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Ehrhart Polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢
For t € Z~¢ let ehrp(t) := # (tP N Zd)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in ¢.
Furthermore, ehrp(—t) = (—1)4™ P4 (¢P° N ZY).

. Example A = conv{(0,0), (1,0), (0,1)}
1 3
s . ehra(t) = §t2+§t+1
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Ehrhart Polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢
For t € Z~q let ehrp(t) := # (tP NZY)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in ¢.
Furthermore, ehrp(—t) = (—1)4™ P4 (¢P° N ZY).

. Example A = conv{(0,0), (1,0), (0,1)}
1 3
s . ehra(t) = §t2+§t+1

o o
i Philosophy We do not need limits for
{ ( 1

vol(P) = lim — ehrp(t)

t— o0 td
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Some Motivation

Linear systems are everywhere, and so polyhedra are everywhere.

In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.

Volume computation is hard.

Also, polytopes are cool.
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¢ Polynomials

» Computation

Class of Ehrhart polynomials — two main research problems:

» Classification — which polynomials are Ehrhart polynomials?
(open in dimension 3)

» Detection — does a given polynomial determine the polytope?
(fails somewhwat spectacularly)
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g-Ehrhart Polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢
ehrp(t) := # (tP N ZY)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in t.
Furthermore, ehrp(—t) = (—1)4™ P4 (¢P° N ZY).

Now fix a linear form A that is generic (A(v) # A(w) for adjacent vertices
v and w of P) and positive (A(v) > 0 for any vertex v), and let

ehr;‘;(q,t) = Z gNm)

mctPNZa
Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and

positive integral form, there exists a polynomial cha (¢, z) € Z(q)[z] such
that ehrp (¢, t) = chap(q, [t],), where [t], :=14q+--- +¢" "
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g-Ehrhart Polynomials

Fix a linear form A that is generic (A\(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(q,t) == Y "™
mctPNZA

Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and
positive integral form, there exists a polynomial cha (¢, z) € Z(q)[z] such
that ehrp (¢, t) = chap(q, [t],), where [t], :=14q+--- +¢" "

Example A = conv{(0,0), (1,0), (0,1)} and A = (1,2)

o o 3

2 1
Chag(q,x) _ q 2 Q( q+ )

1
q+1az + St T +
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Chapoton Polynomials

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) = > ™

mctPNZ4

Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and
positive integral form, there exists a polynomial chap (¢, x) € Z(q)[x] such

that ehrp (g, t) = chap(q, [t],), where [t], :=14q+--- +¢" "

The degree of chay(q,x) is m := max{\(v) : v vertex of P} and all the
poles of the coefficients of chas (g, x) are roots of unity of order < m.

Furthermore, (—l)dimpchag\; (%, —q:z:) = cha%o(q,a:).
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Chapoton Polynomials

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) ™

metPNZ4

Theorem (Chapoton 2015) If P is a lattice polytope and X is a generic and
positive integral form, there exists a polynomial chap (¢, x) € Z(q)[x] such
that ehrp (g, t) = chap(q, [t],), where [t], :=14 ¢ +--- +¢" "

The degree of chay(q,x) is m := max{\(v) : v vertex of P} and all the
poles of the coefficients of chap (g, ) are roots of unity of order < m.

Furthermore, (—1)dimpcha;‘> (%, —qm) = cha;‘)o(q,m).

Theorem (Robins 2023, Sanyal @ FPSAC 2025) The set of all Cha;‘;(q,a:),
where X\ ranges over all generic and positive integral forms, determines P.
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Some More Motivation

» chrp(t) = # (tPﬂZd) has polynomial structure, but sometimes we
need to understand the integer point transform

op(z) = Z 22y 2
mePNZA
» For fixed A,
ehrp(q.t) = Y ™ = o (M, 0™ M)
metPNZa

still has polynomial structure.

