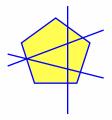
Inside-Out Polytopes

Matthias Beck, San Francisco State University

Thomas Zaslavsky, Binghamton University (SUNY)



math.sfsu.edu/beck/

arXiv: math.CO/0309330 & math.CO/0309331 & math.CO/0506315

 $\Gamma = (V, E)$ – graph (without loops)

k-coloring of Γ : mapping $x: V \to \{1, 2, \dots, k\}$

 $\Gamma = (V, E)$ – graph (without loops)

Proper k-coloring of Γ : mapping $x: V \to \{1, 2, \dots, k\}$ such that $x_i \neq x_j$ if there is an edge $ij \in E$

 $\Gamma = (V, E)$ – graph (without loops)

Proper k-coloring of Γ : mapping $x: V \to \{1, 2, ..., k\}$ such that $x_i \neq x_j$ if there is an edge $ij \in E$

Theorem (Birkhoff 1912, Whitney 1932) $\chi_{\Gamma}(k) := \#$ (proper k-colorings of Γ) is a monic polynomial in k of degree |V|.

 $\Gamma = (V, E)$ – graph (without loops)

Proper k-coloring of Γ : mapping $x: V \to \{1, 2, ..., k\}$ such that $x_i \neq x_j$ if there is an edge $ij \in E$

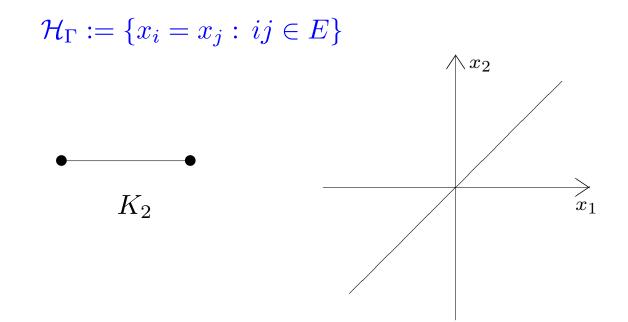
Theorem (Birkhoff 1912, Whitney 1932) $\chi_{\Gamma}(k) := \#$ (proper k-colorings of Γ) is a monic polynomial in k of degree |V|.

Theorem (Stanley 1973) $(-1)^{|V|}\chi_{\Gamma}(-k)$ equals the number of pairs (α, x) consisting of an acyclic orientation α of Γ and a compatible *k*-coloring. In particular, $(-1)^{|V|}\chi_{\Gamma}(-1)$ equals the number of acyclic orientations of Γ .

(An orientation α of Γ and a k-coloring x are compatible if $x_j \geq x_i$ whenever there is an edge oriented from i to j. An orientation is acyclic if it has no directed cycles.)

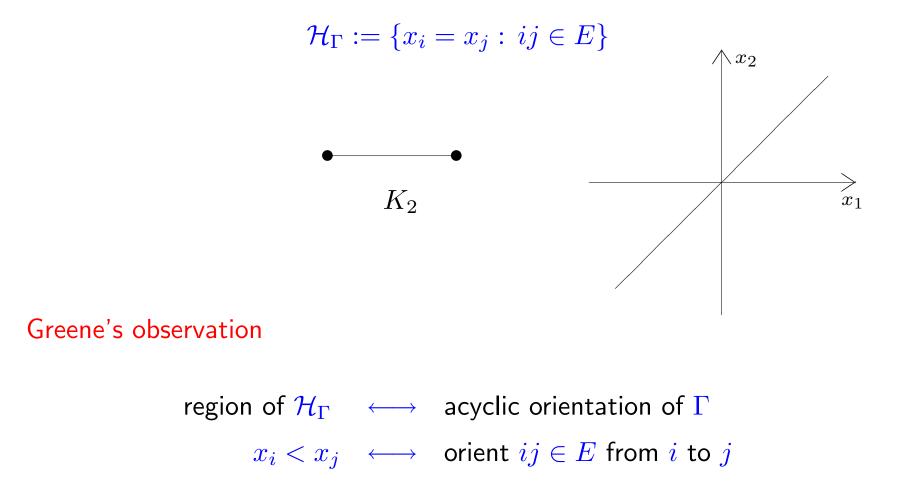
Graphical Hyperplane Arrangements

We associate with $\Gamma = (V, E)$ the hyperplane arrangement



Graphical Hyperplane Arrangements

We associate with $\Gamma = (V, E)$ the hyperplane arrangement



Ehrhart Polynomials

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope, i.e., the convex hull of finitely points in \mathbb{Z}^d

