Ehrhart Polynomials

Day I: Appetizers

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

"Science is what we understand well enough to explain to a computer, art is all the rest."

Donald Knuth

Ehrhart Polynomials () Matthias Beck

Themes

Discrete-geometric polynomials

Computation (complexity)

Generating functions

Combinatorial structures

Polyhedra

A Sample Problem: Birkhoff-von Neumann Polytope

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)

Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume ² A037302 is v(n), then $a(n) = ((n-1)^2)! * v(n) / n^{n-1}$.

1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000 (list; graph; refs; listen; history;

text; internal format)

OFFSET

COMMENTS

The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices.

Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002

$$B_n \ = \ \left\{ \left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array} \right) \in \mathbb{R}^{n^2}_{\geqslant 0} \ : \quad \frac{\sum_j x_{jk} = 1 \text{ for all } 1 \leqslant k \leqslant n}{\sum_k x_{jk} = 1 \text{ for all } 1 \leqslant j \leqslant n} \right\}$$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$\qquad \qquad \textbf{(list)} \ \sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^d} z_1^{m_1} z_2^{m_2} \cdots z_d^{m_d}$$

- (count) $|\mathcal{P} \cap \mathbb{Z}^d|$
- (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$\qquad \qquad \textbf{(list)} \ \sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^d} z_1^{m_1} z_2^{m_2} \cdots z_d^{m_d}$$

- (count) $|\mathcal{P} \cap \mathbb{Z}^d|$
- (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Linear systems are everywhere, and so polyhedra are everywhere.

- Linear systems are everywhere, and so polyhedra are everywhere.
- ▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

Ehrhart Polynomials

Matthias Beck

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.
- ▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Also, polytopes are cool.

Today's Menu: Get Our Hands Dirty

The Unit Cube

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

The unit cube in \mathbb{R}^d is $\mathcal{P} = [0,1]^d = \{ \boldsymbol{x} \in \mathbb{R}^d : 0 \leqslant x_j \leqslant 1 \}$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

The Unit Cube

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

The unit cube in \mathbb{R}^d is $\mathcal{P} = [0,1]^d = \{ \boldsymbol{x} \in \mathbb{R}^d : 0 \leqslant x_j \leqslant 1 \}$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

$$L_{\mathcal{P}^{\circ}}(t) = (t-1)^d$$

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

$$\Delta = \left\{ \boldsymbol{x} \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1 \right\}$$

$$L_{\Delta}(t) = \# \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq t \}$$

$$= \# \{ (x_1, x_2, \dots, x_d, x_{d+1}) \in \mathbb{Z}_{\geq 0}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = t \}$$

$$= \begin{pmatrix} d+t \\ d \end{pmatrix}$$

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

$$\Delta = \left\{ \boldsymbol{x} \in \mathbb{R}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq 1 \right\}$$

$$L_{\Delta}(t) = \# \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq t \}$$

$$= \# \{ (x_1, x_2, \dots, x_d, x_{d+1}) \in \mathbb{Z}_{\geq 0}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = t \}$$

$$= \begin{pmatrix} d+t \\ d \end{pmatrix}$$

$$L_{\Delta^{\circ}}(t) = \begin{pmatrix} t - 1 \\ d \end{pmatrix}$$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\diamond = \left\{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \leqslant 1 \right\}$$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\diamond = \left\{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \leqslant 1 \right\}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

- Triangulation
- Disjoint triangulation
- Interpolation
- Generating function

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\diamond = \left\{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \leqslant 1 \right\}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Triangulation

Dissect \diamondsuit into 8 (standard) tetrahedra and use inclusion—exclusion to compute $L_\diamondsuit(t)$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Disjoint triangulation

Dissect ♦ into 8 half-open tetrahedra

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Interpolation

```
sage: L(1)
7
sage: L(2)
25
sage: L(3)
63
sage: L(4)
129
```


The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Generating function

$$\operatorname{Ehr}_{\diamondsuit}(z) := 1 + \sum_{t \geqslant 1} L_{\diamondsuit}(t) z^{t}$$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Generating function

Ehr
$$_{\diamondsuit}(z) := 1 + \sum_{t \ge 1} L_{\diamondsuit}(t) z^{t} = \frac{(1+z)^{3}}{(1-z)^{4}}$$

Exercise:
$$\operatorname{Ehr}_{\operatorname{BiPyr}(\mathcal{P})}(z) = \frac{1+z}{1-z} \operatorname{Ehr}_{\mathcal{P}}(z)$$

 \dots for unit cubes \longrightarrow Eulerian polynomials

Zonotopes

Line segment $[\boldsymbol{a}, \boldsymbol{b}] := \{(1 - \lambda) \, \boldsymbol{a} + \lambda \, \boldsymbol{b} : \, 0 \leqslant \lambda \leqslant 1\}$

Minkowski sum $\mathcal{K}_1 + \mathcal{K}_2 := \{ \boldsymbol{p} + \boldsymbol{q} : \boldsymbol{p} \in \mathcal{K}_1, \ \boldsymbol{q} \in \mathcal{K}_2 \}$

Zonotope $\mathcal{Z} := [oldsymbol{a}_1, oldsymbol{b}_1] + [oldsymbol{a}_2, oldsymbol{b}_2] + \cdots + [oldsymbol{a}_m, oldsymbol{b}_m]$

Zonotopes

Line segment $[\boldsymbol{a}, \boldsymbol{b}] := \{(1 - \lambda) \, \boldsymbol{a} + \lambda \, \boldsymbol{b} : \, 0 \leqslant \lambda \leqslant 1\}$

Minkowski sum $\mathcal{K}_1 + \mathcal{K}_2 := \{ \boldsymbol{p} + \boldsymbol{q} : \boldsymbol{p} \in \mathcal{K}_1, \ \boldsymbol{q} \in \mathcal{K}_2 \}$

Zonotope
$$\mathcal{Z}:=[oldsymbol{a}_1,oldsymbol{b}_1]+[oldsymbol{a}_2,oldsymbol{b}_2]+\cdots+[oldsymbol{a}_m,oldsymbol{b}_m]$$

Every zonotope admits a tiling into parallelepipeds

 \mathcal{P} — half-open d-parallelepiped

$$\longrightarrow L_{\mathcal{P}}(t) = \operatorname{vol}(\mathcal{P}) t^d$$

Recap Day I

- Volume computations don't agonize, discretize
- Integer-point counting in dilated polytopes --- polynomials
- Interpolation
- Generating functions
- Dissections: triangulations, tilings
- Tomorrow: enough practice, how does this work in theory?

