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“Science is what we understand well enough to explain to a computer, art
is all the rest.”

Donald Knuth
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A Sample Problem: Birkhoff-von Neumann Polytope

This sife is supported by donations o The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. ]. A. Sloane

Search Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A037302 Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume *

is v(n), then a(n) = ((n-1)*2)! * v(n) / nA(n-1).
1, 1, 3, 352, 471B075, 14666561365176, 17832560768B35B341943028,
12B160779640793466RB7829905128694016, TA58969897501574T748537755050756794492337074203099,

S0910389B8117504946843559205930853037841762820367901333706255223000 (list; graph; refs; listen; history;
text; internal format)

OFFSET 1,3
COMMENTS The Birkhoff polytope is an (n=1)"2-dimensional polyvtope in n*Z-dimensional
space; its vertices are the n! permutation matrices.
Is a({n) divisible by n"2 for all n»=4%? - Dean Hickerson, Wov 27 2002

11 - Tin .
n2 Zja:jk—lfor all 1

B, = : : e RS,
" 200 3 e =1 forall 1
:Cnl e o o :Cnn

IN N

kE<n
J<n
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Discrete Volumes

Rational polyhedron P = R? — solution set of a system of linear equalities
& inequalities with integer coefficients

@ y
@
Goal: understand P n Z% . . . 9/@/2* @’J

o o | o
e e |o
® o o
> (list) Z 22y A
merZd ¢ €
» (count) |P nZY
1 1,
» (volume) vol(P) = lim — |P n-Z
t—oo ¢4 t
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Discrete Volumes

Rational polyhedron P < R? — solution set of a system of linear equalities
& inequalities with integer coefficients

»3
Goal: understand P n Z% . . . Wﬁ e Jﬁ

e o | o
PP
@ €
> (list) Z 2y g e 2 Ve 7t
» (count) |P nZY
| [(P) = Ii Lip ALz

> pu— R —

(volume) vo lim -5 P N -

1
Ehrhart function Lp(t) := ‘77 N ;Zd - |t77 N Zd| fort € Z-o
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Some Motivation

» Linear systems are everywhere, and so polyhedra are everywhere.
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Some Motivation

» Linear systems are everywhere, and so polyhedra are everywhere.

» In applications, the volume of the polytope represented by a linear system
measures some fundamental data of this system (“average”).
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Some Motivation

» Linear systems are everywhere, and so polyhedra are everywhere.

» In applications, the volume of the polytope represented by a linear system
measures some fundamental data of this system (“average”).

» Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.
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Some Motivation

» Linear systems are everywhere, and so polyhedra are everywhere.

» In applications, the volume of the polytope represented by a linear system
measures some fundamental data of this system (“average”).

» Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

» Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.
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Some Motivation

Linear systems are everywhere, and so polyhedra are everywhere.

In applications, the volume of the polytope represented by a linear system
measures some fundamental data of this system (“average”).

Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.

Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.
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Some Motivation

Linear systems are everywhere, and so polyhedra are everywhere.

In applications, the volume of the polytope represented by a linear system
measures some fundamental data of this system (“average”).

Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled

geometrically.

Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

Also, polytopes are cool.
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Ehrhart Polynomials

Today’s Menu: Get Our Hands Dirty

Z2

2

() Matthias Beck

1



The Unit Cube

Lattice polytope P < R? — convex hull of finitely points in Z¢
For t € Z.g let Lp(t) := # (tP n Z%)

The unit cube in R%is P = [0,1] = {x e R?: 0 < z; < 1}

— Lp(t) = (t+1)
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The Unit Cube

Lattice polytope P < R? — convex hull of finitely points in Z¢
For t € Z.g let Lp(t) := # (tP n Z%)

The unit cube in R%is P = [0,1] = {x e R?: 0 < z; < 1}

— Lp(t) = (t+1)

Lpo(t) = (t—1)
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The Standard Simplex

The standard simplex A € R? is the convex hull of the unit vectors and the
origin; alternatively,

A = {CBER;ZO: $1+x2+"'+£€d<1}

2

L3

Ehrhart Polynomials ()  Matthias Beck 9



The Standard Simplex

The standard simplex A € R? is the convex hull of the unit vectors and the
origin; alternatively,

A= {zeR: o +a2+ - +a4<1}

LA(?f) = #{(:cl,xg...,xd)EZiO: x1+x2+---+xd<t}

#{(xl,xg...,xd,a:dH)eZ;lBl: X1+ To+ -+ Tgel =t}

()
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The Standard Simplex

The standard simplex A € R? is the convex hull of the unit vectors and the
origin; alternatively,

A= {zeR: o +a2+ - +a4<1}

LA(?f) = #{(:cl,xg...,xd)EZiO: x1+x2+---+xd<t}

— #{(xl,xg...,acd,a:dH)ezggl: X1+ To+ -+ Tyt :t}

()
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The Cross-Polytope

The cross-polytope ¢ € R? is

O = {zeRY: |zq| + |wo| + -+ + |2a| < 1}

Ehrhart Polynomials (3  Matthias Beck
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The Cross-Polytope

The cross-polytope ¢ € R? is

O = {xeRY: |oq| + |wa] + -+ + |zg| < 1}

Let's compute Lo(t) ford =3 ...

» Triangulation
» Disjoint triangulation
» Interpolation

» Generating function
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The Cross-Polytope

The cross-polytope ¢ € R? is

O = {xeRY: |oq| + |wa] + -+ + |zg| < 1}

Let's compute Lo(t) ford =3 ...

