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The Menu

I Lattice-point counting in lattice polytopes: (weighted) Ehrhart
polynomials and their reciprocity

I Face-counting for simple polytopes: (generalized) Dehn–Sommerville
relations

Our goal Give a unifying reciprocity theorem

Secondary goal Entice (some of) you to study weighted Ehrhart polynomials
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Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice M ⊂ V

P ⊂ V — (n-dimensional) lattice polytope (i.e., vertices in M)

For t ∈ Z>0 let EP (t) := |M ∩ tP |

Ehrhart–Macdonald (1960s) EP (t) is a polynomial in t (of degree dim(P )
and with constant term 1) that satisfies

EP (−t) = (−1)dim(P )EP ◦(t) .

Example P = conv{(±1,±1, 1), (0, 0, 1)}

EP (t) = 4
3 t

3 + 4 t2 + 11
3 t+ 1
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Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice M ⊂ V

P ⊂ V — (n-dimensional) lattice polytope (i.e., vertices in M)

For t ∈ Z>0 let EP (t) := |M ∩ tP |

Ehrhart–Macdonald (1960s) EP (t) is a polynomial in t (of degree dim(P )
and with constant term 1) that satisfies

EP (−t) = (−1)dim(P )EP ◦(t) .

I In the dictionary P ←→ toric variety (if P is a very ample), EP (t)
equals the Hilbert polynomial of this toric variety under the projective
embedding given by the very ample divisor associated with P .

I Ehrhart–Macdonald is part of an illustrious series of combinatorial
reciprocity theorems
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Ehrhart Polynomials

V — real vector space of dimension n equipped with a lattice M ⊂ V

P ⊂ V — (n-dimensional) lattice polytope (i.e., vertices in M)

For t ∈ Z>0 let EP (t) := |M ∩ tP |

Ehrhart–Macdonald (1960s) EP (t) is a polynomial in t (of degree dim(P )
and with constant term 1).

Natural, currently en vogue questions:

I (Sub-)Classification of Ehrhart polynomials

I Families of polytopes with positive/unimodal/... Ehrhart coefficients
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Weighted Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice M ⊂ V

P ⊂ V — (n-dimensional) lattice polytope (i.e., vertices in M)

For t ∈ Z>0 let EP (t) := |M ∩ tP |

Ehrhart–Macdonald (1960s) EP (t) is a polynomial in t (of degree dim(P )
and with constant term 1) that satisfies

EP (−t) = (−1)dim(P )EP ◦(t) .

For a homogeneous polynomial ϕ let Eϕ,P (t) :=
∑

m∈M∩tP

ϕ(m)

Brion–Vergne (1997) Eϕ,P (t) is a polynomial in t (of degree dim(P ) +
deg(ϕ) and with constant term ϕ(0)) that satisfies

Eϕ,P (−t) = (−1)dim(P )+deg(ϕ)Eϕ,P ◦(t) .
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Weighted Ehrhart–Macdonald Reciprocity

V — real vector space of dimension n equipped with a lattice M ⊂ V

P ⊂ V — (n-dimensional) lattice polytope (i.e., vertices in M)

For a homogeneous polynomial ϕ let Eϕ,P (t) :=
∑

m∈M∩tP

ϕ(m)

Brion–Vergne (1997) Eϕ,P (t) is a polynomial in t (of degree dim(P ) +
deg(ϕ) and with constant term ϕ(0)).

Possible (and possibly en vogue) questions:

I Structural theorems (à la h∗P ≥ 0) under certain conditions

I Families of polytopes with positive/unimodal/... Ehrhart coefficients

I Special cases, e.g., ϕ(m) = m1 or ϕ(m) = m1 +m2 + · · ·+mn
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Dehn–Sommerville Relations

P is simple if each vertex meets n edges

F — set of faces of P

The h-polynomial of P is hP (y) :=
∑
F∈F

(y − 1)dim(F )

Dehn–Sommerville (early 1900s) If P is simple then ynhP (
1
y) = hP (y).