For $k \in \mathbb{Z}_{>0}$ let $\operatorname{Ehr}_{\mathcal{P}}(k) := \# \left(\mathcal{P} \cap \frac{1}{k} \mathbb{Z}^d \right) = \# \left(k \mathcal{P} \cap \mathbb{Z}^d \right)$

Ehrhart Polynomials

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope, i.e., the convex hull of finitely points in \mathbb{Z}^d

For $k \in \mathbb{Z}_{>0}$ let $\operatorname{Ehr}_{\mathcal{P}}(k) := \# \left(\mathcal{P} \cap \frac{1}{k} \mathbb{Z}^d \right) = \# \left(k \mathcal{P} \cap \mathbb{Z}^d \right)$

Theorem

(Ehrhart 1962) $\operatorname{Ehr}_{\mathcal{P}}(k)$ is a polynomial in k of degree $\dim \mathcal{P}$ with leading term $\operatorname{vol} \mathcal{P}$ (normalized to $\operatorname{aff} \mathcal{P} \cap \mathbb{Z}^d$) and constant term $\operatorname{Ehr}_{\mathcal{P}}(0) = 1$. (Macdonald 1971) $(-1)^{\dim \mathcal{P}} \operatorname{Ehr}_{\mathcal{P}}(-k) = \operatorname{Ehr}_{\mathcal{P}^\circ}(k)$, where \mathcal{P}° denotes the interior of \mathcal{P} .

Ehrhart Polynomials

 $\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope, i.e., the convex hull of finitely points in \mathbb{Z}^d

For $k \in \mathbb{Z}_{>0}$ let $\operatorname{Ehr}_{\mathcal{P}}(k) := \# \left(\mathcal{P} \cap \frac{1}{k} \mathbb{Z}^d \right) = \# \left(k \mathcal{P} \cap \mathbb{Z}^d \right)$

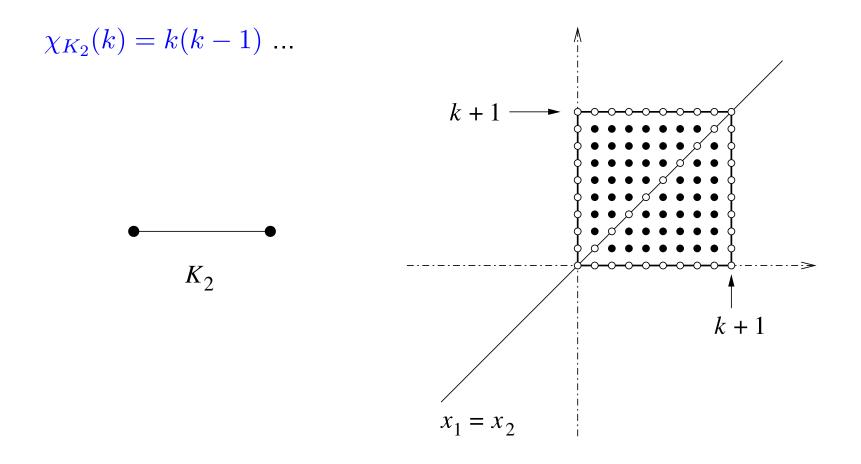
Theorem

(Ehrhart 1962) $\operatorname{Ehr}_{\mathcal{P}}(k)$ is a polynomial in k of degree $\dim \mathcal{P}$ with leading term $\operatorname{vol} \mathcal{P}$ (normalized to aff $\mathcal{P} \cap \mathbb{Z}^d$) and constant term $\operatorname{Ehr}_{\mathcal{P}}(0) = 1$. (Macdonald 1971) $(-1)^{\dim \mathcal{P}} \operatorname{Ehr}_{\mathcal{P}}(-k) = \operatorname{Ehr}_{\mathcal{P}^\circ}(k)$, where \mathcal{P}° denotes the interior of \mathcal{P} .