» Triangulation

Dissect < into 8 (standard) tetrahedra and use inclusion—exclusion to
compute Lo (1)
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The Cross-Polytope

The cross-polytope ¢ € R? is

O = {xeRY: |oq| + |wa] + -+ + |zg| < 1}

Let's compute Lo(t) ford =3 ...

» Disjoint triangulation

Dissect < into 8 half-open tetrahedra

Ehrhart Polynomials ()  Matthias Beck
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The Cross-Polytope

The cross-polytope ¢ € R? is

O = {xeRY: |oq| + |wa] + -+ + |zg| < 1}

Let's compute Lo (t) ford =3 . .. /-1

» Interpolation

Ehrhart Polynomials ()  Matthias Beck
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The Cross-Polytope

The cross-polytope ¢ € R? is

= {z eR: || + |z2| + -+ + |24 < 1}
Let's compute Lo(t) ford =3 ...

» Generating function

Ehro(z) := 1+ Z Lot

Ehrhart Polynomials (3  Matthias Beck
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The Cross-Polytope

Z2

The cross-polytope ¢ € R? is

O = {xeRY: |o| + |wo] + - + |wa| < 1}
Let's compute Lo(t) ford =3 . ..

» Generating function

Ehre(z) := 1+ZL<><t) St R

Exercise: EhrBiPyr(P)<Z) = EhI‘p(Z)

... for unit cubes —— Eulerian polynomials

Ehrhart Polynomials ()  Matthias Beck 12



Zonotopes

Line segment [a,b] :={(1-A)a+Ab: 0< )\ <1}

Minkowski sum 1 + Ky := {p+q: pe K1, qe Ko}

Zonotope Z :=|ai,bi| + [az,ba] + - + [am, by

Ehrhart Polynomials (3  Matthias Beck 13



Zonotopes

Line segment [a,b] :={(1-A)a+Ab: 0< )\ <1}
Minkowski sum C; + Ko = {p+q: pe Ky, g K}
Zonotope Z := |a1,bi| + [ag,b2]| + -+ [@n, by ]

Every zonotope admits a tiling into parallelepipeds

y

P — half-open d-parallelepiped

N\
N\
N
N\
N\
N\
N
N\

—— Lp(t) = vol(P)t?

{ Mo,
{ Mo,
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Recap Day |

» Volume computations — don't agonize, discretize

» Integer-point counting in dilated polytopes —— polynomials
» Interpolation

» Generating functions

» Dissections: triangulations, tilings

» Tomorrow: enough practice, how
does this work in theory?

©Math 883 (2022)
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Birkhoff-von Neumann Reuvisited

Zeros of H_9(n)

Ehrhart Polynomials

() Matthias Beck

For more about roots of
(Ehrhart) polynomials,
see Braun (2008) and
Pfeifle (2010).
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Any questions about yesterday?
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Today’s Menu: Theory and Complexity

» Partition function magic

» Lots of generating functions
» Rational cones
» Triangulations

» Ehrhart theory

x3

)

I
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Warm-Up: Partition Generating Functions

A partition A = (A1, Ao, ..., \p) of an integer k > 0 satisfies
k=X+Xo+ -+ A\, and O< A < A< <\,

Goal Compute Zq)‘1+"'+>‘” over your favorite partition family
y

Example P<3 — family of partitions into at most 3 parts

Z q>\1+>\2+>\3 _ 1 5 .
AeDes (1-9)1—-¢*)(1-¢)
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Warm-Up: Partition Generating Functions

A partition A = (A1, Ao, ..., \p) of an integer k > 0 satisfies
k=X+Xo+ -+ A\, and O< A < A< <\,

Goal Compute Zq)‘1+"'+>‘” over your favorite partition family
y

Example P<3 — family of partitions into at most 3 parts

Z q>\1+>\2+>\3 _ 1 5 .
AeDes (1-9)1—-¢*)(1-¢)

|dea P<3 = {)\623: O<A1<)\2<)\3} = KﬁZ3

K = {w ceR3: 0< 21 <29 < 333} «—— polyhedral cone ¢
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Warm-Up: Partition Generating Functions

I = {wER3:0<x1<

is a rational, simplicial, unimodular cone

Ehrhart Polynomials

() Matthias Beck

o < 5133}

R>0

0
+Rog |1
1

(0 0
det |0 1
1 1

+Rog |1

—_
I
|
p—t




Warm-Up: Partition Generating Functions

0 0
/C={£BER3:O<$1<I2<£C3}=R>O Ol +Rog |1
is a rational, simplicial, unimodular cone 00
det |0 1
11
Integer-point transform
OK(217227Z3) — Z ZrlzgnQZg%S

meknZ3

1

(1 — Zg)(l — ZQZg)(l — 21222’3)

Ehrhart Polynomials ()  Matthias Beck
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Warm-Up: Partition Generating Functions

0 0
IC: {$€R320<$1<$2<$3} :R>O O +R>O 1 +R>O 1
is a rational, simplicial, unimodular cone 0 0 1]
det [0 1 1
1 1 1)
Integer-point transform
O-IC(ZDZZ)ZS) — Z ZrlzgnQZgng

meknZ3

1

(1 — Zg)(l — ZQZg)(l — 2’12223)

1
)\1+>\2+>\3 L L
Z q - UK(Q)Q?Q) - 2 3
NP (1 -q)(1—¢*)(1—q?)

