Golomb Rulers

Matthias Beck San Francisco State University

Tristram Bogart Universidad de los Andes

Tu Pham UC Riverside

arXiv:1110.6154

OGR-24 Optimal Ruler - http://distributed.net/ogr

All Sorts of Golomb Rulers

Golomb ruler: sequence of distinct integers with distinct pairwise differences

Every Golomb ruler comes with a length t and some m + 1 markings

Optimal Golomb rulers have minimal length for a given number of markings

Perfect Golomb rulers can measure every integer from 0 to t

All Sorts of Golomb Rulers

Every Golomb ruler comes with a length t and m + 1 markings

Optimal Golomb rulers have minimal length for a given number of markings

Perfect Golomb rulers can measure every integer from 0 to t

Fun Exercise: There are no perfect Golomb rulers of lenth t > 6

All Sorts of Golomb Rulers

Every Golomb ruler comes with a length t and m + 1 markings

Research problem: find optimal Golomb rulers with > 26 markings (see http://www.distributed.net/OGR for computational results).

Our goal: count all Golomb rulers for given t and m

Motivations & Applications

- ▶ Distortion problems in consecutive radio bands → place radio signals so that all distances are distinct (Babcock 1950's)
- Error-correcting codes
- Additive number theory (Sidon sets)
- Dissonant music pieces (see Scott Rickard's TED talk)

Goal Study/compute the number $g_m(t)$ of Golomb rulers of length t with m+1 markings

Example $g_2(t) = \# \{ x \in \mathbb{Z} : 0 < x < t, x \neq t - x \}$

Goal Study/compute the number $g_m(t)$ of Golomb rulers of length t with m+1 markings

Example $g_2(t) = \# \{ x \in \mathbb{Z} : 0 < x < t, t \neq 2x \}$

Goal Study/compute the number $g_m(t)$ of Golomb rulers of length t with m+1 markings

Example 1 $g_2(t) = \# \{ x \in \mathbb{Z} : 0 < x < t, t \neq 2x \}$

$$= \begin{cases} t-1 & \text{ if } t \text{ is odd} \\ t-2 & \text{ if } t \text{ is even} \end{cases}$$

Example 2

$$g_3(t) = \begin{cases} \frac{1}{2}t^2 - 4t + 10 & \text{if } t \equiv 0, \\ \frac{1}{2}t^2 - 3t + \frac{5}{2} & \text{if } t \equiv 1, 5, 7, 11, \\ \frac{1}{2}t^2 - 4t + 6 & \text{if } t \equiv 2, 10, \\ \frac{1}{2}t^2 - 3t + \frac{9}{2} & \text{if } t \equiv 3, 9, \\ \frac{1}{2}t^2 - 4t + 8 & \text{if } t \equiv 4, 6, 8 \end{cases} \pmod{12}$$

Goal Study/compute the number $g_m(t)$ of Golomb rulers of length t with m+1 markings

Example 1 $g_2(t) = \# \{ x \in \mathbb{Z} : 0 < x < t, t \neq 2x \}$

$$= \begin{cases} t-1 & \text{ if } t \text{ is odd} \\ t-2 & \text{ if } t \text{ is even} \end{cases}$$

 \ldots a quasipolynomial in t

Theorem 1 The Golomb counting function $g_m(t)$ is a quasipolynomial in t of degree m-1 with leading coefficient $\frac{1}{(m-1)!}$

$$g_3(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^4 : \begin{array}{l} 0 = x_0 < x_1 < x_2 < x_3 = t \\ \text{all } x_j - x_k \text{ distinct} \end{array} \right\}$$

$$g_{3}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{4} : \begin{array}{l} 0 = x_{0} < x_{1} < x_{2} < x_{3} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$
$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{3} : \begin{array}{l} z_{1} + z_{2} + z_{3} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [3] \end{array} \right\}$$

$$g_{3}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{4} : \begin{array}{l} 0 = x_{0} < x_{1} < x_{2} < x_{3} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$
$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}^{3}_{>0} : \begin{array}{l} z_{1} + z_{2} + z_{3} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [3] \end{array} \right\}$$

where dpcs is shorthand for "disjoint proper consecutive subset," and $[m] := \{1, 2, ..., m\}$.