Birkhoff-von Neumann Revisited

For more about roots of (Ehrhart) polynomials, see Braun (2008) and Pfeifle (2010).

Ehrhart Polynomials

Day II: Generating Functions & Complexity

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

Any questions about yesterday?

Today's Menu: Theory and Complexity

- Partition function magic
- Lots of generating functions
- Rational cones
- Triangulations
- Ehrhart theory

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \ge 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{\lambda} q^{\lambda_1 + \dots + \lambda_n}$ over your favorite partition family

Example $P_{\leq 3}$ — family of partitions into at most 3 parts

$$\sum_{\lambda \in P_{\leq 3}} q^{\lambda_1 + \lambda_2 + \lambda_3} = \frac{1}{(1 - q)(1 - q^2)(1 - q^3)}$$

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \ge 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{n=1}^{\infty} q^{\lambda_1 + \dots + \lambda_n}$ over your favorite partition family

Example $P_{\leq 3}$ — family of partitions into at most 3 parts

$$\sum_{\lambda \in P_{\leq 3}} q^{\lambda_1 + \lambda_2 + \lambda_3} = \frac{1}{(1 - q)(1 - q^2)(1 - q^3)}$$

Idea
$$P_{\leqslant 3} = \left\{\lambda \in \mathbb{Z}^3 : 0 \leqslant \lambda_1 \leqslant \lambda_2 \leqslant \lambda_3\right\} = \mathcal{K} \cap \mathbb{Z}^3$$

$$\mathcal{K} = \left\{\boldsymbol{x} \in \mathbb{R}^3 : 0 \leqslant x_1 \leqslant x_2 \leqslant x_3\right\} \longleftarrow \text{ polyhedral cone } \heartsuit$$

$$\mathcal{K} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 \leqslant x_1 \leqslant x_2 \leqslant x_3 \right\} = \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

is a rational, simplicial, unimodular cone

$$\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = -1$$

$$\mathcal{K} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 \leqslant x_1 \leqslant x_2 \leqslant x_3 \right\} = \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

is a rational, simplicial, unimodular cone

$$\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = -1$$

Integer-point transform

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) = \sum_{\mathbf{m} \in \mathcal{K} \cap \mathbb{Z}^3} z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

$$= \frac{1}{(1 - z_3)(1 - z_2 z_3)(1 - z_1 z_2 z_3)}$$

Warm-Up: Partition Generating Functions

$$\mathcal{K} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 \leqslant x_1 \leqslant x_2 \leqslant x_3 \right\} = \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

is a rational, simplicial, unimodular cone

$$\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = -1$$

Integer-point transform

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) = \sum_{\mathbf{m} \in \mathcal{K} \cap \mathbb{Z}^3} z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

$$= \frac{1}{(1 - z_3)(1 - z_2 z_3)(1 - z_1 z_2 z_3)}$$

$$\sum_{\lambda \in P_{<3}} q^{\lambda_1 + \lambda_2 + \lambda_3} = \sigma_{\mathcal{K}}(q, q, q) = \frac{1}{(1 - q)(1 - q^2)(1 - q^3)}$$

Variations on a Theme

 P_3 — family of partitions into exactly 3 parts

$$P_3 = \{\lambda \in \mathbb{Z}^3 : 0 < \lambda_1 \leqslant \lambda_2 \leqslant \lambda_3\} = \widetilde{\mathcal{K}} \cap \mathbb{Z}^3$$

$$\widetilde{\mathcal{K}} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 < x_1 \leqslant x_2 \leqslant x_3 \right\} = \mathbb{R}_{\geqslant 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geqslant 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{>0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Variations on a Theme

 P_3 — family of partitions into exactly 3 parts

$$P_3 = \{\lambda \in \mathbb{Z}^3 : 0 < \lambda_1 \leqslant \lambda_2 \leqslant \lambda_3\} = \widetilde{\mathcal{K}} \cap \mathbb{Z}^3$$

$$\widetilde{\mathcal{K}} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 < x_1 \leqslant x_2 \leqslant x_3 \right\} = \mathbb{R}_{\geqslant 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geqslant 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{>0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\sigma_{\widetilde{\mathcal{K}}}(z_1, z_2, z_3) = \sum_{\mathbf{m} \in \widetilde{\mathcal{K}} \cap \mathbb{Z}^3} z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

$$= \frac{z_1 z_2 z_3}{(1 - z_3)(1 - z_2 z_3)(1 - z_1 z_2 z_3)}$$

$$\sum_{\lambda \in P_3} q^{\lambda_1 + \lambda_2 + \lambda_3} = \sigma_{\widetilde{\mathcal{K}}}(q, q, q) = \frac{q^3}{(1 - q)(1 - q^2)(1 - q^3)}$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \mathbf{w}_2 \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geqslant 0} \mathbf{w}_1 + \mathbb{R}_{\geqslant 0} \mathbf{w}_2 + \mathbb{R}_{\geqslant 0} \mathbf{w}_3$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geqslant 0} \, \mathbf{w}_1 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_2 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \, \mathbf{w}_1 + [0,1) \, \mathbf{w}_2 + [0,1) \, \mathbf{w}_3$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \mathbf{w}_2 \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geqslant 0} \, \mathbf{w}_1 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_2 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \mathbf{w}_1 + [0,1) \mathbf{w}_2 + [0,1) \mathbf{w}_3$

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) =$$

$$\frac{\sigma_{\Pi}(z_1, z_2, z_3)}{(1 - \mathbf{z}^{\mathbf{w}_1})(1 - \mathbf{z}^{\mathbf{w}_2})(1 - \mathbf{z}^{\mathbf{w}_3})}$$

where
$$\mathbf{z^m} = z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geqslant 0} \, \mathbf{w}_1 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_2 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \, \mathbf{w}_1 + [0,1) \, \mathbf{w}_2 + [0,1) \, \mathbf{w}_3$

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) =$$

$$\frac{\sigma_{\Pi}(z_1, z_2, z_3)}{(1 - \mathbf{z}^{\mathbf{w}_1})(1 - \mathbf{z}^{\mathbf{w}_2})(1 - \mathbf{z}^{\mathbf{w}_3})}$$

Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$cone(\mathcal{P}) := \mathbb{R}_{\geqslant 0} \left(\mathcal{P} \times \{1\} \right) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

$$cone(\mathcal{P}) \cap \{ \boldsymbol{x} \in \mathbb{R}^{d+1} : x_{d+1} = t \}$$

contains a copy of $t\mathcal{P}$

Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$\operatorname{cone}(\mathcal{P}) := \mathbb{R}_{\geqslant 0} \left(\mathcal{P} \times \{1\} \right) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

contains a copy of $t\mathcal{P} \longrightarrow$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z)$$

Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$\operatorname{cone}(\mathcal{P}) := \mathbb{R}_{\geqslant 0} \left(\mathcal{P} \times \{1\} \right) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

contains a copy of $t\mathcal{P} \longrightarrow$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z)$$

If \mathcal{P} is a simplex,

$$\sigma_{\operatorname{cone}(\mathcal{P})}(\mathbf{z}) = \frac{\sigma_{\Pi}(\mathbf{z})}{\prod_{\mathbf{v} \text{ vertex}} (1 - \mathbf{z}^{\mathbf{v}})} \longrightarrow \operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1 - z)^{d+1}}$$

Trials & Triangulations

Subdivision of a polyhedron \mathcal{P} — finite collection S of polyhedra such that

- if \mathcal{F} is a face of $\mathcal{G} \in S$ then $\mathcal{F} \in S$
- if $\mathcal{F}, \mathcal{G} \in S$ then $\mathcal{F} \cap \mathcal{G}$ is a face of both
- $ightharpoonup \mathcal{P} = \bigcup_{\mathcal{F} \in S} \mathcal{F}$

If each \mathcal{F} is a simplex \longrightarrow triangulation of a polytope

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Computational bottlenecks:

- triangulation
- determinants of resulting simplicial cones

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and

 $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

We saw instances yesterday: $\mathcal{P} = [0, 1]^d$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

 $h_{\mathcal{D}}^*(z)$ — Eulerian polynomial

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

$$\Delta = \left\{ \boldsymbol{x} \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1 \right\}$$

$$L_{\Delta}(t) = \begin{pmatrix} d+t \\ d \end{pmatrix} \qquad h_{\mathcal{P}}^{*}(z) = 1$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) \, z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0) = 1$ and $h^*_{\mathcal{P}}(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

 \mathcal{P} — half-open d-parallelepiped

$$\longrightarrow L_{\mathcal{P}}(t) = \operatorname{vol}(\mathcal{P}) t^d$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Seeming dichotomy: $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^{\dim \mathcal{P}}} L_{\mathcal{P}}(t)$ can be computed discretely via a finite amount of data.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

• via roots of $L_{\mathcal{P}}(t)$

Open Problem Classify Ehrhart polynomials.

Ehrhart Polynomials in Dimension 2

P — lattice polygon

$$\longrightarrow L_{\mathcal{P}}(t) = c_2 t^2 + c_1 t + 1$$

Ehrhart Quasipolynomials

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t:

$$L_{\mathcal{P}}(t) = c_d(t) t^d + c_{d-1}(t) t^{d-1} + \dots + c_0(t)$$

where $c_0(t), \ldots, c_d(t)$ are periodic functions.

Ehrhart Quasipolynomials

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t:

$$L_{\mathcal{P}}(t) = c_d(t) t^d + c_{d-1}(t) t^{d-1} + \dots + c_0(t)$$

where $c_0(t), \ldots, c_d(t)$ are periodic functions. Equivalently,

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) z^{t} = \frac{h(z)}{(1 - z^{p})^{\dim \mathcal{P} + 1}}$$

for some (minimal) $p \in \mathbb{Z}_{>0}$ (the period of $L_{\mathcal{P}}(t)$).

Open Problem Study periods of Ehrhart quasipolynomials.

Partitions Revisited

Definition n-gon partitions

$$T_n := \{(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_n \geqslant \dots \geqslant \lambda_1 \geqslant 1 \text{ and } \lambda_1 + \dots + \lambda_{n-1} > \lambda_n\}$$

Theorem (Andrews–Paule–Riese 2001)

$$\sum_{\lambda \in T_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{q}{(1 - q)(1 - q^2) \cdots (1 - q^n)} - \frac{q^{2n - 2}}{(1 - q)(1 - q^2)(1 - q^4) \cdots (1 - q^{2n - 2})}$$

Geometric Philosophy The following cone is arithmetically nicer:

$$\{\boldsymbol{x} \in \mathbb{R}^n : x_n \geqslant \dots \geqslant x_1 > 0 \text{ and } x_1 + \dots + x_{n-1} \leqslant x_n\}$$

Partitions Revisited

Definition Lecture-hall partitions

$$LH_n := \left\{ \lambda \in \mathbb{Z}^n : 0 \leqslant \frac{\lambda_1}{1} \leqslant \frac{\lambda_2}{2} \leqslant \dots \leqslant \frac{\lambda_n}{n} \right\}$$

Lecture-Hall Theorem (Bousquet-Mélou-Eriksson 1997)

$$\sum_{\lambda \in LH_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q)(1 - q^3) \cdots (1 - q^{2n - 1})}$$

Open Problem Explain this geometrically. (Caveat: the lecture-hall cone has determinant (n-1)!).

Recap Day II

- Generating functions son cheveres
- ▶ Integer-point transforms of rational polyhedra → rational functions
- Arithmetic complexity of a simplicial cone: determinant of its generators
- Homogenize polytopes
- Triangulations
- Polynomial data
- Thursday: positivity, reciprocity & friends

Day III: Positivity, Reciprocity & Friends

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

Any questions about Tuesday?

$$\sum_{\lambda \in P_3} q^{\lambda_1 + \lambda_2 + \lambda_3} = \sigma_{\widetilde{\mathcal{K}}}(q, q, q)$$

$$= \frac{q^3}{(1 - q)(1 - q^2)(1 - q^3)}$$

Today's Menu: Positivity, Reciprocity & Friends

- Graph coloring
- Half-open triangulations
- Ehrhart positivity
- Ehrhart–Macdonald reciprocity

 $\Gamma = (V, E)$ — graph (without loops)

Proper k-coloring of $\Gamma - \mathbf{x} \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

 $\chi_{\Gamma}(k) := \# (\text{proper } k\text{-colorings of } \Gamma)$

Example:

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

$$\Gamma = (V, E)$$
 — graph (without loops)

