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“It takes a village to count integer points.”

Alexander Barvinok
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I All kinds of magic
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(Weak) semimagic squares

Hn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :
∑

j xjk = t∑
k xjk = t


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(Weak) semimagic squares

Hn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :
∑

j xjk = t∑
k xjk = t


Theorem (Ehrhart, Stanley 1973, conjectured by Anand-Dumir-Gupta 1966)
Hn(t) is a polynomial in t of degree (n− 1)2. This polynomial satisfies

Hn(−t) = (−1)n−1Hn(t− n) and Hn(−1) = · · · = Hn(−n + 1) = 0 .
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(Weak) semimagic squares

Hn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :
∑

j xjk = t∑
k xjk = t


Theorem (Ehrhart, Stanley 1973, conjectured by Anand-Dumir-Gupta 1966)
Hn(t) is a polynomial in t of degree (n− 1)2. This polynomial satisfies

Hn(−t) = (−1)n−1Hn(t− n) and Hn(−1) = · · · = Hn(−n + 1) = 0 .

For example...

I H1(t) = 1

I H2(t) = t + 1

I (MacMahon 1905) H3(t) = 3
(
t+3
4

)
+
(
t+2
2

)
= 1

8t
4 + 3

4t
3 + 15

8 t2 + 9
4t + 1
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Ehrhart theory

Integral (convex) polytope P – convex hull of finitely many points in Zd

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= #

(
P ∩ 1

tZ
d
)
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Ehrhart theory

Integral (convex) polytope P – convex hull of finitely many points in Zd

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= #

(
P ∩ 1

tZ
d
)

Theorem (Ehrhart 1962) If P is an integral polytope, then...

I LP(t) and LP◦(t) are polynomials in t of degree dimP
I Leading term: vol(P ) (suitably normalized)

I (Macdonald 1970) LP(−t) = (−1)dimPLP◦(t)
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Ehrhart theory

Integral (convex) polytope P – convex hull of finitely many points in Zd

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= #

(
P ∩ 1

tZ
d
)

Theorem (Ehrhart 1962) If P is an integral polytope, then...

I LP(t) and LP◦(t) are polynomials in t of degree dimP
I Leading term: vol(P ) (suitably normalized)

I (Macdonald 1970) LP(−t) = (−1)dimPLP◦(t)

Alternative description of a polytope:

P =
{
x ∈ Rd : Ax ≤ b

}
�
{
x ∈ Rd

≥0 : Ax = b
}
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A magic example: the Birkhoff polytope

Bn =


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Rn2

≥0 :
∑

j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n



I Hn(t) = LBn(t)
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A magic example: the Birkhoff polytope

Bn =


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Rn2

≥0 :
∑

j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n



I Hn(t) = LBn(t)

I Bn is a convex polytope of dimension (n− 1)2
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A magic example: the Birkhoff polytope

Bn =


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Rn2

≥0 :
∑

j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n



I Hn(t) = LBn(t)

I Bn is a convex polytope of dimension (n− 1)2

I Vertices are the n× n-permutation matrices.
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A magic example: the Birkhoff polytope

Bn =


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Rn2

≥0 :
∑

j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n



I Hn(t) = LBn(t)

I Bn is a convex polytope of dimension (n− 1)2

I Vertices are the n× n-permutation matrices.

I Hn(−t) = (−1)n−1Hn(t − n) and Hn(−1) = · · · = Hn(−n + 1) = 0
follow with LB◦n(t) = Hn(t− n) and Ehrhart-Macdonald Reciprocity.
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A magic example: the Birkhoff polytope

Bn =


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Rn2

≥0 :
∑

j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n


I Hn(t) = LBn(t)

I Bn is a convex polytope of dimension (n− 1)2

I Vertices are the n× n-permutation matrices.

I Hn(−t) = (−1)n−1Hn(t − n) and Hn(−1) = · · · = Hn(−n + 1) = 0
follow with LB◦n(t) = Hn(t− n) and Ehrhart-Macdonald Reciprocity.

I A close relative to Bn appeared recently in connections with
pseudomoments of the ζ-function (Conrey–Gamburd 2005)
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Ehrhart theory

Integral (convex) polytope P – convex hull of finitely many points in Zd

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= #

(
P ∩ 1

tZ
d
)

Theorem (Ehrhart 1962) If P is an integral polytope, then...