$$x_1 \neq x_2 \iff z_2 > 0$$

$$x_2 \neq t - x_1 \iff z_1 \neq z_3$$

$$x_2 \neq t - x_2 \iff z_1 + z_2 \neq z_3$$

$$g_{3}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{4} : \begin{array}{l} 0 = x_{0} < x_{1} < x_{2} < x_{3} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$
$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{3} : \begin{array}{l} z_{1} + z_{2} + z_{3} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [3] \end{array} \right\}$$

where dpcs is shorthand for "disjoint proper consecutive subset," and $[m] := \{1, 2, \dots, m\}$. More generally,

$$g_{m}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{m+1} : \begin{array}{l} 0 = x_{0} < x_{1} < \dots < x_{m-1} < x_{m} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$
$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{m} : \begin{array}{l} z_{1} + z_{2} + \dots + z_{m} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [m] \end{array} \right\}$$

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For $t \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right)$

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = \dots$$

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = {t+2 \choose 2} = \frac{1}{2}(t+1)(t+2)$$

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$

= $\{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$
 $L_{\Delta}(t) = {t+2 \choose 2} = \frac{1}{2}(t+1)(t+2)$
 $L_{\Delta}(-t) = {t-1 \choose 2}$

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right)$

Example:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = {t+2 \choose 2} = \frac{1}{2}(t+1)(t+2)$$

 $L_{\Delta}(-t) = \binom{t-1}{2} = L_{\Delta^{\circ}}(t)$

For example, the evaluations $L_{\Delta}(-1) = L_{\Delta}(-2) = 0$ point to the fact that neither Δ nor 2Δ contain any interior lattice points.

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

Example:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = {t+2 \choose 2} = \frac{1}{2}(t+1)(t+2)$$

 $L_{\Delta}(-t) = {\binom{t-1}{2}} = L_{\Delta^{\circ}}(t)$

Theorem (Macdonald 1971) $(-1)^{\dim \mathcal{P}} L_{\mathcal{P}}(-t) = L_{\mathcal{P}^{\circ}}(t)$

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

Example:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = {t+2 \choose 2} = \frac{1}{2}(t+1)(t+2)$$

 $L_{\Delta}(-t) = {\binom{t-1}{2}} = L_{\Delta^{\circ}}(t)$

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t.

Theorem (Macdonald 1971) $(-1)^{\dim \mathcal{P}} L_{\mathcal{P}}(-t) = L_{\mathcal{P}^{\circ}}(t)$

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

Example:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = {t+2 \choose 2} = \frac{1}{2}(t+1)(t+2)$$

For 2-dimensional lattice polygons, Ehrhart–Macdonald's theorem follows from Pick's theorem.

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$$
$$L_{\Delta}(t) = \# \{ (x,y) \in \mathbb{Z}_{\ge 0}^2 : x+y \le t \}$$

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$

= $\{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$
$$L_{\Delta}(t) = \# \{ (x,y) \in \mathbb{Z}^2_{\ge 0} : x+y \le t \}$$

= $\# \{ (x,y,z) \in \mathbb{Z}^3_{\ge 0} : x+y+z = t \}$

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^d)$

Example:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$

= $\{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x+y \le 1 \}$
 $L_{\Delta}(t) = \# \{ (x,y) \in \mathbb{Z}_{\ge 0}^2 : x+y \le t \}$
= $\# \{ (x,y,z) \in \mathbb{Z}_{\ge 0}^3 : x+y+z=t \}$

Hmmm . . .

$$g_{3}(t) = \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{3} : \begin{array}{l} z_{1} + z_{2} + z_{3} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \end{array} \right\}$$

The Geometry Behind Golomb Rulers

$$g_{3}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{4} : \begin{array}{l} 0 = x_{0} < x_{1} < x_{2} < x_{3} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$
$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}^{3}_{>0} : \begin{array}{l} z_{1} + z_{2} + z_{3} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [3] \end{array} \right\}$$

