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All Sorts of Golomb Rulers

0 3 5
01 3

0 5 3 ;
0 1 b6

Golomb ruler: sequence of distinct integers with distinct pairwise differences
Every Golomb ruler comes with a length ¢ and some m + 1 markings
Optimal Golomb rulers have minimal length for a given number of markings

Perfect Golomb rulers can measure every integer from 0 to ¢
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All Sorts of Golomb Rulers

0 3 5
01 3

0 5 3 ;
0 1 b6

Every Golomb ruler comes with a length ¢t and m + 1 markings
Optimal Golomb rulers have minimal length for a given number of markings
Perfect Golomb rulers can measure every integer from 0 to ¢

Fun Exercise: There are no perfect Golomb rulers of lenth ¢ > 6

Golomb Rulers () Matthias Beck 2



All Sorts of Golomb Rulers

0 3 5
01 3

0 2 3 3
0 1 56

Every Golomb ruler comes with a length ¢t and m + 1 markings

Research problem: find optimal Golomb rulers with > 26 markings (see
http://wuw.distributed.net/0GR for computational results).

Our goal: count all Golomb rulers for given t and m
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Motivations & Applications

» Distortion problems in consecutive radio bands — place radio signals
so that all distances are distinct (Babcock 1950's)

» Error-correcting codes
» Additive number theory (Sidon sets)

» Dissonant music pieces (see Scott Rickard's TED talk)
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Enumeration of Golomb Rulers

Goal Study/compute the number g,,(t) of Golomb rulers of length ¢ with
m + 1 markings

Example pt)=#{rcZ :0<z<t x#t—2a}
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Enumeration of Golomb Rulers

Goal Study/compute the number g,,(t) of Golomb rulers of length ¢ with
m + 1 markings

Example pt)=#{rcZ :0<x<t, t+#2z)
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Enumeration of Golomb Rulers

Goal Study/compute the number g,,(t) of Golomb rulers of length ¢ with
m + 1 markings

Example 1 pt)=#{xcZ:0<a<t, t+#2)
_{t—l if tis odd

t—2 if tis even

... a quasipolynomial in t
St2—4t+10 ift=0,

Example 2 %t2—3t+% ift=1,5,7,11,
gs(t) = S 22 —4t+6  if t = 2,10, (mod 12)
St2—=3t+3 ift=3,9,

5tP—4t+8  ift=4,6,8
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Enumeration of Golomb Rulers

Goal Study/compute the number g,,(t) of Golomb rulers of length ¢ with
m + 1 markings

Example 1 gt)=#{xeZ: 0<x <t t+# 2z}

t—2 if tis even

_{t—l If ¢ is odd

... a quasipolynomial in t

Theorem 1 The Golomb counting function g¢,,,(¢) is a quasipolynomial in ¢

of degree m — 1 with leading coefficient ﬁ
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Let’s start counting. . .

o = #{eem Gmmencrcn=t)

all x; — xy, distinct
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Let’s start counting. . .

Z1 Z2 z3

wo = #focz mn<menai)

all x; — xy, distinct

. 3 Zl—I—ZQ—I—Zgzt
- #{Z€Z>O' ZjeUZJ#Zjevzj for all dpcs U,VC[3]}
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Let’s start counting. . .

O=axp <1 <2< 23=1
all x; — xy, distinct

g3(t) = {a: c7Z*:

. 3 . 21—|—22—|—2’3:t
a #{ZEZ>O' > icu % F ey 7 for all dpes U,VC[B]}

where dpcs is shorthand for “disjoint proper consecutive subset,” and
m| :={1,2,...,m}.

T1#£ 1y = 253> 0
51327&15—561 D 217&2’3

ToF1—x9 < 21+ 29 F 23
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Let’s start counting. . .

O=xp <21 <2< 23=1
all z; — xy, distinct

gs(t) = # {a: c7*:

. 3 21t zatzz=t
o #{ZGZ>O' ZjeUZj#ZjeVZj for all dpcs U,VC[S]}

where dpcs is shorthand for “disjoint proper consecutive subset,” and
im| :={1,2,...,m}. More generally,

O:a:0<a:1<---<:z:m_1<a:m:t}

L m—+1 .
gm<t) - # {CB Sy/ ~oall Tj — Tk distinct

= #z€Zy: sttt =t
- "V ) e % #F 2jev 7 foralldpes U,V C [m]
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Enter Geometry

Lattice polytope P C R? — convex hull of finitely points in Z¢

For t € Z~ let Lp(t) := # (tP NZY)
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Enter Geometry

Lattice polytope P C R? — convex hull of finitely points in Z¢

For t € Z~ let Lp(t) := # (tP NZY)

°
Example:
° °
A= COHV{<070)7 (170)7 (07 1)}
= {(z,y) €eR?: 2,y >0,z +y <1} .