Proper k-coloring of $\Gamma - \mathbf{x} \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

$$\chi_{\Gamma}(k) := \# \text{ (proper } k\text{-colorings of } \Gamma) \qquad \longleftarrow \text{ polynomial } \heartsuit$$

Example:

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

$$|\chi_{K_3}(-1)| = 6 \dots$$

$$\Gamma = (V, E)$$
 — graph (without loops)

Proper k-coloring of $\Gamma - \mathbf{x} \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

$$\chi_{\Gamma}(k) := \# \text{ (proper } k\text{-colorings of } \Gamma) \qquad \longleftarrow \text{ polynomial } \heartsuit$$

Example:

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

 $|\chi_{K_3}(-1)|=6$ counts the number of acyclic orientations of K_3

$$\Gamma = (V, E)$$
 — graph (without loops)

Proper k-coloring of $\Gamma - x \in \{1, 2, ..., k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

$$\chi_{\Gamma}(k) := \# \text{ (proper } k\text{-colorings of } \Gamma) \qquad \longleftarrow \text{ polynomial } \heartsuit$$

Theorem (Stanley 1973) $(-1)^{|V|}\chi_{\Gamma}(-k)$ equals the number of pairs (α, \boldsymbol{x}) consisting of an acyclic orientation α of Γ and a compatible k-coloring \boldsymbol{x} . In particular, $(-1)^{|V|}\chi_{\Gamma}(-1)$ equals the number of acyclic orientations of Γ

(An orientation α of Γ and a k-coloring x are compatible if $x_j \ge x_i$ whenever there is an edge oriented from i to j. An orientation is acyclic if it has no directed cycles.)

Half-open Triangulations

Triangulation of a polytope \mathcal{P} — finite collection S of simplices such that

- if \mathcal{F} is a face of $\mathcal{G} \in S$ then $\mathcal{F} \in S$
- if $\mathcal{F}, \mathcal{G} \in S$ then $\mathcal{F} \cap \mathcal{G}$ is a face of both
- $ightharpoonup \mathcal{P} = \bigcup_{\mathcal{F} \in S} \mathcal{F}$

Tangent Cones & Visibility

 \mathcal{F} facet of a polyhedron $\mathcal{P} \subset \mathbb{R}^d$ with defining halfspace H

 ${\mathcal F}$ is visible from ${m q} \in {\mathbb R}^d$ if ${m q} \notin H$

Equivalent lingo: $q \in \mathbb{R}^d$ is beyond \mathcal{F} (and beneath otherwise)

Half-open Triangulations

Define $\mathbb{H}_q(Q)$ to be Q minus facets that are visible from q

Exercise $\mathcal{P} \subset \mathbb{R}^d$ — full-dimensional polyhedron with dissection $\mathcal{P} =$ $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \cdots \cup \mathcal{P}_m$, $\boldsymbol{q} \in \mathbb{R}^d$ generic relative to each \mathcal{P}_j

$$\mathbb{H}_{\boldsymbol{q}}\mathcal{P} = \mathbb{H}_{\boldsymbol{q}}\mathcal{P}_1 \oplus \mathbb{H}_{\boldsymbol{q}}\mathcal{P}_2 \oplus \cdots \oplus \mathbb{H}_{\boldsymbol{q}}\mathcal{P}_m$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \mathbf{w}_2 \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geqslant 0} \, \mathbf{w}_1 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_2 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \mathbf{w}_1 + [0,1) \mathbf{w}_2 + [0,1) \mathbf{w}_3$

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) =$$

where
$$\mathbf{z^m} = z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

Recall: Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$cone(\mathcal{P}) := \mathbb{R}_{\geqslant 0} \left(\mathcal{P} \times \{1\} \right) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geqslant 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

$$cone(\mathcal{P}) \cap \{ \boldsymbol{x} \in \mathbb{R}^{d+1} : x_{d+1} = t \}$$

contains a copy of $t\mathcal{P} \longrightarrow$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z)$$

If \mathcal{P} is a simplex,

$$\sigma_{\operatorname{cone}(\mathcal{P})}(\mathbf{z}) = \frac{\sigma_{\Pi}(\mathbf{z})}{\prod_{\mathbf{v} \text{ vertex}} (1 - \mathbf{z}^{\mathbf{v}})} \longrightarrow \operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1 - z)^{d+1}}$$

Ehrhart Positivity

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d := \dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Ehrhart Positivity

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Open Problem Prove that the h^* -polynomial of

- hypersimplices
- polytopes admitting a unimodular triangulation
- polytope with the integer decomposition property are unimodal
- ✓ Gorenstein polytopes with regular unimodular triangulation (Bruns– Römer 2007)
- ✓ Zonotopes (MB Jochemko–McCullough 2019)

Recall:² Integer-point Complexity of a Simplicial Cone

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \mathbf{w}_2 \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geqslant 0} \, \mathbf{w}_1 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_2 + \mathbb{R}_{\geqslant 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \mathbf{w}_1 + [0,1) \mathbf{w}_2 + [0,1) \mathbf{w}_3$

$$\frac{\sigma_{\Pi}(z_1, z_2, z_3)}{(1 - \mathbf{z}^{\mathbf{w}_1})(1 - \mathbf{z}^{\mathbf{w}_2})(1 - \mathbf{z}^{\mathbf{w}_3})}$$

where
$$\mathbf{z^m} = z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

Simplicial Cone Reciprocity

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{Z}^d$ linearly independent

$$\widehat{\mathcal{K}} := \mathbb{R}_{\geq 0} \mathbf{v}_1 + \dots + \mathbb{R}_{\geq 0} \mathbf{v}_{m-1} + \mathbb{R}_{>0} \mathbf{v}_m + \dots + \mathbb{R}_{>0} \mathbf{v}_k
\widecheck{\mathcal{K}} := \mathbb{R}_{>0} \mathbf{v}_1 + \dots + \mathbb{R}_{>0} \mathbf{v}_{m-1} + \mathbb{R}_{\geq 0} \mathbf{v}_m + \dots + \mathbb{R}_{\geq 0} \mathbf{v}_k
\downarrow$$

$$\sigma_{\widehat{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})} \qquad \sigma_{\widecheck{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widecheck{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})}$$

where

$$\widehat{\Pi} := [0,1) \mathbf{v}_1 + \dots + [0,1) \mathbf{v}_{m-1} + (0,1] \mathbf{v}_m + \dots + (0,1] \mathbf{v}_k
\widecheck{\Pi} := (0,1] \mathbf{v}_1 + \dots + (0,1] \mathbf{v}_{m-1} + [0,1) \mathbf{v}_m + \dots + [0,1) \mathbf{v}_k$$