~
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Variations on a Theme

P3 — family of partitions into exactly 3 parts

P3 = {/\62320<)\1<)\2<)\3} = I%(WZB

N K K

K={zeR: 0<zi<za<z3} = Roo 0| +Rog [ 1| + Ry
1 1
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Variations on a Theme

P3 — family of partitions into exactly 3 parts

P3 = {)\623: 0<)\1<)\2<)\3} = I%(WZB
N 0 0
K={zeR: 0<zi<za<z3} = Roo 0| +Rog [ 1| + Ry
op(21,22,23) = Z 21 29 228"
melCZ3
Z142%43

(1 — Zg)(l — ZQZg)(l — Z12’223)

3

)\1+>\2+)\3 . _ q
Z q _ O}%(Qv q, Q) T 2 3
NePs (1-¢)(1—¢*)(1—¢°)
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Integer-point Complexity of a Simplicial Cone

What if IC is (still simplicial and rational but) not unimodular?
Say w1, Wa, W3 € Z3 are linearly independent, det[w; wows] =D > 1

K=R.ow;+Roowy +Rogws

Ehrhart Polynomials ()  Matthias Beck



Integer-point Complexity of a Simplicial Cone
What if IC is (still simplicial and rational but) not unimodular?
Say w1, Wa, W3 € Z3 are linearly independent, det[w; wows] =D > 1
I =Roowi + Rogwy + Rogws

ldea Tile I with the half-open parallelepiped
IT = [O, 1) Wi + [O, 1) Wo + [O, 1) W3

)

x1
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Integer-point Complexity of a Simplicial Cone

What if IC is (still simplicial and rational but) not unimodular?
Say w1, Wa, W3 € Z3 are linearly independent, det[w; wows] =D > 1

K=R.owi +Roowy + Roows 73

ldea Tile I with the half-open parallelepiped
II = [O, 1) Wi + [0, 1) Wo + [O, 1) W3

W1
w
N | / l P 3 =

L1

UIC<ZlaZ2723) =

UH(Zl,ZQ,ZS)
(1 —z%1)(1 —2z"2)(1 — zV3)

)

m __ M1, m2_m3
where z™ = z; 'z, ‘24

X1
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Integer-point Complexity of a Simplicial Cone

What if IC is (still simplicial and rational but) not unimodular?
Say w1, Wa, W3 € Z3 are linearly independent, det[w; wows] =D > 1

K=R.owi +Roowy + Roows 73

ldea Tile I with the half-open parallelepiped
II = [O, 1) Wi + [0, 1) Wo + [O, 1) W3

YA |

x3

UIC<ZlaZ2723) =

UH(2172272’3)

W3
X2

L1

)

(1 —z%1)(1 —2z"2)(1 — zV3)

. Complexity: ori(z1, 22, 23) has D terms
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Homogenizing Polytopes

Given a polytope P — R? let

cone(P) n{x e R : 24,1 =t}

contains a copy of tP

Ehrhart Polynomials (3  Matthias Beck 8



Homogenizing Polytopes

Given a polytope P c R? let

cone(P) := Roq (P x {1}) « R4"!

i onef

cone(P) n{x e R : 24,1 =t}

contains a copy of tP —

Ehrp(z) := 1+ Z Lp(t) 2" = Geonep)(1,1,..., 1, 2)
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Homogenizing Polytopes

Given a polytope P < R? let

cone(P) := Roo (P x {1}) c R4

cone(P) n{x e R : 24, =t}

contains a copy of tP —

Ehrp = 1+ Z Lp
t>1
If P is a simplex,
o (z)
O-cone(P)(Z) - H
(1—2")
VvV vertex

Ehrhart Polynomials ()  Matthias Beck

— O-cone(P)(la L...

EhI‘p (Z) =

h

P

7172)

(z

(1

—Z)

)

+1



Trials & Triangulations

Subdivision of a polyhedron P — finite collection .S of polyhedra such that
» if Fisafaceof Ge S then FeS

» if F,Ge S then F n G is a face of both

> P:U}"ES‘F

If each F is a simplex —— triangulation of a polytope

Ehrhart Polynomials ()  Matthias Beck



Ehrhart Polynomials

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(z) := 1+ ) Lp(t) 2" is rational:

t=1

Ehrp(z) = (1 _Z%fiii?ﬂ

where the h*-polynomial h’5(z) satisfies h}»(0) = 1 and
h»(1) = (dim P)! vol(P).

() Matthias Beck
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(2) := 1+ Y Lp(t) 2" is rational:

Ehrp(z) = (1 _Z%Eiil??ﬂ

where the h*-polynomial h’5(z) satisfies h}»(0) = 1 and
h»(1) = (dim P)! vol(P).

Computational bottlenecks:
» triangulation

» determinants of resulting simplicial cones

Ehrhart Polynomials ()  Matthias Beck
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(z) := 1+ > Lp(t) 2" is rational:
t>1

Ehrp(2) = (1 _hj;grzmﬂ

where the h*-polynomial h’5(z) satisfies h}»(0) = 1 and
h»(1) = (dim P)! vol(P).

