Lonely Runner Polyhedra

Matthias Beck

San Francisco State University Freie Universität Berlin

Serkan Hoşten

San Francisco State University

Matthias Schymura

Brandenburgische Technische Universität Cottbus

In memoriam Günter Köhler (1940–2020)

The Lonely Runner Conjecture

Dirichlet's Approximation Theorem (\sim 1840). For every $t \in \mathbb{R}$ and $k \in \mathbb{Z}_{>0}$ there exists $q \in \{1, 2, ..., k\}$ such that $||t q|| \le \frac{1}{k+1}$.

Can this be improved by replacing $\{1, 2, ..., k\}$ with a different set?

Wills' Conjecture (1967). For every $\{n_1, n_2, \dots, n_k\} \subset \mathbb{R}$ there exists $t \in \mathbb{R}$ such that $||t n_j|| \ge \frac{1}{k+1}$ for $1 \le j \le k$.

The Lonely Runner Conjecture

Dirichlet's Approximation Theorem (\sim 1840). For every $t \in \mathbb{R}$ and $k \in \mathbb{Z}_{>0}$ there exists $q \in \{1, 2, ..., k\}$ such that $||t q|| \le \frac{1}{k+1}$.

Can this be improved by replacing $\{1, 2, \dots, k\}$ with a different set?

Wills' Conjecture (1967). For every $\{n_1, n_2, \dots, n_k\} \subset \mathbb{R}$ there exists $t \in \mathbb{R}$ such that $||t n_j|| \ge \frac{1}{k+1}$ for $1 \le j \le k$.

Lonely Runner Model (Goddyn 1994). If k+1 runners with different speeds move around a track of length 1 then each will at some point have distance $\frac{1}{k+1}$ to the other runners.

(Brian Weinstein @ fouriestseries →)

Some History

| | · | | — distance to the nearest integer

Lonely Runner Conjecture (Wills 1967). For every $\{n_1, n_2, \dots, n_k\} \subset \mathbb{R}$ there exists $t \in \mathbb{R}$ such that $||t n_j|| \ge \frac{1}{k+1}$ for $1 \le j \le k$.

- ▶ Proved for $k \le 6$ (Betke–Wills 1972, Cusick–Pomerance 1984, Bohman–Holzman–Kleitman 2001, Baraja–Serra 2008)
- Nown gaps of loneliness: $\frac{1}{2k}$ (exercise), $\frac{1}{2k} + \frac{c}{k^2}$ (Chen–Cusick 1999), $\frac{1}{2k} + \frac{c \log k}{k^2 (\log \log k)^2}$ (Tao 2018)

Some History

|| · || — distance to the nearest integer

Lonely Runner Conjecture (Wills 1967). For every $\{n_1, n_2, \dots, n_k\} \subset \mathbb{R}$ there exists $t \in \mathbb{R}$ such that $||t n_j|| \ge \frac{1}{k+1}$ for $1 \le j \le k$.

- ▶ Proved for $k \le 6$ (Betke–Wills 1972, Cusick–Pomerance 1984, Bohman–Holzman–Kleitman 2001, Baraja–Serra 2008)
- Nown gaps of loneliness: $\frac{1}{2k}$ (exercise), $\frac{1}{2k} + \frac{c}{k^2}$ (Chen–Cusick 1999), $\frac{1}{2k} + \frac{c \log k}{k^2 (\log \log k)^2}$ (Tao 2018)
- We may assume $n_j \in \mathbb{Z}_{>0}$ (Henze–Malikiosis 2017) and thus also $\gcd(n_1,n_2,\ldots,n_k)=1$
- ▶ It suffices to consider $n_j \le k^{ck^2}$ (Tao 2018)

Lonely Runner Geometry

Lonely Runner Conjecture (Wills 1967). For every $\mathbf{n}=(n_1,n_2,\ldots,n_k)\in\mathbb{Z}_{>0}^k$ there exists $t\in\mathbb{R}$ such that $||t\,n_j||\geq \frac{1}{k+1}$ for $1\leq j\leq k$.

View Obstruction Model (Cusick 1973). Every view direction $\mathbf{n} \in \mathbb{Z}_{>0}^k$ is obstructed by an integer translate of $[\frac{1}{k+1}, \frac{k}{k+1}]^k$.

Lonely Runner Geometry

Lonely Runner Conjecture (Wills 1967). For every $\mathbf{n}=(n_1,n_2,\ldots,n_k)\in\mathbb{Z}_{>0}^k$ there exists $t\in\mathbb{R}$ such that $||t\,n_j||\geq \frac{1}{k+1}$ for $1\leq j\leq k$.

View Obstruction Model (Cusick 1973). Every view direction $\mathbf{n} \in \mathbb{Z}_{>0}^k$ is obstructed by an integer translate of $\left[\frac{1}{k+1}, \frac{k}{k+1}\right]^k$.