LA(t) = ...
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Enter Geometry

Lattice polytope P C R? — convex hull of finitely points in Z¢

For t € Z~ let Lp(t) := # (tP NZY)

°
Example:
° °
A= COHV{<070)7 (170)7 (07 1)}
= {(z,y) €eR?: 2,y >0,z +y <1} .

La(t) = ("52) = 3t + 1)(t +2)
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Enter Geometry

Lattice polytope P C R? — convex hull of finitely points in Z¢

For t € Z~ let Lp(t) := # (tP NZY)

°
Example:
° °
A= COHV{<070)7 (170)7 (07 1)}
= {(z,y) €eR?: 2,y >0,z +y <1} .

La(t) = ("52) = 3t + 1)(t +2)
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Enter Geometry

Lattice polytope P C R? — convex hull of finitely points in Z¢

For t € Zq let Lp(t) := # (tP N Z%)

°
Example:
° °
A= COHV{<070>7 (170)7 (07 1)}
={(z,y) eR?: 2,y >0,z +y <1} . .

La(t) = ("5?) = 3¢+ 1)(t +2)

LA(—t) = (t;l) = LAo(t)

For example, the evaluations La(—1) = La(—2) = 0 point to the fact that
neither A nor 2A contain any interior lattice points.
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Enter Geometry

Lattice polytope P C R? — convex hull of finitely points in Z¢

For t € Zq let Lp(t) := # (tP N Z%)

°
Example:
® °
A= COHV{(Oa())v(lvO)?(Oal)}
:{(;c,y)ERQ::C,yZO,:C—I—yél} °

La(t) = ("57) =3t + 1)(t +2)
La(=t) = ("3') = Lae(t)
Theorem (Ehrhart 1962) Lp(t) is a polynomial in ¢.

Theorem (Macdonald 1971) (—1)4™ P Lp(—t) = Lpo(t)
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Enter Geometry

Rational polytope P C R? — convex hull of finitely points in Q¢

For t € Zq let Lp(t) := # (tP N Z%)

°
Example:
® °
A= COHV{(Oa())v(lvO)?(Oal)}
:{(;c,y)ERQ::C,yZO,:C—I—yél} °

La(t) = ("57) =3t + 1)(t +2)
La(=t) = ("3') = Lae(t)
Theorem (Ehrhart 1962) Lp(t) is a quasipolynomial in t.

Theorem (Macdonald 1971) (—1)4™ P Lp(—t) = Lpo(t)
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Enter Geometry

Rational polytope P C R? — convex hull of finitely points in Q¢

For t € Z~ let Lp(t) := # (tP NZY)

°
Example:
° °
A= COHV{<070>7 (170)7 (07 1)}
={(z,y) eR?: 2,y >0,z +y <1} . .

La(t) = ("5?) = 3¢+ 1)(t +2)

LA(—t) = (t;l) = LAo(t)

For 2-dimensional lattice polygons, Ehrhart—Macdonald’s theorem follows
from Pick’s theorem.
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Enter Geometry

Rational polytope P C R? — convex hull of finitely points in Q¢

For t € Z~ let Lp(t) := # (tP NZY)

°
Example:
° °
A= COHV{<070)7 (170)7 (07 1)}
= {(z,y) €eR?: 2,y >0,z +y <1} .

La(t) = #{(z,y) € Z2y: x+y <t}
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Enter Geometry

Rational polytope P C R? — convex hull of finitely points in Q¢
For t € Z~ let Lp(t) := # (tP NZY)

Example:

A = conv {(0,0),(1,0),(0,1)}
— {(gp,y) eR?: 2,y >0, 2+y < 1}

La(t) = #{(z,y) € Z2y: x+y <t}

:#{(x,y,z)EZ?éO: x—i—y—l—zzt}
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Enter Geometry

Rational polytope P C R? — convex hull of finitely points in Q¢
For t € Z~ let Lp(t) := # (tP NZY)

Example:

A = conv {(0,0),(1,0),(0,1)}
— {(gp,y) eR?: 2,y >0, 2+y < 1}

La(t) = #{(z,y) € Z2y: x+y <t}

:#{(x,y,z)EZ?éO: x—i—y—l—zzt}

Hmmm . ..

