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All Sorts of Golomb Rulers

10 4 6

10 3

0 3 5

0 2 3 8

Golomb ruler: sequence of distinct integers with distinct pairwise differences

Every Golomb ruler comes with a length t and some m+ 1 markings

Optimal Golomb rulers have minimal length for a given number of markings

Perfect Golomb rulers can measure every integer from 0 to t
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All Sorts of Golomb Rulers

10 4 6

10 3

0 3 5

0 2 3 8

Every Golomb ruler comes with a length t and m+ 1 markings

Optimal Golomb rulers have minimal length for a given number of markings

Perfect Golomb rulers can measure every integer from 0 to t

Fun Exercise: There are no perfect Golomb rulers of lenth t > 6
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All Sorts of Golomb Rulers

10 4 6

10 3

0 3 5

0 2 3 8

Every Golomb ruler comes with a length t and m+ 1 markings

Research problem : find optimal Golomb rulers with > 26 markings (see
http://www.distributed.net/OGR for computational results).

Our goal: count all Golomb rulers for given t and m
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Motivations & Applications

I Distortion problems in consecutive radio bands −→ place radio signals
so that all distances are distinct (Babcock 1950’s)

I Error-correcting codes

I Additive number theory (Sidon sets)

I Dissonant music pieces (see Scott Rickard’s TED talk)
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Enumeration of Golomb Rulers

Goal Study/compute the number gm(t) of Golomb rulers of length t with
m+ 1 markings

tx0

Example g2(t) = # {x ∈ Z : 0 < x < t, x 6= t− x}
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Enumeration of Golomb Rulers

Goal Study/compute the number gm(t) of Golomb rulers of length t with
m+ 1 markings

tx0

Example g2(t) = # {x ∈ Z : 0 < x < t, t 6= 2x}
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Enumeration of Golomb Rulers

Goal Study/compute the number gm(t) of Golomb rulers of length t with
m+ 1 markings

tx0

Example 1 g2(t) = # {x ∈ Z : 0 < x < t, t 6= 2x}

=

{
t− 1 if t is odd

t− 2 if t is even

. . . a quasipolynomial in t

Example 2

g3(t) =



1
2t

2 − 4t+ 10 if t ≡ 0,
1
2t

2 − 3t+ 5
2 if t ≡ 1, 5, 7, 11,

1
2t

2 − 4t+ 6 if t ≡ 2, 10,
1
2t

2 − 3t+ 9
2 if t ≡ 3, 9,

1
2t

2 − 4t+ 8 if t ≡ 4, 6, 8

(mod 12)
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Enumeration of Golomb Rulers

Goal Study/compute the number gm(t) of Golomb rulers of length t with
m+ 1 markings

tx0

Example 1 g2(t) = # {x ∈ Z : 0 < x < t, t 6= 2x}

=

{
t− 1 if t is odd

t− 2 if t is even

. . . a quasipolynomial in t

Theorem 1 The Golomb counting function gm(t) is a quasipolynomial in t
of degree m− 1 with leading coefficient 1

(m−1)!
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Let’s start counting. . .

t0 x2x1

g3(t) := #

{
x ∈ Z4 :

0 = x0 < x1 < x2 < x3 = t
all xj − xk distinct

}
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Let’s start counting. . .

t0 x2x1

z1 z2 z3

g3(t) := #

{
x ∈ Z4 :

0 = x0 < x1 < x2 < x3 = t
all xj − xk distinct

}
= #

{
z ∈ Z3

>0 :
z1 + z2 + z3 = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [3]

}
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Let’s start counting. . .

t0 x2x1

z1 z2 z3

g3(t) := #

{
x ∈ Z4 :

0 = x0 < x1 < x2 < x3 = t
all xj − xk distinct

}
= #

{
z ∈ Z3

>0 :
z1 + z2 + z3 = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [3]

}
where dpcs is shorthand for “disjoint proper consecutive subset,” and
[m] := {1, 2, . . . ,m}.