Example If P is a simplex then hP (y) = yn + yn−1 + · · ·+ 1
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Dehn–Sommerville Relations

P is simple if each vertex meets n edges

F — set of faces of P

The h-polynomial of P is hP (y) :=
∑
F∈F

(y − 1)dim(F )

Dehn–Sommerville (early 1900s) If P is simple then ynhP (
1
y) = hP (y).

Example If P is a simplex then hP (y) = yn + yn−1 + · · ·+ 1

I In the dictionary P ←→ toric variety, Dehn–Sommerville corresponds
to Poincaré duality for the rational cohomology of the toric variety
attached to P .

I Combinatorially, Dehn–Sommerville follows from the fact that the face
lattice of a polytope is Eulerian and thus its zeta polynomial is even/odd.
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Dehn–Sommerville Relations

P is simple if each vertex meets n edges

F — set of faces of P

The h-polynomial of P is hP (y) :=
∑
F∈F

(y − 1)dim(F )

Dehn–Sommerville (early 1900s) If P is simple then ynhP (
1
y) = hP (y).

Example If P is a simplex then hP (y) = yn + yn−1 + · · ·+ 1

Natural, equally en vogue questions:

I (Sub-)Classification of h-polynomials

I Extensions to simplicial/polyhedral/... complexes
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Main Theorem (1st Version)

Eϕ,P (t) :=
∑

m∈M∩tP

ϕ(m) Eϕ,P (−t) = (−1)dim(P )+deg(ϕ)Eϕ,P ◦(t)

hP (y) :=
∑
F∈F

(y − 1)dim(F ) ynhP (
1
y) = hP (y)

Let Gϕ,P (t, y) := (y + 1)deg(ϕ)
∑
F∈F

(y + 1)dim(F )(−y)codim(F )Eϕ,F (t)

Theorem (MB–Gunnels–Materov) If P is a simple lattice polytope then

Gϕ,P (t, y) = (−y)dim(P )+deg(ϕ)Gϕ,P (−t, 1y) .
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Main Theorem (1st Version)

Let Gϕ,P (t, y) := (y + 1)deg(ϕ)
∑
F∈F

(y + 1)dim(F )(−y)codim(F )Eϕ,F (t)

Theorem (MB–Gunnels–Materov) If P is a simple lattice polytope then

Gϕ,P (t, y) = (−y)dim(P )+deg(ϕ)Gϕ,P (−t, 1y) .

If ϕ = 1 then Eϕ,F (t) = EF (t) and the constant terms (in y) of

(−1)dim(P )Gϕ=1,P (−t, y) =
∑
F∈F

(y + 1)dim(F )(−y)codim(F )EF (−t)

ydim(P )Gϕ=1,P (t,
1
y) =

∑
F∈F

(y + 1)dim(F )(−1)codim(F )EF (t)

are
∑
F∈F

EF ◦(t) = EP (t) and
∑
F∈F

(−1)codim(F )EF (t) = EP ◦(t)
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Main Theorem (1st Version)

Let Gϕ,P (t, y) := (y + 1)deg(ϕ)
∑
F∈F

(y + 1)dim(F )(−y)codim(F )Eϕ,F (t)

Theorem (MB–Gunnels–Materov) If P is a simple lattice polytope then

Gϕ,P (t, y) = (−y)dim(P )+deg(ϕ)Gϕ,P (−t, 1y) .