We saw instances yesterday: P = [0, 1]¢

— Lp(t) = (t+ 1)

h’»(z) — Eulerian polynomial

Ehrhart Polynomials ()  Matthias Beck
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(2) := 1+ Y Lp(t) 2" is rational:

Ehrp(z) = (1 _Z%fiii?ﬂ

IEQ where the h*-polynomial h’5(z) satisfies h}»(0) = 1 and
h»(1) = (dim P)! vol(P).

A ={xeRl: o +a+- - +xq<1}

1 o= (") () = 1

Ehrhart Polynomials ()  Matthias Beck
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(2) := 1+ Z Lp(t) 2" is rational:

L t=1

Bhire(z) = (= Py

where the i*-polynomial h’5(z) satisfies h}»(0) = 1 and
h»(1) = (dim P)! vol(P).

P — half-open d-parallelepiped

— Lp(t) = vol(P) ¢

Ehrhart Polynomials ()  Matthias Beck 11



Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(2) := 1+ Y Lp(t) 2" is rational:

Ehrp(z) = (1 _Z%fiii?ﬂ

where the h*-polynomial h’5(z) satisfies h}»(0) = 1 and
h»(1) = (dim P)! vol(P).

1
Seeming dichotomy: vol(P) = tlim R
—0

Lp(t) can be computed discretely
via a finite amount of data.

Ehrhart Polynomials ()  Matthias Beck 12



Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

Ehrp(z) == 1+ ZLP(t) St p(2)

Equivalent descriptions of an Ehrhart polynomial:
» Lp(t) = cqt?+cqg 1t 1+ 4 ¢
» via roots of Lp(t)

» Bhrp(z) —  Lp(t) = hy(" ) +mi (P9 + -+ hy(f)

Ehrhart Polynomials ()  Matthias Beck
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

p(2)

Equivalent descriptions of an Ehrhart polynomial:
» Lp(t) = cgt?+cg 11T+ + ¢
» via roots of Lp(t)

» Bhrp(z) —  Lp(t) = hy(" D) + hy(P9Y) + -+ hy(f)

Open Problem Classify Ehrhart polynomials.
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Ehrhart Polynomials in Dimension 2

P — lattice polygon

—> Lp(t) 262t2+61t-|—1

Ehrhart Polynomials ()  Matthias Beck 12



Ehrhart Quasipolynomials

Rational polytope P = R? — convex hull of finitely points in Q¢

Theorem (Ehrhart 1962) Lp(t) is a quasipolynomial in ¢:
Lp(t) = cqt)t* + ca1 ()t + -+ cot)

where co(t), ..., cq(t) are periodic functions.

Ehrhart Polynomials ()  Matthias Beck
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Ehrhart Quasipolynomials

Rational polytope P = R? — convex hull of finitely points in Q¢
Theorem (Ehrhart 1962) Lp(t) is a quasipolynomial in ¢:

Lp(t) = cat)t +ca1 ()t + -+ co(t)

where co(t), ..., cq(t) are periodic functions. Equivalently,
h(z)
Ehrp =1+ 7;1 LP B ( Zp)dim P+1

for some (minimal) p € Z-q (the period of Lp(t)).

Open Problem Study periods of Ehrhart quasipolynomials.

Ehrhart Polynomials ()  Matthias Beck
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Partitions Revisited

Definition n-gon partitions
Thi={(A,..., A €Z": Ay =---=2X =21 and A+ -+ A1 > Ay}

Theorem (Andrews—Paule—Riese 2001)

At +An q
gzgzq (1 —'Q>(1'—-q2)...(1.__qn)

2n—2
q

1-q@)(1—=¢*)(1—q*) - (1—¢q°"2)

Geometric Philosophy The following cone is arithmetically nicer:

{fxeR": 2z, > - 221>0 and 1+ -+ T, 1 < xp}

Ehrhart Polynomials ()  Matthias Beck 14



Partitions Revisited

Definition Lecture-hall partitions

LH, = Irezn-0<M o
1 2 n

Lecture-Hall Theorem (Bousquet-Mélou—Eriksson 1997)

Z q>\1+---+>\n _ 1
_ _ a3) ... _ A2n—1
AeLH,, I=q)(1—¢?)---(1—q )

Open Problem Explain this geometrically. (Caveat: the lecture-hall cone

has determinant (n — 1)!).

Ehrhart Polynomials ()  Matthias Beck
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Recap Day Il

» Generating functions son cheveres
» Integer-point transforms of rational polyhedra —— rational functions

» Arithmetic complexity of a simplicial cone: determinant of its generators
» Homogenize polytopes
» Triangulations

» Polynomial data

» Thursday: positivity,
reciprocity & friends

@©Jupiter Davis
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Matthias Beck
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Any questions about Tuesday?

DTN = 0p(q,q,q)
)\EP3

q3

(1-q)(1—-¢*)(1 g

07 Q0N
\VoRAViNAVN
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Today’s Menu: Positivity, Reciprocity & Friends

» Graph coloring
» Half-open triangulations
» Ehrhart positivity

» Ehrhart—Macdonald reciprocity

Ehrhart Polynomials ()  Matthias Beck



Warm-Up: Chromatic Polynomials of Graphs

I' = (V, F) — graph (without loops)
Proper k-coloring of ' — @ € {1,2,...,k}" such that z; + x; if ij € E
xr(k) := # (proper k-colorings of I')

Example:
XK3<k) — k(k - 1)
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Warm-Up: Chromatic Polynomials of Graphs

I' = (V, F) — graph (without loops)
Proper k-coloring of ' — @ € {1,2,...,k}" such that z; + x; if ij € E
xr(k) := # (proper k-colorings of T) «—— polynomial ©