x1 6= x2 ⇐⇒ z2 > 0

x2 6= t− x1 ⇐⇒ z1 6= z3

x2 6= t− x2 ⇐⇒ z1 + z2 6= z3
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Let’s start counting. . .

t0 x2x1

z1 z2 z3

g3(t) := #

{
x ∈ Z4 :

0 = x0 < x1 < x2 < x3 = t
all xj − xk distinct

}
= #

{
z ∈ Z3

>0 :
z1 + z2 + z3 = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [3]

}
where dpcs is shorthand for “disjoint proper consecutive subset,” and
[m] := {1, 2, . . . ,m}. More generally,

gm(t) := #

{
x ∈ Zm+1 :

0 = x0 < x1 < · · · < xm−1 < xm = t
all xj − xk distinct

}
= #

{
z ∈ Zm

>0 :
z1 + z2 + · · ·+ zm = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [m]

}
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Enter Geometry

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)

Golomb Rulers Matthias Beck 6



Enter Geometry

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) = . . .
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Enter Geometry

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2)
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Enter Geometry

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2)

L∆(−t) =
(
t−1

2

)
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Enter Geometry

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2)

L∆(−t) =
(
t−1

2

)
= L∆◦(t)

For example, the evaluations L∆(−1) = L∆(−2) = 0 point to the fact that
neither ∆ nor 2∆ contain any interior lattice points.
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Enter Geometry

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2)

L∆(−t) =
(
t−1

2

)
= L∆◦(t)

Theorem (Ehrhart 1962) LP(t) is a polynomial in t.

Theorem (Macdonald 1971) (−1)dimPLP(−t) = LP◦(t)

Golomb Rulers Matthias Beck 6



Enter Geometry

Rational polytope P ⊂ Rd – convex hull of finitely points in Qd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2)

L∆(−t) =
(
t−1

2

)
= L∆◦(t)

Theorem (Ehrhart 1962) LP(t) is a quasipolynomial in t.

Theorem (Macdonald 1971) (−1)dimPLP(−t) = LP◦(t)
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Enter Geometry

Rational polytope P ⊂ Rd – convex hull of finitely points in Qd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2)

L∆(−t) =
(
t−1

2

)
= L∆◦(t)

For 2 -dimensional lattice polygons, Ehrhart–Macdonald’s theorem follows
from Pick’s theorem.
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Enter Geometry

Rational polytope P ⊂ Rd – convex hull of finitely points in Qd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

L∆(t) = #
{

(x, y) ∈ Z2
≥0 : x+ y ≤ t

}
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Enter Geometry

Rational polytope P ⊂ Rd – convex hull of finitely points in Qd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

t

t

t
L∆(t) = #

{
(x, y) ∈ Z2

≥0 : x+ y ≤ t
}

= #
{

(x, y, z) ∈ Z3
≥0 : x+ y + z = t

}
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Enter Geometry

Rational polytope P ⊂ Rd – convex hull of finitely points in Qd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1
}

t

t

t
L∆(t) = #

{
(x, y) ∈ Z2

≥0 : x+ y ≤ t
}

= #
{

(x, y, z) ∈ Z3
≥0 : x+ y + z = t

}
Hmmm . . .

g3(t) = #

{
z ∈ Z3

>0 :
z1 + z2 + z3 = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [3]

}

Golomb Rulers Matthias Beck 7



The Geometry Behind Golomb Rulers

g3(t) := #

{
x ∈ Z4 :

0 = x0 < x1 < x2 < x3 = t
all xj − xk distinct

}
= #

{
z ∈ Z3

>0 :
z1 + z2 + z3 = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [3]

}
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The Geometry Behind Golomb Rulers

gm(t) := #

{
x ∈ Zm+1 :

0 = x0 < x1 < · · · < xm−1 < xm = t
all xj − xk distinct

}
= #

{
z ∈ Zm

>0 :
z1 + z2 + · · ·+ zm = t∑

j∈U zj 6=
∑

j∈V zj for all dpcs U, V ⊂ [m]