I LP(t) and LP◦(t) are polynomials in t of degree dimP
I Leading term: vol(P ) (suitably normalized)

I (Macdonald 1970) LP(−t) = (−1)dimPLP◦(t)

Alternative description of a polytope:

P =
{
x ∈ Rd : Ax ≤ b

}
�
{
x ∈ Rd

≥0 : Ax = b
}
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Ehrhart theory

Rational (convex) polytope P – convex hull of finitely many points in Qd

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= #

(
P ∩ 1

tZ
d
)

Theorem (Ehrhart 1962) If P is an rational polytope, then...

I LP(t) and LP◦(t) are quasi-polynomials in t of degree dimP
I Leading term: vol(P ) (suitably normalized)

I (Macdonald 1970) LP(−t) = (−1)dimPLP◦(t)

Alternative description of a polytope:

P =
{
x ∈ Rd : Ax ≤ b

}
�
{
x ∈ Rd

≥0 : Ax = b
}

Quasi-polynomial – cd(t) td + cd−1(t) td−1 + · · · + c0(t) where ck(t) are
periodic
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(a = 7, b = 4, t = 23)
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(a = 7, b = 4, t = 23)

L∆(t) = #
{
(m,n) ∈ Z2

≥0 : am + bn ≤ t
}
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(a = 7, b = 4, t = 23)

L∆(t) = #
{
(m,n) ∈ Z2

≥0 : am + bn ≤ t
}

= #
{
(m,n, s) ∈ Z3

≥0 : am + bn + s = t
}
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(a = 7, b = 4, t = 23)

L∆(t) = #
{
(m,n) ∈ Z2

≥0 : am + bn ≤ t
}

= #
{
(m,n, s) ∈ Z3

≥0 : am + bn + s = t
}

= const
1

(1− xa) (1− xb) (1− x) xt
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(a = 7, b = 4, t = 23)

L∆(t) = #
{
(m,n) ∈ Z2

≥0 : am + bn ≤ t
}

= #
{
(m,n, s) ∈ Z3

≥0 : am + bn + s = t
}

= const
1

(1− xa) (1− xb) (1− x) xt

=
1

2πi

∫
|x|=ε

dx

(1− xa) (1− xb) (1− x) xt+1
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

f(x) :=
1

(1− xa) (1− xb) (1− x) xt+1

L∆(t) =
1

2πi

∫
|x|=ε

f dx
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

gcd (a, b) = 1

f(x) :=
1

(1− xa) (1− xb) (1− x) xt+1
ξa := e2πi/a

L∆(t) =
1

2πi

∫
|x|=ε

f dx

= Resx=1(f) +
a−1∑
k=1

Resx=ξk
a
(f) +

b−1∑
j=1

Res
x=ξ

j
b
(f)
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

gcd (a, b) = 1

f(x) :=
1

(1− xa) (1− xb) (1− x) xt+1
ξa := e2πi/a

L∆(t) =
1

2πi

∫
|x|=ε

f dx

= Resx=1(f) +
a−1∑
k=1

Resx=ξk
a
(f) +

b−1∑
j=1

Res
x=ξ

j
b
(f)

=
t2

2ab
+

t

2

(
1
ab

+
1
a

+
1
b

)
+

1
12

(
3
a

+
3
b

+ 3 +
a

b
+

b

a
+

1
ab

)

+
1
a

a−1∑
k=1

1
(1− ξkb

a ) (1− ξk
a) ξkt

a

+
1
b

b−1∑
j=1

1(
1− ξja

b

)(
1− ξj

b

)
ξjt
b
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(Pick’s or) Ehrhart’s Theorem implies that L∆ has constant term L∆ (0) = 1

1
a

a−1∑
k=1

1
(1− ξkb

a ) (1− ξk
a)

+
1
b

b−1∑
j=1

1(
1− ξja

b

)(
1− ξj

b

)
= 1− 1

12

(
3
a

+
3
b

+ 3 +
a

b
+

b

a
+

1
ab

)
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An example in dimension 2

∆ :=
{
(x, y) ∈ R2

≥0 : ax + by ≤ 1
}

(Pick’s or) Ehrhart’s Theorem implies that L∆ has constant term L∆ (0) = 1

1
a

a−1∑
k=1

1
(1− ξkb

a ) (1− ξk
a)

+
1
b

b−1∑
j=1

1(
1− ξja

b

)(
1− ξj

b

)
= 1− 1

12

(
3
a

+
3
b

+ 3 +
a

b
+

b

a
+

1
ab

)
However...