Example:
XK?,(k) — k(k - 1)

X (=D =6 ...
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Warm-Up: Chromatic Polynomials of Graphs

I' = (V, F) — graph (without loops)
Proper k-coloring of ' — @ € {1,2,...,k}" such that z; + x; if ij € E
xr(k) := # (proper k-colorings of T) «—— polynomial ©

Example:
XK?,(k) — k(k - 1)

IxK5(—1)] = 6 counts the number
of acyclic orientations of K3
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Warm-Up: Chromatic Polynomials of Graphs

I' = (V, F) — graph (without loops)
Proper k-coloring of ' — @ € {1,2,...,k}" such that z; + x; if ij € E

xr(k) := # (proper k-colorings of I') «— polynomial ©

Theorem (Stanley 1973) (—1)Vlyp(—k) equals the number of pairs (o, )
consisting of an acyclic orientation « of I' and a compatible k-coloring .
In particular, (—1)VIxr(—1) equals the number of acyclic orientations of T’

(An orientation o of I' and a k-coloring = are compatible if x; > =x;
whenever there is an edge oriented from ¢ to j. An orientation is acyclic if
it has no directed cycles.)

Ehrhart Polynomials ()  Matthias Beck 4



Half-open Triangulations

Triangulation of a polytope P — finite collection .S’ of simplices such that
» if Fisafaceof Ge S then FeS

» if F,Ge S then F n G is a face of both

> P:U}"ES‘F

S~
o
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Tangent Cones & Visibility

F facet of a polyhedron P = R? with defining halfspace H

F is visible from ge R? if g ¢ H

Equivalent lingo: g € R is beyond F (and beneath otherwise)
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Half-open Triangulations

Define H,(Q) to be Q minus facets that are visible from g

Exercise P < RY — full-dimensional polyhedron with dissection P =
PLUPyuU---U P, geR? generic relative to each P, —

H,P = HePrwHgPow - wH Py,

S~
o

Ehrhart Polynomials ()  Matthias Beck 5



Recall: Integer-point Complexity of a Simplicial Cone

What if IC is (still simplicial and rational but) not unimodular?
Say w1, Wa, W3 € Z3 are linearly independent, det[w; wows] =D > 1

K=R.owi +Roowy + Roows 73

ldea Tile I with the half-open parallelepiped
II = [O, 1) Wi + [0, 1) Wo + [O, 1) W3

W1
w
o | / l P 3 -

L1

UIC<ZlaZ2723) =

UH(Zl,ZQ,ZS)
(1 —z%1)(1 —2z"2)(1 — zV3)

)

m __ M1, m2_m3
where z™ = z; 'z, ‘24

X1
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Recall: Homogenizing Polytopes

Given a polytope P < R? let

cone(P) := Roo (P x {1}) c R4

cone(P) n{x e R : 24, =t}

contains a copy of tP —

Ehrp = 1+ Z Lp
t>1
If P is a simplex,
o (z)
O-cone(P)(Z) - H
(1—2")
VvV vertex

Ehrhart Polynomials ()  Matthias Beck

— O-cone(P)(la L...

EhI‘p (Z) =

h

P

7172)

(z

(1

—Z)

)

+1



Ehrhart Positivity

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

hp(2)
_ t _ P
Ehrp(z) (= 1+ t;Lp(t) 2t = 1= 2y
Theorem (Stanley 1980) Ay, hi, ..., h}, are nonnegative integers.
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Ehrhart Positivity

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

. t p(2)
- Ehrp(z) := 1+ ;Lp<t) 2t = 1= 2y
Theorem (Stanley 1980) hy, k7, ..., k) are nonnegative integers.

Open Problem Prove that the h*-polynomial of

» hypersimplices

» polytopes admitting a unimodular triangulation

» polytope with the integer decomposition property are unimodal

v" Gorenstein polytopes with regular unimodular triangulation (Bruns—
Romer 2007)

v" Zonotopes (MB —Jochemko—McCullough 2019)
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Recall:* Integer-point Complexity of a

Simplicial Cone

What if C is (still simplicial and rational but) not unimodular?
Say w1, Wq, W3 € Z3 are linearly independent, det[w; wows] =D > 1

K = RZO W1 + R;O Wo + R>0 W3 Z3

ldea Tile I with the half-open parallelepiped
II = [O, 1) Wi + [0, 1) Wo + [O, 1) W3

/ l

X3

0/6(21722723) =

0H<Zla 22, Z3>

W3
)

L1

X9

(1 —z%1)(1 —2z"2)(1 — zV3)

mi_ m2_ms3

m __
where z™ = 2z, 'z, ‘24

X1
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Simplicial Cone Reciprocity

Vi, Vs, ...,V € Z% linearly independent
K = Rogvi+ - +Rogvi g+ Rogvy, + - + Rogvy
K = Rogvi+ - +Rogvy g+ Rogvy, + - + Rogvy
|
() — oi(2 o 0t;(2)
O_K:(Z) (1 o Zvl) o (1 . ka> UIC(Z) (1 o Zvl) . (1 _ ka)
where
M = [0,1)vi+-+[0,1)Vm 1+ (0,1] v + (0,1] v
T = (0,1]vi+-+(0,1]Vy_1+[0,1) vy + [0,1) v
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Simplicial Cone Reciprocity