The Geometry Behind Golomb Rulers

$$g_{m}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{m+1} : \begin{array}{l} 0 = x_{0} < x_{1} < \dots < x_{m-1} < x_{m} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$
$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{m} : \begin{array}{l} z_{1} + z_{2} + \dots + z_{m} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [m] \end{array} \right\}$$

. . . counts integer points in t-dilates of the m-dimensional simplex

$$\Delta_m^{\circ} := \{ \boldsymbol{z} \in \mathbb{R}_{>0}^m : \, z_1 + z_2 + \dots + z_m = 1 \}$$

that are off the hyperplanes

$$\sum_{j \in U} z_j = \sum_{j \in V} z_j$$

for all dpcs $U, V \subset [m]$

Real Golomb Rulers

Real Golomb ruler — $z \in \mathbb{R}_{\geq 0}^m$ satisfying $z_1 + z_2 + \cdots + z_m = t$ and

$$\sum_{j \in U} z_j \neq \sum_{j \in V} z_j \text{ for all dpcs } U, V \subset [m]$$

 $oldsymbol{z}, \mathbf{w} \in \mathbb{R}^m_{>0}$ are combinatorially equivalent if for any dpcs $U, V \subset [m]$

$$\sum_{j \in U} z_j < \sum_{j \in V} z_j \qquad \Longleftrightarrow \qquad \sum_{j \in U} w_j < \sum_{j \in V} w_j$$

i.e., if their possible measurements satisfy the same order relations.

More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

Theorem 2 $(-1)^{m-1}g_m(0)$ equals the number of combinatorially different Golomb rulers with m + 1 markings.

(This follows from $L_{\mathcal{P}}(0) = 1$ for any Ehrhart quasipolynomial...)

More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

Theorem 2 $(-1)^{m-1}g_m(0)$ equals the number of combinatorially different Golomb rulers with m + 1 markings.

Have you seen this sequence? $1, 2, 10, 114, 2608, 107498, \ldots$

Golomb Ruler Reciprocity

 $oldsymbol{z}, \mathbf{w} \in \mathbb{R}^m_{\geq 0}$ are combinatorially equivalent if for any dpcs $U, V \subset [m]$

$$\sum_{j \in U} z_j < \sum_{j \in V} z_j \qquad \Longleftrightarrow \qquad \sum_{j \in U} w_j < \sum_{j \in V} w_j$$

Golomb multiplicty of $z \in \mathbb{Z}_{\geq 0}^m$ — number of combinatorially different real Golomb rulers in an ϵ -neighborhood of z

Theorem 3 $(-1)^{m-1}g_m(-t)$ equals the number of rulers in $\mathbb{Z}_{\geq 0}^m$ of length t each counted with its Golomb multiplicity.

(This follows from Ehrhart–Macdonald reciprocity...)

 G_m — mixed graph whose vertices are all proper consecutive subsets of [m]

Underlying graph is complete and $U \rightarrow V$ if and only if $U \subset V$

Example m = 3

 G_m — mixed graph whose vertices are all proper consecutive subsets of [m]

Underlying graph is complete and $U \rightarrow V$ if and only if $U \subset V$

Orienting a mixed graph means giving each undirected edge an orientation.

Such an orientation is acyclic if there are no coherently oriented cycles.

Theorem 4 The regions of a Golomb inside-out polytope are in one-to-one correspondence with the acyclic orientations of the corresponding Golomb graph G_m that satisfy the relation

$$A \to B \quad \iff \quad U \to V \quad (\star)$$

for all proper consecutive subsets A and B of [m] of the form $A = U \cup W$ and $B = V \cup W$ for some nonempty disjoint sets U, V, W.

Theorem 4 The regions of a Golomb inside-out polytope are in one-to-one correspondence with the acyclic orientations of the corresponding Golomb graph G_m that satisfy the relation

$$A \to B \quad \iff \quad U \to V \quad (\star)$$

for all proper consecutive subsets A and B of [m] of the form $A = U \cup W$ and $B = V \cup W$ for some nonempty disjoint sets U, V, W.