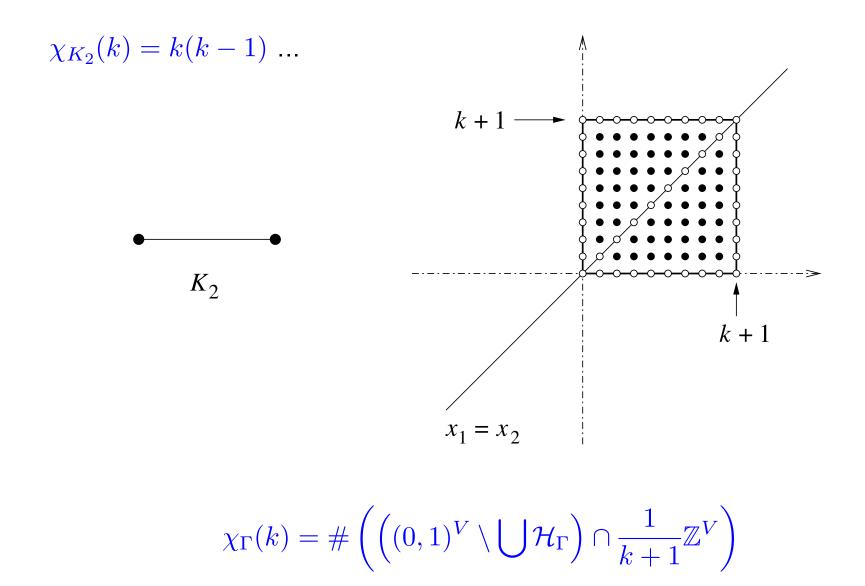
Idea

A k-coloring of Γ is an interior lattice point of $(k+1)\mathcal{P}$, where $\mathcal{P} = [0,1]^V$.

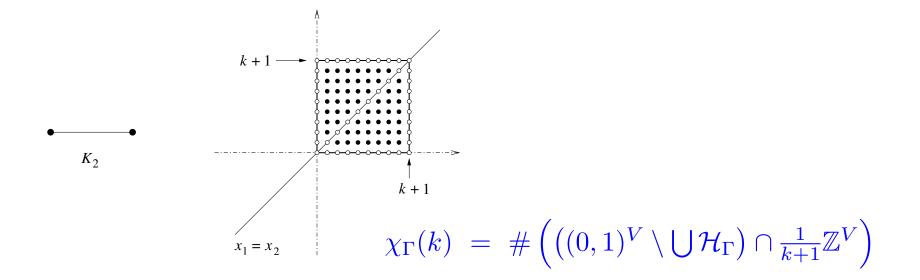
Graph Coloring a la Ehrhart



Graph Coloring a la Ehrhart

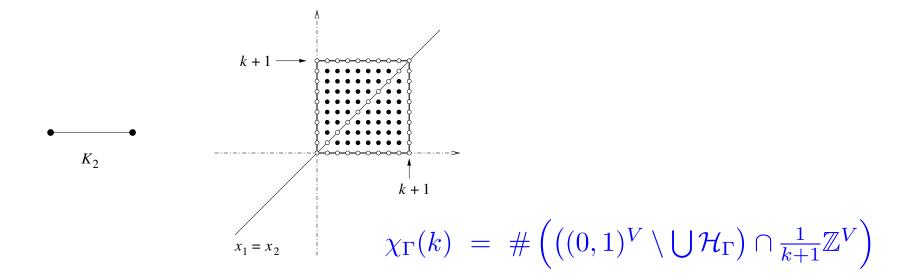


Stanley's Theorem a la Ehrhart



Write $(0,1)^V \setminus \bigcup \mathcal{H}_{\Gamma} = \bigcup_j \mathcal{P}_j^{\circ}$, then by Ehrhart-Macdonald reciprocity $(-1)^{|V|} \chi_{\Gamma}(-k) = \sum_j \operatorname{Ehr}_{P_j}(k-1)$

Stanley's Theorem a la Ehrhart



Write $(0,1)^V \setminus \bigcup \mathcal{H}_{\Gamma} = \bigcup_j \mathcal{P}_j^{\circ}$, then by Ehrhart-Macdonald reciprocity $(-1)^{|V|} \chi_{\Gamma}(-k) = \sum_j \operatorname{Ehr}_{P_j}(k-1)$

Greene's observation

region of $\mathcal{H}_{\Gamma} \iff$ acyclic orientation of Γ

Inside-Out Counting Functions

Inside-out polytope : $(\mathcal{P}, \mathcal{H})$

Multiplicity of $x \in \mathbb{R}^d$:

$$m_{\mathcal{P},\mathcal{H}}(x) := \begin{cases} \# \text{ closed regions of } \mathcal{H} \text{ in } \mathcal{P} \text{ that contain } x & \text{ if } x \in \mathcal{P}, \\ 0 & \text{ if } x \notin \mathcal{P} \end{cases}$$