Vi,Va, ...,V € Z% linearly independent
I = [0,1)vi+-+[0,1)Vy1+(0,1] Ve + -+ (0,1] vi
T = (0,1]vi+-—+(0,1]Vpm1+[0,1) vy +---+[0,1) vi

)

Fun Fact 1II = V1—|—V2+"'—|—Vk—ﬁ

v
L] A4l
Vo

~ —|:|—|—V1—|—V2:|ﬁ
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Simplicial Cone Reciprocity

Vi, Va,...,vi € Z% linearly independent
ﬁ i= [0,1)V1+°"—|— [O,l)Vm_1+(O,1]Vm—|—"'—|— (O,l]Vk
I = (0,1]vi+--+(0,1]Vm1+[0,1) vy +---+[0,1) vi

Fun Fact II = V1—|—V2—|—"°—|—Vk—ﬁ

4

—El+V1 —I-VQZE

1
N O_ﬁ(z) _ ZV1+V2+ +Vi O_ﬁ (_
Z
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Stanley Reciprocity

~\Z) = Oﬁ(Z) O\2Z) = Uﬁ(Z)
&) =~ Ty =) S BN Ty
Uﬁ(Z) — gVitvatotvg O3 (%) >
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Stanley Reciprocity

S\Z) = Oﬁ(Z) O\2Z) = Uﬁ(Z)
&) =~ Ty =) S BN Ty
Uﬁ(Z) — gVitvatotvg O3 (%) >

oo (1) %1i(5) z YV o (2)
K

(1—zVv1)--- (1 —2 k) (I —zVv1) - (1 —2 k)

_{ 1\k o7(2) (1 ga(y
o ( 1) (1—ZV1>°°-(1—ZV’€) ( 1) ()

Theorem (Stanley) Let K < RY be a full-dimensional pointed rational cone,
and let g € R? be generic relative to K. Then

OH K (1> = (-1)% opax(z)

Z
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Stanley Reciprocity

o1 (2)

og(z) = (1 —2v1)-- (1 — z%) o(2) =

1
N L V1i+vo+t--+v - -
O'H(Z) = 7 O (z —>

(1 o7 (1) 2 V1V VE g (7)
o~ ( ) I-z)- -z — -z (-2 %)

_(_1\k 07(2) — (1) ga(y
o ( 1) (1—ZV1)"°<1—ZV’€) ( 1) ()

Theorem (Stanley) Let K < R? be a full-dimensional pointed rational cone,
and let ¢ € R? be generic relative to K. Then

OHgK (%) = (1) opgax(z)

Corollary o G) = (—1)% 0y (2)
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Ehrhart—Macdonald Reciprocity

Corollary (Stanley) Let K = R? be a full-dimensional pointed rational cone,
and let g € R? be generic relative to K. Then

his(z
Ehrp(z) = 1 +2Lp(t) 2t = @ _Pi)c>l+1 = Ocone(p)(1,1,...,2)
t>1

Ehrp(z) := Y Lpe(t) 2" = Gconepy(L1,...,2)

t=1
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Ehrhart—Macdonald Reciprocity

Corollary (Stanley) Let K = R? be a full-dimensional pointed rational cone,
and let g € R? be generic relative to K. Then |
e (—) = (—1)%oxe(2)

Z
h*
Ehrp(z) = 1 +2Lp(t) 2t = p(?) = Ocone(p)(1,1,...,2)

— \d+1
=1 (1= 2)

Ehrp(z) := Y Lpe(t) 2" = Gconepy(L1,...,2)

t=1

Corollary? Let P be a lattice d-polytope. Then

1 ()

Bhrp:(2) = (1— 2)dt (—1)*"! Ehrp (%)
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Ehrhart—Macdonald Reciprocity

Corollary (Stanley) Let K = R? be a full-dimensional pointed rational cone,
and let g € R? be generic relative to K. Then ]
oK (—) = (—1)% 0ok (2)

Z

his(z
Ehrp(z) := 1+ Z Lp(t) 2t = 1 _Pi>c)l+1 = Ocone(p)(1,1,...,2)

t>1

Ehrp(z) := Y Lpe(t) 2" = Gconepy(L,1,...,2)

t>1
Corollary? Let P be a lattice d-polytope. Then

e (L) 1
EhI’Po(Z) = (1 — Zngfl — (_1>d+1 Ehrp (;)

Corollary® (Ehrhart-Macdonald) Lp (—t) = (—=1)% Lps(t)
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Order Polytopes

(IT, <) — finite partially ordered set (poset)

0 < <1 forall pell
On = {qﬁeRH: )gb(p) oraip

d(a) < ¢(b) whenever a < b

Ehrhart Polynomials ()  Matthias Beck
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Order Polytopes

(IT, <) — finite partially ordered set (poset)

o n 0<¢(p) <1 forall pell
On = {¢ cR™: ¢(a) < ¢(b) whenever a < b
Integer points in ¢t Oy correspond to order preserving maps II — {0, 1,...,t}
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Order Polytopes

(IT, <) — finite partially ordered set (poset)

0<¢(p)<1 forall pell

o I .