Billiard Model (Schoenberg 1976). Every billiard ball trajectory in direction $\mathbf{n} \in \mathbb{Z}_{>0}^k$ inside $[0,1]^k$ will meet $[\frac{1}{k+1},\frac{k}{k+1}]^k$.

Lonely Runner Geometry

Lonely Runner Conjecture (Wills 1967). For every $\mathbf{n}=(n_1,n_2,\ldots,n_k)\in\mathbb{Z}_{>0}^k$ there exists $t\in\mathbb{R}$ such that $||t\,n_j||\geq \frac{1}{k+1}$ for $1\leq j\leq k$.

View Obstruction Model (Cusick 1973). Every view direction $\mathbf{n} \in \mathbb{Z}_{>0}^k$ is obstructed by an integer translate of $\left[\frac{1}{k+1}, \frac{k}{k+1}\right]^k$.

Billiard Model (Schoenberg 1976). Every billiard ball trajectory in direction $\mathbf{n} \in \mathbb{Z}_{>0}^k$ inside $[0,1]^k$ will meet $[\frac{1}{k+1},\frac{k}{k+1}]^k$.

Zonotope Model (Henze–Malikiosis 2017). For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the zonotope $\left[\frac{1}{k+1}, \frac{k}{k+1}\right]^k \mid \mathbf{n}^{\perp}$ meets the lattice $\mathbb{Z}^k \mid \mathbf{n}^{\perp}$.

Lonely Runner Polyhedra

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$ there exists $\mathbf{m} \in \mathbb{Z}_{\geq 0}^k$ such that

$$\mathbf{n} \in \mathcal{K}(\mathbf{m}) := \operatorname{cone}\left(\mathbf{m} + \left[\frac{1}{k+1}, \frac{k}{k+1}\right]^k\right)$$

which is, in turn, equivalent to

$$\mathbf{m} \in \mathcal{P}(\mathbf{n}) := \mathbb{R} \mathbf{n} - \left[\frac{1}{k+1}, \frac{k}{k+1} \right]^k.$$

Lonely Runner Polyhedra

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{\geq 0}^k$ there exists $\mathbf{m} \in \mathbb{Z}_{\geq 0}^k$ such that

$$\mathbf{n} \in \mathcal{K}(\mathbf{m}) := \operatorname{cone}\left(\mathbf{m} + \left[\frac{1}{k+1}, \frac{k}{k+1}\right]^k\right)$$

which is, in turn, equivalent to

$$\mathbf{m} \in \mathcal{P}(\mathbf{n}) := \mathbb{R} \mathbf{n} - \left[\frac{1}{k+1}, \frac{k}{k+1} \right]^k.$$

Polyhedral Model. $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$ for every $\mathbf{n} \in \mathbb{Z}^k_{>0}$.

Goal. Given $\mathbf{n} \in \mathbb{Z}_{>0}^k$ with $\gcd(\mathbf{n}) = 1$ and $n_1 > n_2 > \cdots > n_k$, study

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1} \,, \ 1 \le i < j \le k \right\}$$

Lonely Runner Polygons

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Example (3 Runners). Here the lonely runner polyhedron is

$$\mathcal{P}(\mathbf{n}) = \{ \mathbf{x} \in \mathbb{R}^2 : n_1 - 2 n_2 \le 3 n_2 x_1 - 3 n_1 x_2 \le 2 n_1 - n_2 \}.$$

With $gcd(n_1, n_2) = 1$ we can invoke Bézout's Lemma; note that

$$2n_1 - n_2 - (n_1 - 2n_2) + 1 = n_1 + n_2 + 1 \ge 3$$
.

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Example 0. $n_1 \leq k n_k$ if and only if $\mathbf{0} \in \mathcal{P}(\mathbf{n})$.

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Example 0. $n_1 \leq k n_k$ if and only if $\mathbf{0} \in \mathcal{P}(\mathbf{n})$.

This includes the "extreme" case $\mathbf{n}=(k,k-1,\ldots,1)$ which, in turn, lies on the boundary of

$$\mathcal{K}(\mathbf{0}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{1}{k} \le \frac{x_j}{x_i} \le k \text{ for } 1 \le i < j \le k \right\}.$$

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Example (small divisors). If there exists an integer $\leq k+1$ that does not divide any of n_1, n_2, \ldots, n_k then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$.

If
$$a$$
 is such an integer, set $m_j := \left\lfloor \frac{n_j}{a} \right\rfloor = \frac{n_j}{a} - \left\{ \frac{n_j}{a} \right\} \implies \mathbf{m} \in \mathcal{P}(\mathbf{n})$

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Example (small divisors). If there exists an integer $\leq k+1$ that does not divide any of n_1, n_2, \ldots, n_k then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$.

If
$$a$$
 is such an integer, set $m_j := \left\lfloor \frac{n_j}{a} \right\rfloor = \frac{n_j}{a} - \left\{ \frac{n_j}{a} \right\} \implies \mathbf{m} \in \mathcal{P}(\mathbf{n})$

Example². If all n_i are odd then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$.