Closed Ehrhart quasipolynomial $E_{P,\mathcal{H}}(k) := \sum_{x \in \frac{1}{k} \mathbb{Z}^d} m_{\mathcal{P},\mathcal{H}}(x)$

Open Ehrhart quasipolynomial $E^{\circ}_{\mathcal{P},\mathcal{H}}(k) := \# \left(\frac{1}{k} \mathbb{Z}^d \cap [\mathcal{P} \setminus \bigcup \mathcal{H}] \right)$

Inside-Out Philosophy

Theorem If $(\mathcal{P}, \mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E_{\mathcal{P},\mathcal{H}}(k)$ and $E_{\mathcal{P}^\circ,\mathcal{H}}^\circ(k)$ are quasipolynomials in k of degree dim \mathcal{P} with leading term vol P, and with constant term $E_{\mathcal{P},\mathcal{H}}(0)$ equal to the number of regions of $(\mathcal{P},\mathcal{H})$. Furthermore,

 $E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k) = (-1)^{d} E_{\mathcal{P},\mathcal{H}}(-k) \,.$

Inside-Out Philosophy

Theorem If $(\mathcal{P}, \mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E_{\mathcal{P},\mathcal{H}}(k)$ and $E_{\mathcal{P}^\circ,\mathcal{H}}^\circ(k)$ are quasipolynomials in k of degree dim \mathcal{P} with leading term vol P, and with constant term $E_{\mathcal{P},\mathcal{H}}(0)$ equal to the number of regions of $(\mathcal{P},\mathcal{H})$. Furthermore,

 $E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k) = (-1)^{d} E_{\mathcal{P},\mathcal{H}}(-k) \,.$

Philosophy If you have an enumeration problem that can be encoded as $E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k) = \#\left(\frac{1}{k}\mathbb{Z}^{d} \cap [\mathcal{P}^{\circ} \setminus \bigcup \mathcal{H}]\right)$ for some inside-out polytope $(\mathcal{P},\mathcal{H})$ and you have a combinatorial interpretation for the multiplicities $m_{\mathcal{P},\mathcal{H}}(x)$, then you'll have a combinatorial reciprocity theorem for $E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k)$.

Inside-Out Philosophy

Theorem If $(\mathcal{P}, \mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E_{\mathcal{P},\mathcal{H}}(k)$ and $E_{\mathcal{P}^\circ,\mathcal{H}}^\circ(k)$ are quasipolynomials in k of degree dim \mathcal{P} with leading term vol P, and with constant term $E_{\mathcal{P},\mathcal{H}}(0)$ equal to the number of regions of $(\mathcal{P},\mathcal{H})$. Furthermore,

$$E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k) = (-1)^{d} E_{\mathcal{P},\mathcal{H}}(-k) \,.$$

Theorem $(\mathcal{P}, \mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E^{\circ}_{\mathcal{P},\mathcal{H}}(k) = \sum_{u \in \mathcal{L}(\mathcal{H})} \mu(\mathbb{R}^d, u) \operatorname{Ehr}_{\mathcal{P} \cap u}(k),$

and if $\mathcal H$ is transverse to $\mathcal P$

$$E_{\mathcal{P},\mathcal{H}}(k) = \sum_{u \in \mathcal{L}(\mathcal{H})} |\mu(\mathbb{R}^d, u)| \operatorname{Ehr}_{\mathcal{P} \cap u}(k).$$

(\mathcal{H} is transverse to \mathcal{P} if every flat $u \in \mathcal{L}(\mathcal{H})$ that intersects \mathcal{P} also intersects P° , and \mathcal{P} does not lie in any of the hyperplanes of \mathcal{H} .)