O {¢ cR™: d(a) < ¢(b) whenever a < b

Integer points in ¢t Oy correspond to order preserving maps II — {0, 1,...,t}
those in ¢ O correspond to strictly order preserving maps II — {1,...,t—1}

o(a) < ¢(b) whenever a < b

Ehrhart—-Macdonald Reciprocity — Lo, (—t) = (—1)/! Loz (1)

Ehrhart Polynomials ()  Matthias Beck 10



Back to Graph Colorings

I' = (V, F) — graph (without loops)
Proper n-coloring of ' — x € {1,2,...,n}" such that z; + z; if ije F

An orientation « of I' is acyclic if it has no directed cycles — poset I,

Ehrhart Polynomials ()  Matthias Beck 11



Back to Graph Colorings

I' = (V, E) — graph (without loops)
Proper n-coloring of ' — @ € {1,2,...,n}" such that x; + z; if ij € E
An orientation « of I is acyclic if it has no directed cycles — poset 11,

Graph Coloring a la Ehrhart:
i)

n+1

xr(n) = ZL@%a(n + 1)

(n+1)02,,

(n+1)02,

n+1
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Back to Graph Colorings

I' = (V, E) — graph (without loops)
Proper n-coloring of ' — @ € {1,2,...,n}" such that x; + z; if ij € E
An orientation « of I is acyclic if it has no directed cycles — poset 11,

Graph Coloring a la Ehrhart:
i)

n+1

XF(—TL) — ZL@%CX(—??J + 1)

(n+1)02,,

(n+1)02,

n+1
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Back to Graph Colorings

I' = (V, E) — graph (without loops)
Proper n-coloring of ' — @ € {1,2,...,n}" such that x; + z; if ij € E
An orientation « of I is acyclic if it has no directed cycles — poset 11,

Graph Coloring a la Ehrhart:

X2
xr(—n) = (=) Loy, (n—1)
o n+1
(n+1)02

K,

*—9

V1 Vo

(n+1)0%,
X1
n+1
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Back to Graph Colorings

[' = (V, E) — graph (without loops)
Proper n-coloring of ' — x € {1,2,...,n}" such that z; + z; if ije F
An orientation « of I' is acyclic if it has no directed cycles — poset I,

Graph Coloring a la Ehrhart:

(1) xr(=n) = > Loy, (n—1)

counts colorings with colors in {0,1,...,n — 1} with multiplicity coming
from compatible acyclic orientations.

Stanley: “told you."

Ehrhart Polynomials ()  Matthias Beck 11



Recap Day Il

» Combinatorial reciprocity theorems

» Visibility constructions & half-open triangulations

» h*-polynomials are nonnegative

» Stanley reciprocity for integer-point transforms of cones

» Ehrhart—Macdonald reciprocity for Ehrhart
polynomials

» Order polytopes & order-preserving maps
» Chromatic polynomials

» Tomorrow: why A" is called A"

Ehrhart Polynomials () Matthias Beck 12



Ehrhart Polynomials

Day IV: From h to h*

Matthias Beck
San Francisco State University
https://matthbeck.github.io/

VIl Encuentro Colombiano
De Combinatoria




Any questions about yesterday?

4
L] A4l
Vo

- —|:| —+ Vi - Vo = El
—[]
/|
4op)
n+1
(n+1)025
K,
*—0
Vi Vo
(n+1)02,
) )
4o

n—+1
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Today’s Menu: Connections with Bella’s Minicourse

» Unimodular triangulations
» f- and h-vectors of triangulations

» Symmetric decompositions S
of h*-polynomials

» Boundary A*-polynomials

» An ECCO story

Ehrhart Polynomials ()  Matthias Beck



Unimodular Triangulations

A lattice d-simplex with volume % is unimodular

Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Vg — Vo form a basis of Z<.

Every lattice polygon admits a unimodular triangulation, the regular
tetrahedron with vertices (0,0,0),(1,1,0),(1,0,1),(0,1,1) does not.
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Unimodular Triangulations

A lattice d-simplex with volume % is unimodular

Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Vg — Vo form a basis of Z<.

Every lattice polygon admits a unimodular triangulation, the regular
tetrahedron with vertices (0,0,0),(1,1,0),(1,0,1),(0,1,1) does not.

Theorem (Kempf-Knudsen—Mumford—Saint-Donat—Waterman 1970's)
For every lattice polytope P there exists an integer m such that m’P admits
a regular unimodular triangulation.

Theorem (Liu 2024+) For every lattice polytope P there exists an integer
m such that &P admits a regular unimodular triangulation for &k > m.

Conjecture There exists an integer my such that, if P is a d-dimensional
lattice polytope, then m4P admits a regular unimodular triangulation.
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f- and h-vectors of triangulation

fr. — number of k-simplices in a given triangulation I" of a polytope

Joi=1

d
h-polynomial of T hr(z) == Z Fo 2P (1 — 2)dk
k=—1
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f- and h-vectors of triangulation

fr. — number of k-simplices in a given triangulation I" of a polytope

Jo1i=1

d
h-polynomial of T hr(z) == Z Fo 2P (1 — 2)dk
k=—1

For a boundary triangulation 1" one defines

d—1

hp(z) = > fe2"H (1= 2) 1k

k=—1

and if this triangulation is regular,

Dehn—-Sommerville holds.

=
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Unimodular Triangulations and ~*

A lattice d-simplex with volume = is unimodular

dl
Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Vg — Vo form a basis of Z<.
1

If A is a unimodular k-simplex then Ehra(z) = B Rl
— 2
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Unimodular Triangulations and ~*

A lattice d-simplex with volume % is unimodular

Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Vg — Vo form a basis of Z<.