1
a

a−1∑
k=1

1
(1− ξkb

a ) (1− ξk
a)

= − 1
4a

a−1∑
k=1

cot
(

πkb

a

)
cot
(

πk

a

)
+

a− 1
4a
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Dedekind sums

s (a, b) :=
1
4b

b−1∑
j=1

cot
(

πja

b

)
cot
(

πj

b

)

Since their introduction by Dedekind in the 1880’s, these sums and
their generalizations have appeared in various areas such as analytic
(transformation law of η -function) and algebraic number theory (class
numbers), topology (group action on manifolds), combinatorial geometry
(lattice point problems), and algorithmic complexity (random number
generators).
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Dedekind sums

s (a, b) :=
1
4b

b−1∑
j=1

cot
(

πja

b

)
cot
(

πj

b

)

Since their introduction by Dedekind in the 1880’s, these sums and
their generalizations have appeared in various areas such as analytic
(transformation law of η -function) and algebraic number theory (class
numbers), topology (group action on manifolds), combinatorial geometry
(lattice point problems), and algorithmic complexity (random number
generators).

The identity L∆ (0) = 1 implies...

s (a, b) + s (b, a) = −1
4

+
1
12

(
a

b
+

1
ab

+
b

a

)
the Reciprocity Law for Dedekind sums.
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A 2-dimensional example in dimension 3

y

x

z

1
a

1
b

1
c

t
a

t
b

t
c

∆ :=
{
(x, y, z) ∈ R3

≥0 : ax + by + cz = 1
}

Enumerating integer-points in polytopes: applications to number theory Matthias Beck 13



A 2-dimensional example in dimension 3

y

x

z

1
a

1
b

1
c

t
a

t
b

t
c

∆ :=
{
(x, y, z) ∈ R3

≥0 : ax + by + cz = 1
}

gcd (a, b) = gcd (b, c) = gcd (c, a) = 1

L∆(t) =
1

2πi

∫
|x|=ε

dx

(1− xa) (1− xb) (1− xc) xt+1

=
t2

2abc
+

t

2

(
1
ab

+
1
ac

+
1
bc

)
+

1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)

+
1
a

a−1∑
k=1

1
(1− ξkb

a ) (1− ξkc
a ) ξkt

a

+
1
b

b−1∑
k=1

1(
1− ξkc

b

) (
1− ξka

b

)
ξkt
b

+
1
c

c−1∑
k=1

1
(1− ξka

c ) (1− ξkb
c ) ξkt

c
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More Dedekind sums

s (a, b; c) :=
1
4c

c−1∑
j=1

cot
(

πja

c

)
cot
(

πjb

c

)

The identity L∆ (0) = 1 implies Rademacher’s Reciprocity Law

s (a, b; c) + s (b, c; a) + s (c, a; b) = −1
4

+
1
12

(
a

bc
+

b

ca
+

c

ab

)
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More Dedekind sums

s (a, b; c) :=
1
4c

c−1∑
j=1

cot
(

πja

c

)
cot
(

πjb

c

)

The identity L∆ (0) = 1 implies Rademacher’s Reciprocity Law

s (a, b; c) + s (b, c; a) + s (c, a; b) = −1
4

+
1
12

(
a

bc
+

b

ca
+

c

ab

)

Moreover,
t∆ =

{
(x, y, z) ∈ R3

≥0 : ax + by + cz = t
}

has no interior lattice points for 0 < t < a+b+c, so that Ehrhart-Macdonald
Reciprocity implies that L∆(t) = 0 for − (a + b + c) < t < 0 , which is
equivalent to the Reciprocity Law for Dedekind-Rademacher sums.
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Even more Dedekind sums

The Ehrhart quasi-polynomial for ∆ :=
{
x ∈ Rd

≥0 : a1x1 + · · ·+ adxd = 1
}

gives rise to the Fourier-Dedekind sum (MB–Robins 2003)

σn (a1, . . . , ad; a0) :=
1
a0

∑
λa0=1

λn

(1− λa1) · · · (1− λad)
.

Enumerating integer-points in polytopes: applications to number theory Matthias Beck 15



Even more Dedekind sums

The Ehrhart quasi-polynomial for ∆ :=
{
x ∈ Rd

≥0 : a1x1 + · · ·+ adxd = 1
}

gives rise to the Fourier-Dedekind sum (MB–Robins 2003)

σn (a1, . . . , ad; a0) :=
1
a0

∑
λa0=1

λn

(1− λa1) · · · (1− λad)
.