}
. . . counts integer points in t-dilates of the m-dimensional simplex

∆◦m := {z ∈ Rm
>0 : z1 + z2 + · · ·+ zm = 1}

that are off the hyperplanes∑
j∈U

zj =
∑
j∈V

zj

for all dpcs U, V ⊂ [m]

(This gives Theorem 1.)
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Real Golomb Rulers

Real Golomb ruler — z ∈ Rm
≥0 satisfying z1 + z2 + · · ·+ zm = t and

∑
j∈U

zj 6=
∑
j∈V

zj for all dpcs U, V ⊂ [m]

z,w ∈ Rm
≥0 are combinatorially equivalent if for any dpcs U, V ⊂ [m]

∑
j∈U

zj <
∑
j∈V

zj ⇐⇒
∑
j∈U

wj <
∑
j∈V

wj

i.e., if their possible measurements satisfy the same order relations.

4 2

2 4

1 5
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More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

∆◦m := {z ∈ Rm
>0 : z1 + z2 + · · ·+ zm = 1}

and the hyperplanes∑
j∈U

zj =
∑
j∈V

zj

for all dpcs U, V ⊂ [m]. Its
regions correspond to combinatorially
different Golomb rulers
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More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

∆◦m := {z ∈ Rm
>0 : z1 + z2 + · · ·+ zm = 1}

and the hyperplanes∑
j∈U

zj =
∑
j∈V

zj

for all dpcs U, V ⊂ [m]. Its
regions correspond to combinatorially
different Golomb rulers

Theorem 2 (−1)m−1gm(0) equals the number of combinatorially different
Golomb rulers with m+ 1 markings.

(This follows from LP(0) = 1 for any Ehrhart quasipolynomial. . . )
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More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

∆◦m := {z ∈ Rm
>0 : z1 + z2 + · · ·+ zm = 1}

and the hyperplanes∑
j∈U

zj =
∑
j∈V

zj

for all dpcs U, V ⊂ [m]. Its
regions correspond to combinatorially
different Golomb rulers

Theorem 2 (−1)m−1gm(0) equals the number of combinatorially different
Golomb rulers with m+ 1 markings.

Have you seen this sequence? 1, 2, 10, 114, 2608, 107498, . . .
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Golomb Ruler Reciprocity

z,w ∈ Rm
≥0 are combinatorially equivalent if for any dpcs U, V ⊂ [m]

∑
j∈U

zj <
∑
j∈V

zj ⇐⇒
∑
j∈U

wj <
∑
j∈V

wj

Golomb multiplicty of z ∈ Zm
≥0 — number of combinatorially different real

Golomb rulers in an ε-neighborhood of z

Theorem 3 (−1)m−1gm(−t) equals the number of rulers in Zm
≥0 of length t

each counted with its Golomb multiplicity.

(This follows from Ehrhart–Macdonald reciprocity. . . )
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Golomb Graphs

Gm — mixed graph whose vertices are all proper consecutive subsets of [m]

Underlying graph is complete and U → V if and only if U ⊂ V

Example m = 3
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Golomb Graphs

Gm — mixed graph whose vertices are all proper consecutive subsets of [m]

Underlying graph is complete and U → V if and only if U ⊂ V

Example m = 3

Orienting a mixed graph means giving each undirected edge an orientation.

Such an orientation is acyclic if there are no coherently oriented cycles.
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Golomb Graphs

Theorem 4 The regions of a Golomb inside-out polytope are in one-to-one
correspondence with the acyclic orientations of the corresponding Golomb
graph Gm that satisfy the relation

A→ B ⇐⇒ U → V (?)

for all proper consecutive subsets A and B of [m] of the form A = U ∪W
and B = V ∪W for some nonempty disjoint sets U, V,W .
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Golomb Graphs

Theorem 4 The regions of a Golomb inside-out polytope are in one-to-one
correspondence with the acyclic orientations of the corresponding Golomb
graph Gm that satisfy the relation

A→ B ⇐⇒ U → V (?)

for all proper consecutive subsets A and B of [m] of the form A = U ∪W
and B = V ∪W for some nonempty disjoint sets U, V,W .