» Chapoton polynomials contain interesting number theory, connection to
partition functions, . ..
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) "™

mctPNZa
» O=1[0,1]%and A\=1:=(1,1,...,1)
ehrg(q,t) = [t+1]7  —  chap(g,z) = (14 qa)*

Carlitz identity (really due to MacMahon)

Y+ 1]t = 2nes, wdes(ﬂ)qm.aj(ﬂ)
£>0 ’ [j=o (1 —2¢)
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(q,t) == Y "™
mctPNZA

» A= {xER‘éO: $1+:1:2—|—~--—|—$d:1}
ehrZ(q,t) _ Z q>\1m1+>\2m2—|—---—|—>\dmd
metANZd

is the generating function for partitions with exactly ¢ parts in the set
{)\17 )\27 SRR )\d}
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) ™

mctPNZA
>A:{XéRd:OleSxQS"’Sxdgl}and)\zl
ehrl (q t) — Z qm1+m2+..._|_md _ t+d
A\ ;

is the generating function for partitions with < d parts, each of which <
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) "™

mctPNZ4

» P — order polytope of [m| x [n]

MacMahon (1909) Cha%D(CLx) = HH
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Familiar Faces

» Lecture hall simplex A,, := {x € 0,1]": x1 <

Corteel-Lee—-Savage (FPSAC 2005) Forany j > 0and 1 <i<n

ehrlAn(q,jn—l—i) = ehrlAn(q,jn—l—i— 1)+ ¢’ ehr

g-polynomials (7  Matthias Beck
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(¢,j(n—1)+i—1)
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Familiar Faces

» Lecture hall simplex A,, := {X c0,1]": x1 <

Corteel-Lee-Savage (FPSAC 2005) Forany j > 0and 1 <i < n

ehrp (g, jn+i) = ehry (g, jn+i—1)+¢" ehry  (g,5(n—1)+i—1)

Chapoton polynomials, anyone?
chay o(z) := 1+ qx and chay 1(z) = 1+q+ ¢’z
and for 7 >0and 1 <7<n

Chan,i<$) = Chanﬂ;_l(w) —+ qi((q — 1)33 + 1)n Chan_l,i_l(QJ)
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Brion Magic

mi,.m2 mq

Integer point transform og(z) := g 2y T2yt 2,
me SNZY

When S'is a rational polyhedron, og(z) evaluates to a rational function.

Given a vertex v of P, let K, = Z R>o(w —v)

w adjacent to v

RSN NEYN

Theorem (Brion 1988) If P is a rational polytope, then

op(z) = Y. ovex(a),

v vertex of P

g-polynomials (7  Matthias Beck
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Brion — Chapoton

Integer point transform og(z) := Z 22y e 2
me SNZ4
Given a vertex v of P, let I, := Z R>o(w —v)

w adjacent to v

Theorem (Brion 1988) op(z) = Z Oyviic,(Z) .

v vertex of P

ehrp(q.t) = > ™ =0 (Mg,
metPNZA

— Z Otv+ Ky (q>‘17 q>\27 s ’qu)

v vertex of P

= > Wk, (g0

v vertex of P
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Chapoton Polynomials Reuvisited

Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and
positive integral form, there exists a polynomial cha (¢, z) € Z(q)[z] such
that ehrp (g, t) = chap(q, [t],), where [t], == 14 ¢ +--- +¢* "

ehry(q,t) = Z ¢V o, (™, a7, )

v vertex of P

Now use ¢** = ((g— D[t]g+1)" ...

Theorem (MB—Kunze 2025+) If P is a lattice polytope and )\ is a generic
and positive integral form,

chap(q.2) = > pa)((q— Dz +1)*"

v vertex of P
where ,03,\((]) = 0K, (qua C])\Q, Tt qu>
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Chapoton Polynomials Reuvisited

ehry(q,t) = Z "™ = chap(q, [t],) Ky = Z Rso(w—v)

metPNZa w adjacent to v

Theorem (MB—Kunze 2025+) If P is a lattice polytope and X is a generic
and positive integral form,

chap(g.z) = > pa)((q - Dx+1)*

v vertex of P
where /0\);<Q) = 0Ky (q)\la q)\Qa SR qu) .