Simplicial Cone Reciprocity

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{Z}^d$ linearly independent

$$\widehat{\Pi} := [0,1) \mathbf{v}_1 + \dots + [0,1) \mathbf{v}_{m-1} + (0,1] \mathbf{v}_m + \dots + (0,1] \mathbf{v}_k
\widecheck{\Pi} := (0,1] \mathbf{v}_1 + \dots + (0,1] \mathbf{v}_{m-1} + [0,1) \mathbf{v}_m + \dots + [0,1) \mathbf{v}_k$$

Fun Fact
$$\hat{\Pi} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_k - \check{\Pi}$$

Simplicial Cone Reciprocity

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{Z}^d$ linearly independent

$$\widehat{\Pi} := [0,1) \mathbf{v}_1 + \dots + [0,1) \mathbf{v}_{m-1} + (0,1] \mathbf{v}_m + \dots + (0,1] \mathbf{v}_k$$

$$\check{\Pi} := (0,1] \mathbf{v}_1 + \dots + (0,1] \mathbf{v}_{m-1} + [0,1) \mathbf{v}_m + \dots + [0,1) \mathbf{v}_k$$

Fun Fact
$$\hat{\Pi} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_k - \check{\Pi}$$

$$\longrightarrow \sigma_{\widehat{\Pi}}(\mathbf{z}) = \mathbf{z}^{\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k} \sigma_{\widecheck{\Pi}} \left(\frac{1}{\mathbf{z}}\right)$$

Stanley Reciprocity

$$\sigma_{\widehat{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})} \qquad \qquad \sigma_{\widecheck{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widecheck{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})}$$

$$\sigma_{\widehat{\Pi}}(\mathbf{z}) = \mathbf{z}^{\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k} \sigma_{\widecheck{\Pi}} \left(\frac{1}{\mathbf{z}} \right) \longrightarrow$$

$$\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = \frac{\sigma_{\check{\Pi}}(\frac{1}{\mathbf{z}})}{(1-\mathbf{z}^{-\mathbf{v}_1})\cdots(1-\mathbf{z}^{-\mathbf{v}_k})} = \frac{\mathbf{z}^{-\mathbf{v}_1-\mathbf{v}_2-\cdots-\mathbf{v}_k}\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1-\mathbf{z}^{-\mathbf{v}_1})\cdots(1-\mathbf{z}^{-\mathbf{v}_k})}$$
$$= (-1)^k \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1-\mathbf{z}^{\mathbf{v}_1})\cdots(1-\mathbf{z}^{\mathbf{v}_k})} = (-1)^k \sigma_{\widehat{\mathcal{K}}}(\mathbf{z})$$

Stanley Reciprocity

$$\sigma_{\widehat{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})} \qquad \sigma_{\widecheck{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widecheck{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})}$$

$$\sigma_{\widehat{\Pi}}(\mathbf{z}) = \mathbf{z}^{\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k} \sigma_{\widecheck{\Pi}} \left(\frac{1}{\mathbf{z}} \right) \longrightarrow$$

$$\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = \frac{\sigma_{\check{\Pi}}(\frac{1}{\mathbf{z}})}{(1-\mathbf{z}^{-\mathbf{v}_1})\cdots(1-\mathbf{z}^{-\mathbf{v}_k})} = \frac{\mathbf{z}^{-\mathbf{v}_1-\mathbf{v}_2-\cdots-\mathbf{v}_k}\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1-\mathbf{z}^{-\mathbf{v}_1})\cdots(1-\mathbf{z}^{-\mathbf{v}_k})}$$
$$= (-1)^k \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1-\mathbf{z}^{\mathbf{v}_1})\cdots(1-\mathbf{z}^{\mathbf{v}_k})} = (-1)^k \sigma_{\widehat{\mathcal{K}}}(\mathbf{z})$$

Theorem (Stanley) Let $\mathcal{K} \subset \mathbb{R}^d$ be a full-dimensional pointed rational cone, and let $q \in \mathbb{R}^d$ be generic relative to \mathcal{K} . Then

 $\sigma_{\mathbb{H}_{\boldsymbol{q}}\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = (-1)^d \, \sigma_{\mathbb{H}^{\boldsymbol{q}}\mathcal{K}}(\mathbf{z})$

Stanley Reciprocity

$$\sigma_{\widehat{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})} \qquad \qquad \sigma_{\widecheck{\mathcal{K}}}(\mathbf{z}) = \frac{\sigma_{\widecheck{\Pi}}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{v}_1}) \cdots (1 - \mathbf{z}^{\mathbf{v}_k})}$$

$$\sigma_{\widehat{\Pi}}(\mathbf{z}) = \mathbf{z}^{\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k} \sigma_{\widecheck{\Pi}} \left(\frac{1}{\mathbf{z}} \right) \longrightarrow$$

$$\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = \frac{\sigma_{\check{\Pi}}(\frac{1}{\mathbf{z}})}{(1-\mathbf{z}^{-\mathbf{v}_1})\cdots(1-\mathbf{z}^{-\mathbf{v}_k})} = \frac{\mathbf{z}^{-\mathbf{v}_1-\mathbf{v}_2-\cdots-\mathbf{v}_k}\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1-\mathbf{z}^{-\mathbf{v}_1})\cdots(1-\mathbf{z}^{-\mathbf{v}_k})}$$
$$= (-1)^k \frac{\sigma_{\widehat{\Pi}}(\mathbf{z})}{(1-\mathbf{z}^{\mathbf{v}_1})\cdots(1-\mathbf{z}^{\mathbf{v}_k})} = (-1)^k \sigma_{\widehat{\mathcal{K}}}(\mathbf{z})$$

Theorem (Stanley) Let $\mathcal{K} \subset \mathbb{R}^d$ be a full-dimensional pointed rational cone, and let $q \in \mathbb{R}^d$ be generic relative to \mathcal{K} . Then

$$\sigma_{\mathbb{H}_{\boldsymbol{q}}\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = (-1)^d \, \sigma_{\mathbb{H}^{\boldsymbol{q}}\mathcal{K}}(\mathbf{z})$$