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point. Note that $\mathbf{m} \in \mathcal{P}(\mathbf{n})$ is equivalent to

$$\frac{(k+1)m_j+1}{(k+1)m_i+k} \leq \frac{n_j}{n_i} \leq \frac{(k+1)m_j+k}{(k+1)m_i+1}, \ 1 \leq i < j \leq k.$$

Example². If $\mathbf{n} = 2 \mathbf{m} + 1$ then $\mathbf{m} \in \mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k$.

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Theorem (MB–Hoşten–Schymura). Let $E:=\{j\in [k]: n_j \text{ is even}\}$ and $O:=[k]\setminus E.$ If

$$\max \{n_j : j \in O\} \le \frac{k-1}{2} \min \{n_j : j \in E\}$$

 $\max \{n_j : j \in E\} \le k \min \{n_j : j \in E\}$

then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$.

Corollary. If n_2, n_3, \ldots, n_k are odd then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$.

Try Polyhedral Geometry

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

- Lineality space $\mathbb{R}\,\mathbf{n} \longrightarrow$ for existence questions of integer lattice points, we may bound $\mathcal{P}(\mathbf{n})$
- Iterative construction through projection?
- ▶ Iterative construction through cross section?

A Projection Ansatz

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Theorem (MB-Hoşten-Schymura). If

(a) $n_2 \le (k-2) n_k$ or

(b) $n_3 \le (k-2) n_k$ and $n_2 \ge k n_3$

then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \neq \emptyset$.

A Cross Section Ansatz

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$, the polyhedron

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

contains an integer lattice point.

Theorem (MB-Hoșten-Schymura). If $\frac{n_j}{n_{j+1}} \ge \frac{2k}{k-1}$ for $2 \le j \le k-2$, and $\gcd(n_{k-1}, n_k) \le \frac{k-1}{k+1}(n_{k-1} - n_k)$, then $\mathcal{P}(\mathbf{n}) \cap \mathbb{Z}^k \ne \emptyset$.

The lacunary conditions allow us to iteratively construct integers $m_k, m_{k-1}, \ldots, m_1$ with $\mathbf{m} \in \mathcal{P}(\mathbf{n})$ (and the first and last step are easy).

A Few More Directions

$$\mathcal{P}(\mathbf{n}) = \left\{ \mathbf{x} \in \mathbb{R}^k : \frac{n_i - k \, n_j}{k+1} \le n_j \, x_i - n_i \, x_j \le \frac{k \, n_i - n_j}{k+1}, \ 1 \le i < j \le k \right\}$$

- ls it true that each translate of $\mathcal{P}(\mathbf{n})$ meets \mathbb{Z}^k ? (This would mean the runners can start at different places.)
- For this more general conjecture, it is crucial that the m_j are distinct: relaxing both conditions yields a theorem of Schoenberg (1976) with optimal gap of loneliness $\frac{1}{2k}$.
- For k=2 the cones $\mathcal{K}(\mathbf{m})$ with $m_1 m_2 = 0$ already cover $\mathbb{R}^2_{\geq 0}$. Is there anything remotely like this true for general k?
- ightharpoonup Study the cones $\mathcal{K}(\mathbf{m})$

$$\left\{ \mathbf{x} \in \mathbb{R}^k : \frac{(k+1)m_j + 1}{(k+1)m_i + k} \le \frac{x_j}{x_i} \le \frac{(k+1)m_j + k}{(k+1)m_i + 1}, \ 1 \le i < j \le k \right\}$$

Another Zonotope, Another Lattice

$$\widetilde{\mathbf{n}} := \frac{1}{n_k} \left(n_1, n_2, \dots, n_{k-1} \right)$$

 \mathcal{Z} — zonotope generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{k-1}, \widetilde{\mathbf{n}}$

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$

$$\frac{1}{k+1} \left(\mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_{k-1} + \widetilde{\mathbf{n}} \right) + \frac{k-1}{k+1} \mathcal{Z} \left(\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_{k-1}, \widetilde{\mathbf{n}} \right)$$

meets the lattice spanned by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{k-1}, \widetilde{\mathbf{n}}$.

Another Zonotope, Another Lattice

$$\widetilde{\mathbf{n}} := \frac{1}{n_k} \left(n_1, n_2, \dots, n_{k-1} \right)$$

 \mathcal{Z} — zonotope generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{k-1}, \widetilde{\mathbf{n}}$

Lonely Runner Conjecture. For every $\mathbf{n} \in \mathbb{Z}_{>0}^k$

$$\frac{1}{k+1} \left(\mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_{k-1} + \widetilde{\mathbf{n}} \right) + \frac{k-1}{k+1} \mathcal{Z} \left(\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_{k-1}, \widetilde{\mathbf{n}} \right)$$

meets the lattice spanned by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{k-1}, \widetilde{\mathbf{n}}$.

- ➤ The translate matters...
- ► Counterexamples, anyone?