatorname{Todd}_{y,P}(\frac{\partial}{\partial h})$ such that

$$G_{\varphi,P}(t,y) = \operatorname{Todd}_{y,P}(\frac{\partial}{\partial h}) \left(\int_{P_{t,y}(h)} \varphi(x) \, dx \right) \Big|_{h=0}$$

- Euler-Maclaurin (ancient): $\varphi = 1$, $\dim(P) = 1$, contant term in y
- ► Khovanskii–Pukhlikov (1992): $\varphi = 1$, P smooth, contant term in y
- Brion–Vergne (1997): P general lattice polytope, contant term in y

Extensions & Open Problems

Rational polytopes & Ehrhart quasipolynomials

- Todd-operator formula for $G_{\varphi,P}(t,y)$ when P is not simple?
- Relation to Chapoton's q-Ehrhart polynomials?