Corollary
$$\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = (-1)^d \sigma_{\mathcal{K}^{\circ}}(\mathbf{z})$$

Ehrhart-Macdonald Reciprocity

Corollary (Stanley) Let $\mathcal{K} \subset \mathbb{R}^d$ be a full-dimensional pointed rational cone, and let $q \in \mathbb{R}^d$ be generic relative to \mathcal{K} . Then

$$\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = (-1)^d \, \sigma_{\mathcal{K}^{\circ}}(\mathbf{z})$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, z)$$

$$\operatorname{Ehr}_{\mathcal{P}^{\circ}}(z) := \sum_{t \geq 1} L_{\mathcal{P}^{\circ}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})^{\circ}}(1, 1, \dots, z)$$

Ehrhart-Macdonald Reciprocity

Corollary (Stanley) Let $\mathcal{K} \subset \mathbb{R}^d$ be a full-dimensional pointed rational cone, and let $q \in \mathbb{R}^d$ be generic relative to \mathcal{K} . Then

 $\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = (-1)^d \, \sigma_{\mathcal{K}^{\circ}}(\mathbf{z})$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, z)$$

$$\operatorname{Ehr}_{\mathcal{P}^{\circ}}(z) := \sum_{t \geq 1} L_{\mathcal{P}^{\circ}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})^{\circ}}(1, 1, \dots, z)$$

Corollary² Let \mathcal{P} be a lattice d-polytope. Then

$$\operatorname{Ehr}_{\mathcal{P}^{\circ}}(z) = \frac{z^{d+1} h_{\mathcal{P}}^{*}(\frac{1}{z})}{(1-z)^{d+1}} = (-1)^{d+1} \operatorname{Ehr}_{\mathcal{P}}\left(\frac{1}{z}\right)$$

Ehrhart-Macdonald Reciprocity

Corollary (Stanley) Let $\mathcal{K} \subset \mathbb{R}^d$ be a full-dimensional pointed rational cone, and let $q \in \mathbb{R}^d$ be generic relative to \mathcal{K} . Then

 $\sigma_{\mathcal{K}}\left(\frac{1}{\mathbf{z}}\right) = (-1)^d \, \sigma_{\mathcal{K}^{\circ}}(\mathbf{z})$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geqslant 1} L_{\mathcal{P}}(t) z^{t} = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{d+1}} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, z)$$

$$\operatorname{Ehr}_{\mathcal{P}^{\circ}}(z) := \sum_{t \geq 1} L_{\mathcal{P}^{\circ}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})^{\circ}}(1, 1, \dots, z)$$

Corollary² Let \mathcal{P} be a lattice d-polytope. Then

$$\operatorname{Ehr}_{\mathcal{P}^{\circ}}(z) = \frac{z^{d+1} h_{\mathcal{P}}^{*}(\frac{1}{z})}{(1-z)^{d+1}} = (-1)^{d+1} \operatorname{Ehr}_{\mathcal{P}}\left(\frac{1}{z}\right)$$

Corollary³ (Ehrhart–Macdonald) $L_{\mathcal{P}}(-t) = (-1)^d L_{\mathcal{P}^{\circ}}(t)$

Order Polytopes

 (Π, \leq) — finite partially ordered set (poset)

$$\mathcal{O}_{\Pi} \ := \ \left\{ \phi \in \mathbb{R}^{\Pi} : \begin{array}{ll} 0 \leqslant \phi(p) \leqslant 1 & \text{for all } p \in \Pi \\ \phi(a) \leqslant \phi(b) & \text{whenever } a \leq b \end{array} \right\}$$

Order Polytopes

 (Π, \leq) — finite partially ordered set (poset)

$$\mathcal{O}_{\Pi} := \left\{ \phi \in \mathbb{R}^{\Pi} : \begin{array}{ll} 0 \leqslant \phi(p) \leqslant 1 & \text{for all } p \in \Pi \\ \phi(a) \leqslant \phi(b) & \text{whenever } a \leq b \end{array} \right\}$$

Integer points in $t \mathcal{O}_{\Pi}$ correspond to order preserving maps $\Pi \to \{0, 1, \dots, t\}$

Order Polytopes

 (Π, \leq) — finite partially ordered set (poset)

$$\mathcal{O}_{\Pi} \ := \ \left\{ \phi \in \mathbb{R}^{\Pi} : \begin{array}{ll} 0 \leqslant \phi(p) \leqslant 1 & \text{for all } p \in \Pi \\ \phi(a) \leqslant \phi(b) & \text{whenever } a \leq b \end{array} \right\}$$

Integer points in $t \mathcal{O}_{\Pi}$ correspond to order preserving maps $\Pi \to \{0, 1, \dots, t\}$

those in $t \mathcal{O}_{\Pi}^{\circ}$ correspond to strictly order preserving maps $\Pi \to \{1, \dots, t-1\}$

$$\phi(a) < \phi(b)$$
 whenever $a < b$

Ehrhart-Macdonald Reciprocity $\longrightarrow L_{\mathcal{O}_{\Pi}}(-t) = (-1)^{|\Pi|} L_{\mathcal{O}_{\Pi}^{\circ}}(t)$

 $\Gamma = (V, E)$ — graph (without loops)

Proper n-coloring of Γ — $\boldsymbol{x} \in \{1, 2, ..., n\}^V$ such that $x_i \neq x_j$ if $ij \in E$

An orientation α of Γ is acyclic if it has no directed cycles \longrightarrow poset Π_{α}

11

 $\Gamma = (V, E)$ — graph (without loops)

Proper *n*-coloring of Γ — $\boldsymbol{x} \in \{1, 2, ..., n\}^V$ such that $x_i \neq x_j$ if $ij \in E$

An orientation α of Γ is acyclic if it has no directed cycles \longrightarrow poset Π_{α}

Graph Coloring a la Ehrhart:

$$\chi_{\Gamma}(n) = \sum_{\alpha} L_{\mathcal{O}_{\Pi_{\alpha}}^{\circ}}(n+1)$$

 $\Gamma = (V, E)$ — graph (without loops)

Proper *n*-coloring of Γ — $\boldsymbol{x} \in \{1, 2, ..., n\}^V$ such that $x_i \neq x_j$ if $ij \in E$

An orientation α of Γ is acyclic if it has no directed cycles \longrightarrow poset Π_{α}