B 3 . ZA1itzntz=t
g3(t) = # {Z SVASE ZjeUZj + ZjeV z; for all dpcs U,V C [3] }
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The Geometry Behind Golomb Rulers

gs(t) = # {a: c7*:

O=axp <1 <290<23=1
all z; — xy, distinct

_ 3 21tz +tzz=t
o #{ZGZ>O' ZjeUzj;éZjesz for all dpcs U,VC[S]}

{1 =413 22 =13

U+ =23

211=22 21 =2+23
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The Geometry Behind Golomb Rulers

gm(l) = #{azezmﬂ. 0=$0<$1<'“<9€m—1<1‘m=t}

all z; — x}, distinct

= H#HzecZ7l,: Z1t 2zt =t
- 20 Y e # #F 2jev 7 foralldpes U,V C [m)]

. .. counts integer points in t-dilates of the m-dimensional simplex

A%::{ZER@OZ 21—|—22—|—"'—|—2m:1}

that are off the hyperplanes
{1 =23 {2 =123
szzzzj 11+22=23
jEU JEV
for all dpcs U,V C |[m]
(This gives Theorem 1.) . 21 = 70+ 23
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Real Golomb Rulers

Real Golomb ruler — z € R"go satisfying 21 + 20+ -+ + 2, =t and

Y 2 # > zjforalldpes U,V C [m]

jeu Jjev

z,w € R, are combinatorially equivalent if for any dpcs U,V C |m]

sz<2zj — ij<2wj

jeU Jjev Jjeu Jjev

I.e., if their possible measurements satisfy the same order relations.
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More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

Ay ={z€eRTy: z1+ 22+ 4+ 2y =1}

and the hyperplanes P P
E Zj = E Z; 21+t22=23
jEU JjEV

for all dpcs U,V C [m]. lts
regions correspond to combinatorially
different Golomb rulers 21 =22 21=22+2
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More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

Ay ={zeRT,: z1+ 20+ -+ 2, =1}

and the hyperplanes 21 =23 =23
g g = E 23 21+22=23
jEU JEV

for all dpcs U,V C [m]. Its
regions correspond to combinatorially
different Golomb rulers =2 21=2+723

Theorem 2 (—1)™"1g,,(0) equals the number of combinatorially different
Golomb rulers with m + 1 markings.

(This follows from Lp(0) = 1 for any Ehrhart quasipolynomial. . . )
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More Geometry Behind Golomb Rulers

Recall the Golomb inside-out polytope formed by the simplex

Ay ={zeRT,: 21+ 20+ + 2, =1}

and the hyperplanes =1 22 =23
E Rj = E 2 21+22=23
jEU JEV

for all dpcs U,V C [m]. Its
regions correspond to combinatorially
different Golomb rulers =2 21 =22+

Theorem 2 (—1)™"1g,,(0) equals the number of combinatorially different
Golomb rulers with m 4+ 1 markings.

Have you seen this sequence? 1,2,10,114, 2608, 107498, ...
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Golomb Ruler Reciprocity

z,w € RY are combinatorially equivalent if for any dpcs U,V C [m]

ZZJ<ZZJ — ij<2wj

jeu JjeVv jeU Jjev

Golomb multiplicty of z € ZZT\) — number of combinatorially different real
Golomb rulers in an e-neighborhood of z

Theorem 3 (—=1)"""g,,,(—t) equals the number of rulers in ZZ, of length ¢
each counted with its Golomb multiplicity.

(This follows from Ehrhart—-Macdonald reciprocity. . . )
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Golomb Graphs

GG, — mixed graph whose vertices are all proper consecutive subsets of [m)]

Underlying graph is complete and U — V if andonly if U C V

Example m =3

12 23

S\
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Golomb Graphs

GG, — mixed graph whose vertices are all proper consecutive subsets of [m)]

Underlying graph is complete and U — V if andonly if U C V

Example m =3
12 3 23

ST

Orienting a mixed graph means giving each undirected edge an orientation.

Such an orientation is acyclic if there are no coherently oriented cycles.
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Golomb Graphs

Theorem 4 The regions of a Golomb inside-out polytope are in one-to-one
correspondence with the acyclic orientations of the corresponding Golomb
graph GG, that satisfy the relation

A— B = Uu—V (%)

for all proper consecutive subsets A and B of [m] of the form A=UUW
and B =V UW for some nonempty disjoint sets U, V, V.

1 =23 =23

12 23

LN

11+22=23

211=22 211=22+23
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Golomb Graphs

Theorem 4 The regions of a Golomb inside-out polytope are in one-to-one
correspondence with the acyclic orientations of the corresponding Golomb
graph GG, that satisfy the relation

A— B = Uu—V (%)

for all proper consecutive subsets A and B of [m] of the form A=UUW
and B =V UW for some nonempty disjoint sets U, V, V.