Corollary Each pole of p{(q) is an nth root of unity where n = |\(g(w —v))|
for some adjacent vertex w, where g(w — v) is primitive.

Corollary The leading coefficient of chapy(q, ) is (¢ — 1) V) pd(¢) where v
is the vertex of P that maximizes \(v).
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Chapoton Polynomials Reuvisited

ehry(q,t) = Z ™ = chay(q, [t],) Ky = Z Rso(w—v)

mctPNZa w adjacent to v

Theorem (MB—Kunze 2025+) If P is a lattice polytope and )\ is a generic
and positive integral form,

chap(g,r) = > pd@)((g— Da+ 1)

v vertex of P
where pQ(q) = ox, (q”\l, Q2 ... q/\d) .
Chapoton: compute ehr;‘;(q,t) in the limit as ¢t — oo . ..

1 —gq

Corollar
! 1 pa(q) if 0is a vertex of P
chap (g, —— ) ={"° ’
0 otherwise.
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Chapoton Polynomials Reuvisited

ehry(q,t) = Z "™ = chap(q, [t],) Ky = Z Rso(w—v)

metPNZa w adjacent to v

Theorem (MB—Kunze 2025+) If P is a lattice polytope and X is a generic
and positive integral form,

chap(g,z) = > pd(a)((g — Do+ 1)

v vertex of P

where /0\);<Q) = 0Ky (q)\la q)\Qa SR qu) .

Corollary The constant term of chag\;(q, x)is 1.
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Chapoton Quasipolynomials

Theorem (MB—Kunze 2025+) If P is a rational polytope with denominator
p and A is an integral form that is generic and positive, then there exist
polynomials cha’y" (¢, z) € Q(g)[z] such that

Cha%’r (q,1k]q) = ehr;‘;(q, kp+r)
for all integers £k > 0 and all 0 < r < p.

The degree of cha;\;’r(q, x) is max{A(pv) : v vertex of P}. Each pole of a

coefficient of Cha;\f(q, x) is an nth root of unity where n = |A(g(p(w—v)))]
for some adjacent vertices v and w.

Forany 0 <r <pand k>0

(—1)dm? Cha%’r (é, |—K] ) = ehrg\;o(q, kp—r).

Q|
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Chromatic Polynomials and Symmetric Functions

G = (V, FE) — graph (without loops)

Proper n-coloring — xk : V. — [n] := {1,2,...,n} such that x(i) # k(j)
for any edge 15 € E

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)

Example xp,(n) =n(n—1)3 o o o .

Chromatic symmetric function

R_l m_l
Xolonan..) = 3 o Wef@

proper colorings K

We recover xa(n) = Xa(1,...,1,0,0,...)

n times
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g-Chromatic Polynomials

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)

Chromatic symmetric function

P 1
X(;’(ZBl,ZL'Q,...) — Z ZE? (1)332# (2)

proper colorings ~

Definition x&(g;n) == ) ¢=vev (") where X € ZY,; is fixed

proper colorings
k:V —[n]

We recover xg(n) = x&(1,n) and x&(q,n) = Xa(q, 4%, -..,4",0,0,...)
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g-Chromatic Polynomials

Definition xx(q,n) := Z g2=vev () \where \ € 7Y, is fixed

proper colorings
k:V—[n]

We recover xg(n) = x&(1,n) and x&(q,n) = Xa(q, 4%, -..,4",0,0,...)