Graph Coloring a la Ehrhart:

$$\chi_{\Gamma}(-n) = \sum_{\alpha} L_{\mathcal{O}_{\Pi_{\alpha}}^{\circ}}(-n+1)$$

 $\Gamma = (V, E)$ — graph (without loops)

Proper *n*-coloring of Γ — $\boldsymbol{x} \in \{1, 2, ..., n\}^V$ such that $x_i \neq x_j$ if $ij \in E$

An orientation α of Γ is acyclic if it has no directed cycles \longrightarrow poset Π_{α}

Graph Coloring a la Ehrhart:

$$\chi_{\Gamma}(-n) = (-1)^{|V|} \sum_{\alpha} L_{\mathcal{O}_{\Pi_{\alpha}}}(n-1)$$

 $\Gamma = (V, E)$ — graph (without loops)

Proper *n*-coloring of $\Gamma - \mathbf{x} \in \{1, 2, ..., n\}^V$ such that $x_i \neq x_j$ if $ij \in E$

An orientation α of Γ is acyclic if it has no directed cycles \longrightarrow poset Π_{α}

Graph Coloring a la Ehrhart:

$$(-1)^{|V|} \chi_{\Gamma}(-n) = \sum_{\alpha} L_{\mathcal{O}_{\Pi_{\alpha}}}(n-1)$$

counts colorings with colors in $\{0, 1, \ldots, n-1\}$ with multiplicity coming from compatible acyclic orientations.

Stanley: "told you."

Recap Day III

- Combinatorial reciprocity theorems
- Visibility constructions & half-open triangulations
- h^* -polynomials are nonnegative
- Stanley reciprocity for integer-point transforms of cones
- Ehrhart-Macdonald reciprocity for Ehrhart polynomials
- Order polytopes & order-preserving maps
- Chromatic polynomials
- Tomorrow: why h^* is called h^*

Ehrhart Polynomials

Day IV: From h to h^*

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

Any questions about yesterday?

Today's Menu: Connections with Bella's Minicourse

- Unimodular triangulations
- f- and h-vectors of triangulations
- Symmetric decompositions of h*-polynomials
- Boundary h^* -polynomials
- An ECCO story

Unimodular Triangulations

A lattice *d*-simplex with volume $\frac{1}{d!}$ is unimodular

Alternative description: if the simplex has vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d .

Every lattice polygon admits a unimodular triangulation, the regular tetrahedron with vertices (0,0,0), (1,1,0), (1,0,1), (0,1,1) does not.

Unimodular Triangulations

A lattice d-simplex with volume $\frac{1}{d!}$ is unimodular

Alternative description: if the simplex has vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \dots, v_d - v_0$ form a basis of \mathbb{Z}^d .

Every lattice polygon admits a unimodular triangulation, the regular tetrahedron with vertices (0,0,0), (1,1,0), (1,0,1), (0,1,1) does not.

Theorem (Kempf-Knudsen-Mumford-Saint-Donat-Waterman 1970's) For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Theorem (Liu 2024+) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.

Conjecture There exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $m_d \mathcal{P}$ admits a regular unimodular triangulation.

f- and h-vectors of triangulation

 f_k — number of k-simplices in a given triangulation T of a polytope

$$f_{-1} := 1$$

$$h$$
-polynomial of T

$$h_T(z) := \sum_{k=-1}^d f_k z^{k+1} (1-z)^{d-k}$$

f- and h-vectors of triangulation

 f_k — number of k-simplices in a given triangulation T of a polytope

$$f_{-1} := 1$$

$$h$$
-polynomial of T

$$h_T(z) := \sum_{k=-1}^d f_k z^{k+1} (1-z)^{d-k}$$

For a boundary triangulation T one defines

$$h_T(z) := \sum_{k=-1}^{d-1} f_k z^{k+1} (1-z)^{d-1-k}$$

and if this triangulation is regular, Dehn–Sommerville holds.

Unimodular Triangulations and h^*

A lattice d-simplex with volume $\frac{1}{d!}$ is unimodular

Alternative description: if the simplex has vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \dots, v_d - v_0$ form a basis of \mathbb{Z}^d .

If Δ is a unimodular k-simplex then $\operatorname{Ehr}_{\Delta}(z) = \frac{1}{(1-z)^{k+1}}$

Unimodular Triangulations and h^*

A lattice d-simplex with volume $\frac{1}{d!}$ is unimodular

Alternative description: if the simplex has vertices v_0, v_1, \ldots, v_d , the vectors $v_1 - v_0, \dots, v_d - v_0$ form a basis of \mathbb{Z}^d .

If
$$\Delta$$
 is a unimodular k -simplex then $\operatorname{Ehr}_{\Delta}(z) = \frac{1}{(1-z)^{k+1}}$

Ehrhart-Macdonald Reciprocity
$$\longrightarrow$$
 $\operatorname{Ehr}_{\Delta^{\circ}}(z) = \left(\frac{z}{1-z}\right)^{k+1}$

The Point These Ehrhart series can help us count things.

Unimodular Triangulations and h^{*}

If Δ is a unimodular k-simplex then $\operatorname{Ehr}_{\Delta^{\circ}}(z) = \left(\frac{z}{1-z}\right)^{k+1}$

If ${\mathcal P}$ admits a unimodular triangulation T then

$$\operatorname{Ehr}_{\mathcal{P}}(z) = 1 + \sum_{k=0}^{d} f_k \left(\frac{z}{1-z}\right)^{k+1} = \frac{\sum_{k=-1}^{d} f_k z^{k+1} (1-z)^{d-k}}{(1-z)^{d+1}}$$

Unimodular Triangulations and h^{*}

If Δ is a unimodular k-simplex then $\operatorname{Ehr}_{\Delta^{\circ}}(z) = \left(\frac{z}{1-z}\right)^{k+1}$

If $\mathcal P$ admits a unimodular triangulation T then

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{\sum_{k=-1}^{d} f_k z^{k+1} (1-z)^{d-k}}{(1-z)^{d+1}} = \frac{h_T(z)}{(1-z)^{d+1}}$$

that is, $h_{\mathcal{P}}^*(z) = h_T(z)$

If ${\mathcal P}$ admits a unimodular triangulation T then $h_{{\mathcal P}}^*(z) = h_T(z)$

What if not?

If \mathcal{P} admits a unimodular triangulation T then $h_{\mathcal{P}}^*(z) = h_T(z)$

What if not?