Corollary (—1)™ 1g,,(—t) equals the number of rulers in ZZ, of length ¢
each counted with multiplicity equal to the number of compatible acyclic
orientations of G, that satisfy (x). Furthermore, (—1)"1¢,,(0) equals
the number of acyclic orientations of GG,,, that satisfy (%).
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Chromatic Polynomials of Graphs

G = (V, E) — graph (without loops)

k-coloring of G — mapping = € {1,2,...,k}V

Golomb Rulers () Matthias Beck
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Chromatic Polynomials of Graphs

G = (V, E) — graph (without loops)
Proper k-coloring of G — = € {1,2,...,k}" such that x; # z,; ifij € E
xa(k) := # (proper k-colorings of GG)

Example
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Chromatic Polynomials of Graphs

G = (V, E) — graph (without loops)
Proper k-coloring of G — = € {1,2,...,k}" such that x; # z,; ifij € E
xa(k) := # (proper k-colorings of GG)

Example

XKg(k) p— k...
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Chromatic Polynomials of Graphs

G = (V, E) — graph (without loops)
Proper k-coloring of G — = € {1,2,...,k}" such that x; # z,; ifij € E
xa(k) := # (proper k-colorings of GG)

Example

XKs(k) — k(k - 1) e
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Chromatic Polynomials of Graphs

G = (V, E) — graph (without loops)
Proper k-coloring of G — = € {1,2,...,k}" such that x; # z,; ifij € E
xa(k) := # (proper k-colorings of GG)

Example

XKs(k) — k(k _ 1)
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Chromatic Polynomials of Graphs

XK5(k) = k(k = 1)(k =2)

Theorem (Birkhoff 1912, Whitney 1932) x (k) is a polynomial in k.

Golomb Rulers () Matthias Beck
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Chromatic Polynomials of Graphs

XK5(k) = k(k = 1)(k =2)

Theorem (Birkhoff 1912, Whitney 1932) x (k) is a polynomial in k.

IXx4;(—1)] = 6 counts the number
of acyclic orientations of K.
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Chromatic Polynomials of Graphs

XK5(k) = k(k = 1)(k = 2)

Theorem (Birkhoff 1912, Whitney 1932) x (k) is a polynomial in k.

IXx4;(—1)] = 6 counts the number
of acyclic orientations of K.

Theorem (Stanley 1973) (—1)!VIxg(—k) equals the number of pairs («, )
consisting of an acyclic orientation o of G and a compatible k-coloring . In
particular, (—1)!VIxa(—1) equals the number of acyclic orientations of G.
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Chromatic Polynomials of Mixed Graphs

G = (V, E, A) where E contains the undirected edges and A the directed
edges.

Proper k-coloring of G — x € {1,2,...,k}" such that z; # x; ifij € E
and z; < z;ifig e A
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Chromatic Polynomials of Mixed Graphs

G = (V, E, A) where E contains the undirected edges and A the directed
edges.

Proper k-coloring of G — x € {1,2,...,k}" such that z; # x; ifij € E
and z; < z;ifig e A

xa(k) := # (proper k-colorings of GG)

Fun Exercise Compute yg(k) for

Theorem (Sotskov—Tanaev—Werner 2002) x (k) is a polynomial in k.
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Chromatic Polynomials of Mixed Graphs

G = (V,E, A) where E contains the undirected edges and A the directed
edges.

Proper k-coloring of G — x € {1,2,...,k}V such that z; # z; if ij € E
and z; < z; ifijc A

xa (k) := # (proper k-colorings of )

Fun Exercise Compute xa(k) for

Theorem (Sotskov—Tanaev—Werner 2002) x (k) is a polynomial in k.

Theorem 5 (—1)VIxa(—Fk) equals the number of pairs (o, x) consisting of
an acyclic orientation a of G and a compatible k-coloring . In particular,
(—=1)Vlxa(—1) equals the number of acyclic orientations of G.
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MISS WORMWOOD, MY DAD
SAIS WHEN HE WAS IN
SCHOOL, THEY TAUGHT HiM
TO DO MATH ON A SLIDE RULE,

Golomb Rulers

Open Problems

Optimal Golomb rulers

Mixed chromatic polynomials

HE SANS HE MASNT USED A
SLIDE RULE SINCE, BECAUSE
HE GOT A FIE-BUCK
CALCULATOR THAT CAN DO
MORE FUNCTIONS THAN HE
COULD FIGURE QUT IF HIS
L\FE DEPENDED ON (T,

|

IM

(3 Matthias Beck

Smallest positive integer root of g,, ()

Compute g,,(t) . . . period? constant term?

GWEN THE PACE OF
TECHNOLO6Y, T PROPOSE
WE LEANE MATH TO THE
MACHINES AND GO PLAY
QUTSIDE,

M/
$l. I’.Q.S
(>

MY BILLS ALWAS
DIE IN SUBCONMITTEE .
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