If ϕ = 1 and t = 0 then

Gϕ=1,P (0, y) =
∑
F∈F

(y + 1)dim(F )(−y)codim(F ) = (−y)dim(P )hP (−1
y)

and

(−y)dim(P )Gϕ,P (0,
1
y) =

∑
F∈F

(−1− y)dim(F ) = hP (−y)
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g-Polynomials

We define polynomials fP (x) and gP (x) recursively by dimension:

I f∅(x) = g∅(x) = 1

I fP (x) =
∑

F∈F\{P}

gF (x)(x− 1)n−dim(F )−1 =

dim(P )∑
j=0

fjx
j

gP (x) = f0 + (f1 − f0)x+ (f2 − f1)x2 + · · ·+ (fm − fm−1)xm

where m = bdim(P )
2 c

Master Duality Theorem (Stanley 1974) fP (x) = xdim(P )fP (
1
x)
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g-Polynomials

We define polynomials fP (x) and gP (x) recursively by dimension:

I f∅(x) = g∅(x) = 1

I fP (x) =
∑

F∈F\{P}

gF (x)(x− 1)n−dim(F )−1 =

dim(P )∑
j=0

fjx
j

gP (x) = f0 + (f1 − f0)x+ (f2 − f1)x2 + · · ·+ (fm − fm−1)xm

where m = bdim(P )
2 c

Master Duality Theorem (Stanley 1974) fP (x) = xdim(P )fP (
1
x)

I This definition of fP (x) is dual to that of the h-polynomial. It favors
simplicial polytopes, in that Dehn–Sommerville holds with no gP (x)
corrections.

I In the dictionary P ←→ toric variety, gP (x) takes into account the
intersection cohomology of the variety.
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Main Theorem (2nd Version)

Let F̃ be the dual face of F in the polar polytope of P and g̃F (x) := gF̃ (x)

Gϕ,P (t, y) := (y+1)deg(ϕ)
∑
F∈F

(y+1)dim(F )(−y)codim(F )Eϕ,F (t) g̃F (−1
y)

Remark If P is simple then F̃ is a simplex for every proper face F and thus
g̃F (x) = 1, recovering our earlier definition.

Theorem (MB–Gunnels–Materov) If P is a lattice polytope then

Gϕ,P (t, y) = (−y)dim(P )+deg(ϕ)Gϕ,P (−t, 1y) .
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Main Theorem (2nd Version)

Let F̃ be the dual face of F in the polar polytope of P and g̃F (x) := gF̃ (x)

Gϕ,P (t, y) := (y+1)deg(ϕ)
∑
F∈F

(y+1)dim(F )(−y)codim(F )Eϕ,F (t) g̃F (−1
y)

Remark If P is simple then F̃ is a simplex for every proper face F and thus
g̃F (x) = 1, recovering our earlier definition.

Theorem (MB–Gunnels–Materov) If P is a lattice polytope then

Gϕ,P (t, y) = (−y)dim(P )+deg(ϕ)Gϕ,P (−t, 1y) .

Example P = conv{(±1,±1, 1), (0, 0, 1)}

Gϕ,P (t, y) =
(
4
3t

3 − 4t2 + 11
3 t− 1

)
y3 +

(
4t3 − 4t2 − t+ 2

)
y2

+
(
4t3 + 4t2 − t− 2

)
y +

(
4
3t

3 + 4t2 + 11
3 t+ 1

)
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Main Theorem (2nd Version)

Let F̃ be the dual face of F in the polar polytope of P and g̃F (x) := gF̃ (x)

Gϕ,P (t, y) := (y+1)deg(ϕ)
∑
F∈F

(y+1)dim(F )(−y)codim(F )Eϕ,F (t) g̃F (−1
y)

Remark If P is simple then F̃ is a simplex for every proper face F and thus
g̃F (x) = 1, recovering our earlier definition.

Theorem (MB–Gunnels–Materov) If P is a lattice polytope then

Gϕ,P (t, y) = (−y)dim(P )+deg(ϕ)Gϕ,P (−t, 1y) .