Corollary (−1)m−1gm(−t) equals the number of rulers in Zm
≥0 of length t

each counted with multiplicity equal to the number of compatible acyclic
orientations of Gm that satisfy (?) . Furthermore, (−1)m−1gm(0) equals
the number of acyclic orientations of Gm that satisfy (?).
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Chromatic Polynomials of Graphs

G = (V,E) — graph (without loops)

k-coloring of G — mapping x ∈ {1, 2, . . . , k}V
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Chromatic Polynomials of Graphs

G = (V,E) — graph (without loops)

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E

χG(k) := # (proper k-colorings of G)

Example

















J
J
J
J
J
J
JJ

•

•

•
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Chromatic Polynomials of Graphs

G = (V,E) — graph (without loops)

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E

χG(k) := # (proper k-colorings of G)

Example

















J
J
J
J
J
J
JJ

•

•

•

χK3(k) = k · · ·
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Chromatic Polynomials of Graphs

G = (V,E) — graph (without loops)

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E

χG(k) := # (proper k-colorings of G)

Example

















J
J
J
J
J
J
JJ

•

•

•

χK3(k) = k(k − 1) · · ·
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Chromatic Polynomials of Graphs

G = (V,E) — graph (without loops)

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E

χG(k) := # (proper k-colorings of G)

Example

















J
J
J
J
J
J
JJ

•

•

•

χK3(k) = k(k − 1)(k − 2)
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Chromatic Polynomials of Graphs

















J
J
J
J
J
J
JJ

•

•

•

χK3(k) = k(k − 1)(k − 2)

Theorem (Birkhoff 1912, Whitney 1932) χG(k) is a polynomial in k.
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Chromatic Polynomials of Graphs

















J
J
J
J
J
J
JJ

•

•

•

χK3(k) = k(k − 1)(k − 2)

Theorem (Birkhoff 1912, Whitney 1932) χG(k) is a polynomial in k.

|χK3(−1)| = 6 counts the number

of acyclic orientations of K3.
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Chromatic Polynomials of Graphs

















J
J
J
J
J
J
JJ

•

•

•

χK3(k) = k(k − 1)(k − 2)

Theorem (Birkhoff 1912, Whitney 1932) χG(k) is a polynomial in k.

|χK3(−1)| = 6 counts the number

of acyclic orientations of K3.

Theorem (Stanley 1973) (−1)|V |χG(−k) equals the number of pairs (α,x)
consisting of an acyclic orientation α of G and a compatible k-coloring x. In
particular, (−1)|V |χG(−1) equals the number of acyclic orientations of G.
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Chromatic Polynomials of Mixed Graphs

G = (V,E,A) where E contains the undirected edges and A the directed
edges.

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E
and xi < xj if ij ∈ A
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Chromatic Polynomials of Mixed Graphs

G = (V,E,A) where E contains the undirected edges and A the directed
edges.

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E
and xi < xj if ij ∈ A

χG(k) := # (proper k-colorings of G)

Fun Exercise Compute χG(k) for

















�
@ J

J
J
J
J
J
JJ

•

•

•

Theorem (Sotskov–Tanaev–Werner 2002) χG(k) is a polynomial in k.
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Chromatic Polynomials of Mixed Graphs

G = (V,E,A) where E contains the undirected edges and A the directed
edges.

Proper k-coloring of G — x ∈ {1, 2, . . . , k}V such that xi 6= xj if ij ∈ E
and xi < xj if ij ∈ A

χG(k) := # (proper k-colorings of G)

Fun Exercise Compute χG(k) for

















�
@ J

J
J
J
J
J
JJ

•

•

•

Theorem (Sotskov–Tanaev–Werner 2002) χG(k) is a polynomial in k.

Theorem 5 (−1)|V |χG(−k) equals the number of pairs (α,x) consisting of
an acyclic orientation α of G and a compatible k-coloring x. In particular,
(−1)|V |χG(−1) equals the number of acyclic orientations of G.
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Open Problems

I Optimal Golomb rulers

I Smallest positive integer root of gm(t)

I Compute gm(t) . . . period? constant term?

I Mixed chromatic polynomials
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