Example ° ° ° °
L(q.n) : x
7n —
Xpd 1+q¢)(1+q+q¢*)(1+q+q*+ g%

+m%r—@“%1—mW“u—qwu—qw*)
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g-Chromatic Polynomial Structure

xolen) = ) gqeevor)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ ) There exists a (unique) poly-
nomial X2 (¢, z) € Z(q)[x] such that

xe(a:n) = Xelg[nly)  where  [n]:=1+q¢+---+¢""

1
Example  Xp,(¢,z) = :
xample  Xp,(q, ) 14+q(14+qg+q¢*>)(14+qg+q*>+ ¢3)

<(2q8 +4(]7+6q6 +4q5 +8q4) 4

— (6¢° + 10¢" + 18¢° + 18¢° + 20¢*) z°
o + (4¢° + 10¢" + 20¢° + 22¢° + 16¢*) 2*

— (4q7 + 8¢% + 8¢° + 4q4) x)
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Motivation

XG(xlawa") — . . Xé?(Q7n) —
#rT (1) #r™ (2 Ap)R(1) Ny UV
Z P ():CQK (2) . Z (q 1) (q |v|>

proper colorings K proper colorings

k:V —[n]

blam= Y gTuerso

proper colorings
k:V—[n]

Xa(n) = # (proper n-colorings of GG)
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More Motivation

XG(xlawa") — . . Xé}(Q7n’) —
#rT (1) #r (2 Ap)A(1) A\ EUVD
Z xln ()x2f<: (2) Z (q 1) (q |V|)
proper colorings proper colorings
k:V —[n]

Conjecture (Stanley 1995) X (z1, 22, .. .) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo—-MB—Vindas-Meléndez 2025+) The leading coefficient of
X&(q, ) distinguishes trees.
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More Motivation

XG(xlawa") — . . Xé}(cbn) —
#r (1) #x (2 Ay A1) A UV
Z xln ()me (2) Z (q 1) (q |V|)
proper colorings proper colorings
k:V —[n]

Conjecture (Stanley 1995) X(x1, x2,...) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo—-MB—Vindas-Meléndez 2025+) The leading coefficient of
X&(q, ) distinguishes trees.

Remarks x¢&(gq,n) was previously studied by Loebl (2007).

Xa(q,m) is a special evaluation (with polynomial structure) of Crew—Spirkl's
(2020) weighted chromatic symmetric function.

g-polynomials ()  Matthias Beck 21



g-Chromatic Polynomial Formulas

Xolgn) == > e = 3R(q, [n]y)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ )

_ 1 — (14 qx —x)rc
Xolez) = ¢ Y we9 1] e
flats SCFE CeP(S) q

where P(S) denotes the collection of vertex sets of the connected compo-
nents induced by S and Ay = ZUEW Ay. In particular, for a tree

X1(q, ) = QAVZ(—1)|S| H 1— (14 qz —x)hc

1 — gic
SCE CeP(S)

—— highly-structured formulas for paths, stars, . ..
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The Leading Coefficient for Trees

xolgn) = ) g=eev ) = 3(g,[n],)
proper colorings
k:V—[n]

Corollary Given a tree T, the leading coefficient of xx(q,n) equals

(@) = (a-)"), 1l —=

SCE CeP(S)

= Z g d:=V|

T (p,0)

where the sum ranges over all pairs of acyclic orientations p of 1" and linear
extensions o of the poset induced by p

Corollary ct(q) = (—q)* Xt (l 25 )

q’qQ’q?”
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Stanley’s Tree Conjecture Reuvisited

Conjecture (Stanley 1995) X(x1, x2,...) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4¢%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo-MB-Vindas-Meléndez 2025+) The leading coefficient of
X&(q, z) distinguishes trees.

Theorem (MB—Braun—Cornejo 2026+) Fix k > d and A\; := k/. Then
Xa (g, ) distinguishes graphs on d nodes.
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Stanley’s Tree Conjecture Reuvisited

Conjecture (Stanley 1995) X(x1, x2,...) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4¢%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo-MB-Vindas-Meléndez 2025+) The leading coefficient of
X&(q, z) distinguishes trees.

Theorem (MB—Braun—Cornejo 2026+) Fix k > d and A\; := k/. Then
Xa (g, ) distinguishes graphs on d nodes.

» Play with different polynomial bases l
» (-partitions

» Other coefficients of X (q,x)?
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