Flow Polynomials

A nowhere-zero k-flow on a graph $\Gamma = (V, E)$ is a mapping

 $x: E \to \{-k+1, -k+2, \dots, -2, -1, 1, 2, \dots, k-2, k-1\}$

such that for every node $v \in V$

$$\sum_{h(e)=v} x(e) = \sum_{t(e)=v} x(e)$$

 $\begin{array}{ll} h(e) & := & \mathsf{head} \\ t(e) & := & \mathsf{tail} \end{array} \text{ of the edge } e \text{ in a (fixed) orientation of } \Gamma \end{array}$

Flow Polynomials

A nowhere-zero k-flow on a graph $\Gamma = (V, E)$ is a mapping

 $x: E \to \{-k+1, -k+2, \dots, -2, -1, 1, 2, \dots, k-2, k-1\}$

such that for every node $v \in V$

$$\sum_{h(e)=v} x(e) = \sum_{t(e)=v} x(e)$$

 $\begin{array}{rcl} h(e) & := & \mathsf{head} \\ t(e) & := & \mathsf{tail} \end{array} & \mathsf{of the edge } e \mathsf{ in a (fixed) orientation of } \Gamma \end{array}$

Theorem (Kochol 2002) $\varphi_{\Gamma}(k) := \# (\text{nowhere-zero } k\text{-flows}) \text{ is a polynomial in } k.$

Flow Polynomial Reciprocity

Let C denote the subspace of \mathbb{R}^E determined by the flow-conservation equations, $\mathcal{P} := [-1,1]^E \cap C$, and \mathcal{H} the arrangement of all coordinate hyperplanes in \mathbb{R}^E . Then $\varphi_{\Gamma}(k) = E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k)$.

Flow Polynomial Reciprocity

Let C denote the subspace of \mathbb{R}^E determined by the flow-conservation equations, $\mathcal{P} := [-1, 1]^E \cap C$, and \mathcal{H} the arrangement of all coordinate hyperplanes in \mathbb{R}^E . Then $\varphi_{\Gamma}(k) = E^{\circ}_{\mathcal{P}^{\circ}, \mathcal{H}}(k)$.

Greene–Zaslavsky's Observation Every region of the hyperplane arrangement induced by \mathcal{H} in C corresponds to a totally cyclic orientation.

(An orientation of Γ is totally cyclic if every edge lies in a coherent circle, that is, where the edges are oriented in a consistent direction around the circle.)

Flow Polynomial Reciprocity

Let C denote the subspace of \mathbb{R}^E determined by the flow-conservation equations, $\mathcal{P} := [-1,1]^E \cap C$, and \mathcal{H} the arrangement of all coordinate hyperplanes in \mathbb{R}^E . Then $\varphi_{\Gamma}(k) = E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(k)$.

Greene–Zaslavsky's Observation Every region of the hyperplane arrangement induced by \mathcal{H} in C corresponds to a totally cyclic orientation.

(An orientation of Γ is totally cyclic if every edge lies in a coherent circle, that is, where the edges are oriented in a consistent direction around the circle. A totally cyclic orientation τ and a flow x are compatible if $x \ge 0$ when it is expressed in terms of τ .)

Theorem $(-1)^{|E|-|V|+c(\Gamma)}\varphi_{\Gamma}(-k)$ equals the number of pairs (τ, x) consisting of a totally cyclic orientation τ and a compatible (k + 1) - flow x. In particular, the constant term $\varphi_{\Gamma}(0)$ equals the number of totally cyclic orientations of Γ .

Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .

- Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .
- Consider modular flow polynomials $\overline{\varphi}_{\Gamma}$, where the flow values are from a finite Abelian group. Is there a combinatorial interpretation of $\overline{\varphi}_{\Gamma}(-k)$?

- Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .
- Consider modular flow polynomials $\overline{\varphi}_{\Gamma}$, where the flow values are from a finite Abelian group. Is there a combinatorial interpretation of $\overline{\varphi}_{\Gamma}(-k)$?
- ▶ Prove (by hand) that every planar graph admits a 4-flow.

- Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .
- Consider modular flow polynomials $\overline{\varphi}_{\Gamma}$, where the flow values are from a finite Abelian group. Is there a combinatorial interpretation of $\overline{\varphi}_{\Gamma}(-k)$?
- Prove (by hand) that every planar graph admits a 4-flow.
- ▶ Prove that every graph admits a 5-flow.

Signed graph colorings

- Signed graph colorings
- Signed graph flows

- Signed graph colorings
- Signed graph flows
- ▶ Magic squares, cubes, stars, graphs, . . .

- Signed graph colorings
- Signed graph flows
- Magic squares, cubes, stars, graphs,
- Antimagic

- Signed graph colorings
- Signed graph flows
- Magic squares, cubes, stars, graphs,
- Antimagic
- ► Latin squares, orthogonal pairs of latin squares