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Ehrhart Polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For t ∈ Z>0 let ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
Furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Example ∆ = conv{(0, 0), (1, 0), (0, 1)}

ehr∆(t) =
1

2
t2 +

3

2
t+ 1
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Ehrhart Polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For t ∈ Z>0 let ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
Furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Example ∆ = conv{(0, 0), (1, 0), (0, 1)}

ehr∆(t) =
1

2
t2 +

3

2
t+ 1

Philosophy We do not need limits for

vol(P) = lim
t→∞

1

td
ehrP(t)
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Some Motivation

▶ Linear systems are everywhere, and so polyhedra are everywhere.

▶ In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

▶ Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

▶ Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.

▶ Volume computation is hard.

▶ Also, polytopes are cool.
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♡ Polynomials

▶ Computation

Class of Ehrhart polynomials −→ two main research problems:

▶ Classification — which polynomials are Ehrhart polynomials?
(open in dimension 3)

▶ Detection — does a given polynomial determine the polytope?
(fails somewhwat spectacularly)
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q-Ehrhart Polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
Furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Now fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices
v and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.
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q-Ehrhart Polynomials

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

Example ∆ = conv{(0, 0), (1, 0), (0, 1)} and λ = (1, 2)

chaλ∆(q, x) =
q3

q + 1
x2 +

q(2q + 1)

q + 1
x+ 1
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Chapoton Polynomials

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

The degree of chaλP(q, x) is m := max{λ(v) : v vertex of P} and all the
poles of the coefficients of chaλP(q, x) are roots of unity of order ≤ m.

Furthermore, (−1)dimP chaλP

(
1
q , −qx

)
= chaλP◦(q, x).

q-polynomials Matthias Beck 6



Chapoton Polynomials

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

The degree of chaλP(q, x) is m := max{λ(v) : v vertex of P} and all the
poles of the coefficients of chaλP(q, x) are roots of unity of order ≤ m.

Furthermore, (−1)dimP chaλP

(
1
q , −qx

)
= chaλP◦(q, x).

Theorem (Robins 2023, Sanyal @ FPSAC 2025) The set of all chaλP(q, x),
where λ ranges over all generic and positive integral forms, determines P.
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Some More Motivation

▶ ehrP(t) := #
(
tP ∩ Zd

)
has polynomial structure, but sometimes we

need to understand the integer point transform

σP(z) :=
∑

m∈P∩Zd

zm1
1 zm2

2 · · · zmd
d

▶ For fixed λ,

ehrλP(q, t) =
∑

m∈tP∩Zd

qλ(m) = σtP
(
qλ1, qλ2, . . . , qλd

)
still has polynomial structure.

▶ Chapoton polynomials contain interesting number theory, connection to
partition functions, . . .
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ 2 = [0, 1]d and λ = 1 := (1, 1, . . . , 1)

ehr12(q, t) = [t+ 1]dq −→ cha12(q, x) = (1 + qx)d

Carlitz identity (really due to MacMahon)

∑
t≥0

[t+ 1]nq x
t =

∑
π∈Sn

xdes(π)qmaj(π)∏n
j=0 (1− xqj)
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ ∆ =
{
x ∈ Rd

≥0 : x1 + x2 + · · ·+ xd = 1
}

ehrλ∆(q, t) =
∑

m∈t∆∩Zd

qλ1m1+λ2m2+···+λdmd

is the generating function for partitions with exactly t parts in the set
{λ1, λ2, . . . , λd}

chaλ∆(q, x) =

d∑
j=1

1∏
k ̸=j

(
1− qλk−λj

)((q − 1)x+ 1
)λj
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ ∆ =
{
x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd ≤ 1

}
and λ = 1

ehr1∆(q, t) =
∑

m∈t∆∩Zd

qm1+m2+···+md =

[
t+ d

d

]
q

is the generating function for partitions with ≤ d parts, each of which ≤ t

cha1∆(q, x) =

d∑
j=0

1∏
k ̸=j (1− qk−j)

(
(q − 1)x+ 1

)j
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ P — order polytope of [m]× [n]