1

If A is a unimodular k-simplex then Ehra(z) = B Rl
— 2

k+1
Ehrhart—Macdonald Reciprocity — Ehra-(z) = (1 © )
— 2

The Point These Ehrhart series can help us count things.
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Unimodular Triangulations and ~*

k+1
If A is a unimodular k-simplex then ' <Z) (1 : )
Ehra —z

If P admits a unimodular triangulation 1" then

d k1 d k1(] _ \d—k
Ehrp(z) = 1+ ka <1iz) - Zkl{fiz>§+l )
k=0
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Unimodular Triangulations and ~*

k+1
If A is a unimodular k-simplex then ' <Z) (1 : )
Ehra —z

If P admits a unimodular triangulation 1" then

S g k21 =2 hr(2)
Ehrp(z) = (1— 2)d+! = (1— 2)d+1

that is, hx(z) = hr(z)
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Stapledon Decompositions

If P admits a unimodular triangulation 1" then hi;(z) = hr(2)

What if not?
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Stapledon Decompositions

If P admits a unimodular triangulation 1" then hi;(z) = hr(2)

What if not?

The degree s of a lattice polytope P is the degree of h)r(2)

Codegree d +1 —s «— smallest integer ¢ such that /P° N Z% # &

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then
(T+z++ 2 hp(2) = a(z) + 2°b(z)
where a(z) = z%a(L), b(z) = 22 *b(2) and a(z) and b(z) are nonnegative.

The case ¢ = 1 was proved by Betke & McMullen (1985). There is a version
for rational polytopes (MB—-Braun—Vindas-Meléndez 2022).
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Stapledon Decompositions

The degree s of a lattice polytope P is the degree of h)r(2)
Codegree d +1 —s «— smallest integer ¢ such that /P° N Z% # &

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then

(T+z++ 2" hp(2) = alz) + 2°b(z)

N

where a(z) = z%a(2), b(z) = 22 *b(2) and a(z) and b(z) are nonnegative.

Topological story a(z) and b(z) can be written in terms of h-polynomials
of links of a given triangulation of P and associated arithmetic datat ( “box
polynomials™ ).
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Stapledon Decompositions

The degree s of a lattice polytope P is the degree of hir(2)
Codegree d +1 —s «— smallest integer ¢ such that /P° nZ% # @

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then
(T+z++ 2" hp(2) = a(z) + 2" b(z)

where a(z) = z%a(

N

), b(z) = 2%7*b(2) and a(z) and b(z) are nonnegative.
Topological story a(z) and b(z) can be written in terms of h-polynomials
of links of a given triangulation of P and associated arithmetic datat ( “box
polynomials™).

Corollary Inequalities for h*-coefficients «— Exercises

Open Problem Try to prove an analogous theorem for your favorite
combinatorial polynomial with nonnegative coefficients.
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Boundary h*-polynomials

h*
Definition Ehrop(z) := 1+ Z Lop(n)z" = &Z)d
n>1 (1 o Z)
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Boundary h*-polynomials

h*
Definition Ehrop(z) := 1+ Z Lop(n)z" = %
—z
n=1

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then

(T+z++ 2" hp(2) = a(z) + 2" b(z)

N

where a(z) = z%a(2), b(z) = 227 *b(2) and a(z) and b(z) are nonnegative.

!
hop(2)
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Boundary h*-polynomials

If P is a lattice d-polytope with codegree ¢ = 1 then
hp(z) = a(z) + zb(2)

where a(z) = z%a(2), b(z) = 22 1b(2) and a(z) and b(z) are nonnegative.
!
hap(2)

ldea Cone over a half-open boundary triangulation

. . — |
| N
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Boundary h*-polynomials

If P is a lattice d-polytope with codegree £ = 1 then
hp(z) = a(z) + zb(2)
where a(z) = z%a(2), b(z) = 271 b(2) and a(z) and b(z) are nonnegative.

Proof Idea (Bajo—MB 2023)

» fix a half-open triangulation T of JP and extend T to a half-open
triangulation of P by coning over an interior lattice point x

» convince yourself that a(z) = h)p(z) is palindromic with positive
coefficients

» realize that the A" -polynomial of each half-open simplex A € T is

coefficient-wise less than or equal to the h*-polynomial of conv(A, x)
and thus h’»(z) — a(z) has nonnegative coefficients.
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An ECCO Story

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then
(T+z+ -+ 2" hp(2) = a(z) + 2" b(z)
where a(z) = z%a(2), b(z) = 2 *b(2) and a(z) and b(z) are nonnegative.

Open Problem Try to prove an analogous theorem for your favorite
combinatorial polynomial with nonnegative coefficients.
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An ECCO Story

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then
(T+z+ -+ 2" hp(2) = a(z) + 2" b(z)
where a(z) = z%a(2), b(z) = 2 *b(2) and a(z) and b(z) are nonnegative.

Open Problem Try to prove an analogous theorem for your favorite
combinatorial polynomial with nonnegative coefficients.

Theorem (MB—-Ledn 2021) Given a graph G on d nodes, let

> xa(n)z" = XGl2

_ 1°
n=>1 <1 Z) !

d—1

Then xi < x5 < - <de+1j and x; < xg_; for 1 <j <5
T
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Recap Day IV

» Unimodular triangulations

» h-polynomials of triangulations — A*-polynomials
» Symmetric decompositions of polynomials

» Stapledon decompositions of A*-polynomials

» Boundary A*-polynomials
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