Corollary $(-1)^{m-1}g_m(-t)$ equals the number of rulers in $\mathbb{Z}_{\geq 0}^m$ of length t each counted with multiplicity equal to the number of compatible acyclic orientations of G_m that satisfy (*). Furthermore, $(-1)^{m-1}g_m(0)$ equals the number of acyclic orientations of G_m that satisfy (*).

G = (V, E) — graph (without loops)

k-coloring of G — mapping $\boldsymbol{x} \in \{1, 2, \dots, k\}^V$

G = (V, E) — graph (without loops)

Proper k-coloring of $G - x \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

 $\chi_G(k) := \#$ (proper *k*-colorings of *G*)

G = (V, E) — graph (without loops)

Proper k-coloring of $G - x \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

 $\chi_G(k) := \# (\text{proper } k\text{-colorings of } G)$

$$\chi_{K_3}(k) = k \cdots$$

G = (V, E) — graph (without loops)

Proper k-coloring of $G - x \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

 $\chi_G(k) := \# (\text{proper } k\text{-colorings of } G)$

$$\chi_{K_3}(k) = \mathbf{k}(k-1)\cdots$$

G = (V, E) — graph (without loops)

Proper k-coloring of $G - x \in \{1, 2, \dots, k\}^V$ such that $x_i \neq x_j$ if $ij \in E$

 $\chi_G(k) := \# (\text{proper } k\text{-colorings of } G)$

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

Theorem (Birkhoff 1912, Whitney 1932) $\chi_G(k)$ is a polynomial in k.

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

Theorem (Birkhoff 1912, Whitney 1932) $\chi_G(k)$ is a polynomial in k.

 $|\chi_{K_3}(-1)| = 6$ counts the number of acyclic orientations of K_3 .

$$\chi_{K_3}(k) = k(k-1)(k-2)$$

Theorem (Birkhoff 1912, Whitney 1932) $\chi_G(k)$ is a polynomial in k.

 $|\chi_{K_3}(-1)| = 6$ counts the number of acyclic orientations of K_3 .

Theorem (Stanley 1973) $(-1)^{|V|}\chi_G(-k)$ equals the number of pairs (α, \boldsymbol{x}) consisting of an acyclic orientation α of G and a compatible k-coloring \boldsymbol{x} . In particular, $(-1)^{|V|}\chi_G(-1)$ equals the number of acyclic orientations of G.

G = (V, E, A) where E contains the undirected edges and A the directed edges.

Proper k-coloring of $G - x \in \{1, 2, ..., k\}^V$ such that $x_i \neq x_j$ if $ij \in E$ and $x_i < x_j$ if $ij \in A$

G = (V, E, A) where E contains the undirected edges and A the directed edges.

Proper k-coloring of $G - x \in \{1, 2, ..., k\}^V$ such that $x_i \neq x_j$ if $ij \in E$ and $x_i < x_j$ if $ij \in A$

 $\chi_G(k) := \#$ (proper *k*-colorings of *G*)

Theorem (Sotskov–Tanaev–Werner 2002) $\chi_G(k)$ is a polynomial in k.

G = (V, E, A) where E contains the undirected edges and A the directed edges.

Proper k-coloring of $G - x \in \{1, 2, ..., k\}^V$ such that $x_i \neq x_j$ if $ij \in E$ and $x_i < x_j$ if $ij \in A$

 $\chi_G(k) := \#$ (proper *k*-colorings of *G*)

Theorem (Sotskov–Tanaev–Werner 2002) $\chi_G(k)$ is a polynomial in k.

Theorem 5 $(-1)^{|V|}\chi_G(-k)$ equals the number of pairs (α, \boldsymbol{x}) consisting of an acyclic orientation α of G and a compatible k-coloring \boldsymbol{x} . In particular, $(-1)^{|V|}\chi_G(-1)$ equals the number of acyclic orientations of G.

Open Problems

Optimal Golomb rulers

- Smallest positive integer root of $g_m(t)$
- Compute $g_m(t)$. . . period? constant term?
- Mixed chromatic polynomials