Ingredients Brion–Vergne reciprocity and

xdim(P )+1gP (
1
x) =

∑
F∈F

gF (x)(x− 1)n−dim(F )
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Euler–Maclaurin Summation

We perturb a given polytope

P = {x ∈ V : 〈x, uF 〉+ λF ≥ 0 for each facet F}
Pt,y(h) := {x ∈ V : 〈x, uF 〉+ t(y + 1)λF + hF ≥ 0 for each facet F}

using a vector h = (hF : F facet of P )
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Euler–Maclaurin Summation

We perturb a given polytope

P = {x ∈ V : 〈x, uF 〉+ λF ≥ 0 for each facet F}
Pt,y(h) := {x ∈ V : 〈x, uF 〉+ t(y + 1)λF + hF ≥ 0 for each facet F}

using a vector h = (hF : F facet of P )

Euler–Maclaurin Todd( ∂
∂h) :=

∂
∂h

1− e−
∂
∂h

=
∑
k≥0

(−1)kBk
k!

(
∂
∂h

)k

Todd( ∂
∂h1

) Todd( ∂
∂h2

)

∫ b+h1

a−h2

ezx dx

∣∣∣∣∣
h1=h2=0

=

b∑
k=a

ekz
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Euler–Maclaurin Summation

We perturb a given polytope

P = {x ∈ V : 〈x, uF 〉+ λF ≥ 0 for each facet F}
Pt,y(h) := {x ∈ V : 〈x, uF 〉+ t(y + 1)λF + hF ≥ 0 for each facet F}

using a vector h = (hF : F facet of P )

Theorem (MB–Gunnels–Materov) Let P be a simple lattice polytope. There
is an (explicitly defined) differential operator Toddy,P (

∂
∂h) such that

Gϕ,P (t, y) = Toddy,P (
∂
∂h)

(∫
Pt,y(h)

ϕ(x) dx

)∣∣∣∣∣
h=0

.
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Euler–Maclaurin Summation

We perturb a given polytope

P = {x ∈ V : 〈x, uF 〉+ λF ≥ 0 for each facet F}
Pt,y(h) := {x ∈ V : 〈x, uF 〉+ t(y + 1)λF + hF ≥ 0 for each facet F}

using a vector h = (hF : F facet of P )

Theorem (MB–Gunnels–Materov) Let P be a simple lattice polytope. There
is an (explicitly defined) differential operator Toddy,P (

∂
∂h) such that

Gϕ,P (t, y) = Toddy,P (
∂
∂h)

(∫
Pt,y(h)

ϕ(x) dx

)∣∣∣∣∣
h=0

.

I Euler–Maclaurin (ancient): ϕ = 1, dim(P ) = 1, contant term in y

I Khovanskii–Pukhlikov (1992): ϕ = 1 , P smooth, contant term in y
(closely related to the Hirzebruch-Riemann-Roch Theorem for smooth
projective toric varieties)
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Euler–Maclaurin Summation

We perturb a given polytope

P = {x ∈ V : 〈x, uF 〉+ λF ≥ 0 for each facet F}
Pt,y(h) := {x ∈ V : 〈x, uF 〉+ t(y + 1)λF + hF ≥ 0 for each facet F}

using a vector h = (hF : F facet of P )

Theorem (MB–Gunnels–Materov) Let P be a simple lattice polytope. There
is an (explicitly defined) differential operator Toddy,P (

∂
∂h) such that

Gϕ,P (t, y) = Toddy,P (
∂
∂h)

(∫
Pt,y(h)

ϕ(x) dx

)∣∣∣∣∣
h=0

.

I Euler–Maclaurin (ancient): ϕ = 1, dim(P ) = 1, contant term in y

I Khovanskii–Pukhlikov (1992): ϕ = 1, P smooth, contant term in y

I Brion–Vergne (1997): P general lattice polytope, contant term in y
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Extensions & Open Problems

I Rational polytopes & Ehrhart quasipolynomials

I Todd-operator formula for Gϕ,P (t, y) when P is not simple?

I Relation to Chapoton’s q-Ehrhart polynomials?
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