The degree s of a lattice polytope \mathcal{P} is the degree of $h_{\mathcal{P}}^*(z)$

Codegree $d+1-s \leftarrow$ smallest integer ℓ such that $\ell \mathcal{P}^{\circ} \cap \mathbb{Z}^d \neq \varnothing$

Theorem (Stapledon 2009) If \mathcal{P} is a lattice d-polytope with codegree ℓ then

$$(1 + z + \dots + z^{\ell-1}) h_{\mathcal{P}}^*(z) = a(z) + z^{\ell} b(z)$$

where $a(z) = z^d a(\frac{1}{z})$, $b(z) = z^{d-\ell} b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

The case $\ell=1$ was proved by Betke & McMullen (1985). There is a version for rational polytopes (MB-Braun-Vindas-Meléndez 2022).

The degree s of a lattice polytope \mathcal{P} is the degree of $h_{\mathcal{P}}^*(z)$

Codegree $d+1-s \leftarrow$ smallest integer ℓ such that $\ell \mathcal{P}^{\circ} \cap \mathbb{Z}^d \neq \emptyset$

Theorem (Stapledon 2009) If \mathcal{P} is a lattice d-polytope with codegree ℓ then

$$(1 + z + \dots + z^{\ell-1}) h_{\mathcal{P}}^*(z) = a(z) + z^{\ell} b(z)$$

where $a(z)=z^d\,a(\frac{1}{z})\,,\ b(z)=z^{d-\ell}\,b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

Topological story a(z) and b(z) can be written in terms of h-polynomials of links of a given triangulation of \mathcal{P} and associated arithmetic datat ("box polynomials").

The degree s of a lattice polytope \mathcal{P} is the degree of $h_{\mathcal{P}}^*(z)$

Codegree $d+1-s \leftarrow$ smallest integer ℓ such that $\ell \mathcal{P}^{\circ} \cap \mathbb{Z}^d \neq \emptyset$

Theorem (Stapledon 2009) If \mathcal{P} is a lattice d-polytope with codegree ℓ then

$$(1 + z + \dots + z^{\ell-1}) h_{\mathcal{P}}^*(z) = a(z) + z^{\ell} b(z)$$

where $a(z) = z^d a(\frac{1}{z})$, $b(z) = z^{d-\ell} b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

Topological story a(z) and b(z) can be written in terms of h-polynomials of links of a given triangulation of \mathcal{P} and associated arithmetic datat ("box polynomials").

Corollary Inequalities for h^* -coefficients \longleftarrow Exercises

Open Problem Try to prove an analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

Definition Ehr_{$$\partial \mathcal{P}$$} $(z) := 1 + \sum_{n \ge 1} L_{\partial \mathcal{P}}(n) z^n = \frac{h_{\partial P}^*(z)}{(1-z)^d}$

Theorem (Stapledon 2009) If \mathcal{P} is a lattice d-polytope with codegree ℓ then

$$(1 + z + \dots + z^{\ell-1}) h_{\mathcal{P}}^*(z) = a(z) + z^{\ell} b(z)$$

where $a(z)=z^d\,a(\frac{1}{z})\,,\,\,b(z)=z^{d-\ell}\,b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

$$h_{\partial P}^*(z)$$

If \mathcal{P} is a lattice d-polytope with codegree $\ell=1$ then

$$h_{\mathcal{P}}^*(z) = a(z) + z b(z)$$

where $a(z)=z^d\,a(\frac{1}{z})\,,\;b(z)=z^{d-1}\,b(\frac{1}{z})$ and a(z) and b(z) are nonnegative. \uparrow

$$h_{\partial P}^*(z)$$

Idea Cone over a half-open boundary triangulation

If \mathcal{P} is a lattice d-polytope with codegree $\ell=1$ then

$$h_{\mathcal{P}}^*(z) = a(z) + z b(z)$$

where $a(z)=z^d\,a(\frac{1}{z})\,,\,\,b(z)=z^{d-1}\,b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

Proof Idea (Bajo-MB 2023)

- fix a half-open triangulation T of $\partial \mathcal{P}$ and extend T to a half-open triangulation of \mathcal{P} by coning over an interior lattice point \boldsymbol{x}
- lacktriangle convince yourself that $a(z)=h_{\partial\mathcal{P}}^*(z)$ is palindromic with positive coefficients
- realize that the h^* -polynomial of each half-open simplex $\Delta \in T$ is coefficient-wise less than or equal to the h^* -polynomial of $\operatorname{conv}(\Delta, \boldsymbol{x})$ and thus $h_P^*(z) - a(z)$ has nonnegative coefficients.

An ECCO Story

Theorem (Stapledon 2009) If \mathcal{P} is a lattice d-polytope with codegree ℓ then

$$(1 + z + \dots + z^{\ell-1}) h_{\mathcal{P}}^*(z) = a(z) + z^{\ell} b(z)$$

where $a(z) = z^d a(\frac{1}{z})$, $b(z) = z^{d-\ell} b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

Open Problem Try to prove an analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

An ECCO Story

Theorem (Stapledon 2009) If \mathcal{P} is a lattice d-polytope with codegree ℓ then

$$(1 + z + \dots + z^{\ell-1}) h_{\mathcal{P}}^*(z) = a(z) + z^{\ell} b(z)$$

where $a(z)=z^d\,a(\frac{1}{z})\,,\ b(z)=z^{d-\ell}\,b(\frac{1}{z})$ and a(z) and b(z) are nonnegative.

Open Problem Try to prove an analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

Theorem (MB-León 2021) Given a graph G on d nodes, let

$$\sum_{n \ge 1} \chi_G(n) z^n = \frac{\chi_G^*(z)}{(1-z)^{d+1}}.$$

Then $\chi_1^* \leqslant \chi_2^* \leqslant \cdots \leqslant \chi_{\lfloor \frac{d+1}{2} \rfloor}^*$ and $\chi_j^* \leqslant \chi_{d-j}^*$ for $1 \leqslant j \leqslant \frac{d-1}{2}$.

Recap Day IV

- Unimodular triangulations
- h-polynomials of triangulations $\longrightarrow h^*$ -polynomials
- Symmetric decompositions of polynomials
- Stapledon decompositions of h^* -polynomials
- Boundary h^* -polynomials

¡Gracias!

Ehrhart Polynomials 💮 Matthias Beck 12