MacMahon (1909) cha1P(q, x) =

m∏
i=1

n∏
j=1

[i+ j − 1]q + x qi+j−1

[i+ j − 1]q
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Familiar Faces

▶ Lecture hall simplex ∆n :=
{
x ∈ [0, 1]n : x1 ≤

x2

2
≤ x3

3
≤ · · · ≤ xn

n

}
Corteel–Lee–Savage (FPSAC 2005) For any j ≥ 0 and 1 ≤ i ≤ n

ehr1∆n
(q, jn+ i) = ehr1∆n

(q, jn+ i−1)+qjn+i ehr1∆n−1
(q, j(n−1)+ i−1)

q-polynomials Matthias Beck 12



Familiar Faces

▶ Lecture hall simplex ∆n :=
{
x ∈ [0, 1]n : x1 ≤

x2

2
≤ x3

3
≤ · · · ≤ xn

n

}
Corteel–Lee–Savage (FPSAC 2005) For any j ≥ 0 and 1 ≤ i ≤ n

ehr1∆n
(q, jn+ i) = ehr1∆n

(q, jn+ i−1)+qjn+i ehr1∆n−1
(q, j(n−1)+ i−1)

Chapoton polynomials, anyone?

cha1,0(x) := 1 + qx and cha1,1(x) := 1 + q + q2x

and for j ≥ 0 and 1 ≤ i ≤ n

chan,i(x) = chan,i−1(x) + qi
(
(q − 1)x+ 1

)n
chan−1,i−1(x)
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Brion Magic

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

When S is a rational polyhedron, σS(z) evaluates to a rational function.

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

+ + =

Theorem (Brion 1988) If P is a rational polytope, then

σP(z) =
∑

v vertex of P

σv+Kv(z) .

q-polynomials Matthias Beck 13



Brion −→ Chapoton

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

Theorem (Brion 1988) σP(z) =
∑

v vertex of P

σv+Kv(z) .

ehrλP(q, t) =
∑

m∈tP∩Zd

qλ(m) = σtP
(
qλ1, qλ2, . . . , qλd

)
=

∑
v vertex of P

σtv+Kv

(
qλ1, qλ2, . . . , qλd

)
=

∑
v vertex of P

qtλ(v) σKv

(
qλ1, qλ2, . . . , qλd

)
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Chapoton Polynomials Revisited

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

ehrλP(q, t) =
∑

v vertex of P

qtλ(v) σKv

(
qλ1, qλ2, . . . , qλd

)

Now use qkt =
(
(q − 1)[t]q + 1

)k
. . .

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
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Chapoton Polynomials Revisited

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m) = chaλP(q, [t]q) Kv :=
∑

w adjacent to v

R≥0(w−v)

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
.

Corollary Each pole of ρλv(q) is an nth root of unity where n = |λ(g(w−v))|
for some adjacent vertex w, where g(w − v) is primitive.

Corollary The leading coefficient of chaλP(q, x) is (q − 1)λ(v)ρλv(q) where v
is the vertex of P that maximizes λ(v).
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Chapoton Polynomials Revisited

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m) = chaλP(q, [t]q) Kv :=
∑

w adjacent to v

R≥0(w−v)

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
.

Chapoton: compute ehrλP(q, t) in the limit as t → ∞ . . .

Corollary

chaλP

(
q,

1

1− q

)
=

{
ρλ0(q) if 0 is a vertex of P,

0 otherwise.
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Chapoton Polynomials Revisited

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m) = chaλP(q, [t]q) Kv :=
∑

w adjacent to v

R≥0(w−v)

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
.

Corollary The constant term of chaλP(q, x) is 1.
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Chapoton Quasipolynomials

Theorem (MB–Kunze 2025+) If P is a rational polytope with denominator
p and λ is an integral form that is generic and positive, then there exist
polynomials chaλ,rP (q, x) ∈ Q(q)[x] such that

chaλ,rP (q, [k]q) = ehrλP(q, kp+ r)

for all integers k ≥ 0 and all 0 ≤ r < p.

The degree of chaλ,rP (q, x) is max{λ(pv) : v vertex of P}. Each pole of a

coefficient of chaλ,rP (q, x) is an nth root of unity where n = |λ(g(p(w−v)))|
for some adjacent vertices v and w.

For any 0 ≤ r < p and k > 0

(−1)dimP chaλ,rP

(
1
q , [−k]1

q

)
= ehrλP◦(q, kp− r) .
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Chromatic Polynomials and Symmetric Functions

G = (V,E) — graph (without loops)

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

Example χP4(n) = n (n− 1)3 • • • •

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

We recover χG(n) = XG(1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . .)
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q-Chromatic Polynomials

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

Definition χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) where λ ∈ ZV
>0 is fixed

We recover χG(n) = χ1
G(1, n) and χ1

G(q, n) = XG(q, q
2, . . . , qn, 0, 0, . . .)
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q-Chromatic Polynomials

Definition χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) where λ ∈ ZV
>0 is fixed

We recover χG(n) = χ1
G(1, n) and χ1

G(q, n) = XG(q, q
2, . . . , qn, 0, 0, . . .)

Example • • • •

χ1
P4
(q, n) =

1

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
×(

8q10(1− q)n(1− q)n−1(1− q)n−2(1− q)n−3

+(4q9 + 6q8 + 4q7)(1− q)n+1(1− q)n(1− q)n−1(1− q)n−2

+2q6(1− q)n+2(1− q)n+1(1− q)n(1− q)n−1

)
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q-Chromatic Polynomial Structure

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v)

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) poly-
nomial χ̃λ

G(q, x) ∈ Z(q)[x] such that

χλ
G(q, n) = χ̃λ

G(q, [n]q) where [n]q := 1 + q + · · ·+ qn−1

Example χ̃1
P4
(q, x) =

1

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
×((

2q8 + 4q7 + 6q6 + 4q5 + 8q4
)
x4

−
(
6q8 + 10q7 + 18q6 + 18q5 + 20q4

)
x3

+
(
4q8 + 10q7 + 20q6 + 22q5 + 16q4

)
x2

−
(
4q7 + 8q6 + 8q5 + 4q4

)
x
)• • • •
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Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

χ1
G(q, n) =

∑
proper colorings

κ:V→[n]

q
∑

v∈V κ(v)

χG(n) = # (proper n-colorings of G)

@
@
@
@
@
@
@
@

@
@R

�
�

�
�

�
�

�
�

�
�	

?
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More Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.
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More Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Remarks χ1
G(q, n) was previously studied by Loebl (2007).

χλ
G(q, n) is a special evaluation (with polynomial structure) of Crew–Spirkl’s

(2020) weighted chromatic symmetric function.
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q-Chromatic Polynomial Formulas

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Theorem (Bajo–MB–Vindas-Meléndez 2025+)

χ̃λ
G(q, x) = qΛV

∑
flats S⊆E

µ(∅, S)
∏

C∈P (S)

1− (1 + qx− x)ΛC

1− qΛC

where P (S) denotes the collection of vertex sets of the connected compo-
nents induced by S and ΛW :=

∑
v∈W λv. In particular, for a tree

χ̃λ
T (q, x) = qΛV

∑
S⊆E

(−1)|S|
∏

C∈P (S)

1− (1 + qx− x)ΛC

1− qΛC

−→ highly-structured formulas for paths, stars, . . .
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The Leading Coefficient for Trees

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Corollary Given a tree T , the leading coefficient of χ̃1
T (q, n) equals

c1T (q) = (q − q2)d
∑
S⊆E

∏
C∈P (S)

1

1− qΛC

=
1

[d]q!

∑
(ρ,σ)

qd+majσ d := |V |

where the sum ranges over all pairs of acyclic orientations ρ of T and linear
extensions σ of the poset induced by ρ

Corollary c1T (q) = (−q)dXT

(
1
q ,

1
q2
, 1
q3
, . . .

)
q-polynomials Matthias Beck 23



Stanley’s Tree Conjecture Revisited

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Theorem (MB–Braun–Cornejo 2026+) Fix k ≥ d and λj := kj . Then
χ̃λ
G(q, x) distinguishes graphs on d nodes.
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Stanley’s Tree Conjecture Revisited

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Theorem (MB–Braun–Cornejo 2026+) Fix k ≥ d and λj := kj . Then
χ̃λ
G(q, x) distinguishes graphs on d nodes.

▶ Play with different polynomial bases

▶ G-partitions

▶ Other coefficients of χ̃1
G(q, x)?
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