The identity L∆(0) = 1 implies the Reciprocity Law for Zagier’s “higher-
dimensional Dedekind sums”, whereas

L∆(t) = 0 for − (a1 + · · ·+ ad) < t < 0

gives a new reciprocity relation which is a “higher-dimensional” analog of
that for the the Dedekind-Rademacher sum.
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Partition functions and the Frobenius problem

The Ehrhart quasi-polynomial

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1a1 + · · ·+ mdad = t
}

is the restricted partition function pA(t) for A = {a1, . . . , ad}
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Partition functions and the Frobenius problem

The Ehrhart quasi-polynomial

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1a1 + · · ·+ mdad = t
}

is the restricted partition function pA(t) for A = {a1, . . . , ad}

Frobenius problem: find the largest value for t such that pA(t) = 0
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Partition functions and the Frobenius problem

The Ehrhart quasi-polynomial

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1a1 + · · ·+ mdad = t
}

is the restricted partition function pA(t) for A = {a1, . . . , ad}

Frobenius problem: find the largest value for t such that pA(t) = 0

Polytopal corollaries:

I pA(−t) = (−1)d−1 pA(t− (a1 + · · ·+ ad))
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Partition functions and the Frobenius problem

The Ehrhart quasi-polynomial

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1a1 + · · ·+ mdad = t
}

is the restricted partition function pA(t) for A = {a1, . . . , ad}

Frobenius problem: find the largest value for t such that pA(t) = 0

Polytopal corollaries:

I pA(−t) = (−1)d−1 pA(t− (a1 + · · ·+ ad))

I Upper bounds on the Frobenius number
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Partition functions and the Frobenius problem

The Ehrhart quasi-polynomial

L∆(t) = #
{
(m1, . . . ,md) ∈ Zd

≥0 : m1a1 + · · ·+ mdad = t
}

is the restricted partition function pA(t) for A = {a1, . . . , ad}

Frobenius problem: find the largest value for t such that pA(t) = 0

Polytopal corollaries:

I pA(−t) = (−1)d−1 pA(t− (a1 + · · ·+ ad))

I Upper bounds on the Frobenius number

I New approach on the Frobenius problem via Gröbner bases
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Shameless plug

M. Beck & S. Robins

Computing the continuous discretely
Integer-point enumeration in polyhedra

To appear in Springer Undergraduate Texts in Mathematics

Preprint available at math.sfsu.edu/beck

MSRI Summer Graduate Program at Banff (August 6–20)
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Coefficients and roots of Ehrhart polynomials

Integral (convex) polytope P – convex hull of finitely many points in Zd

Then LP(t) = cd td + · · ·+ c0 is a polynomial in t.
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Coefficients and roots of Ehrhart polynomials

Integral (convex) polytope P – convex hull of finitely many points in Zd

Then LP(t) = cd td + · · ·+ c0 is a polynomial in t

I We know (intrinsic) geometric interpretations of cd, cd−1, and c0. What
about the other coefficients?
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Coefficients and roots of Ehrhart polynomials

Integral (convex) polytope P – convex hull of finitely many points in Zd

Then LP(t) = cd td + · · ·+ c0 is a polynomial in t

I We know (intrinsic) geometric interpretations of cd, cd−1, and c0. What
about the other coefficients?

I What can be said about the roots of Ehrhart polynomials?

Theorem (Stanley 1980) The generating function
∑

t≥0 LP(t) xt can be

written in the form f(x)

(1−x)d+1, where f(x) is a polynomial of degree at most

d with nonnegative integer coefficients.
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Coefficients and roots of Ehrhart polynomials

Integral (convex) polytope P – convex hull of finitely many points in Zd

Then LP(t) = cd td + · · ·+ c0 is a polynomial in t

I We know (intrinsic) geometric interpretations of cd, cd−1, and c0. What
about the other coefficients?

I What can be said about the roots of Ehrhart polynomials?

Theorem (Stanley 1980) The generating function
∑

t≥0 LP(t) xt can be

written in the form f(x)

(1−x)d+1, where f(x) is a polynomial of degree at most

d with nonnegative integer coefficients.

I The inequalities f(x) ≥ 0 and cd−1 > 0 are currently the sharpest
constraints on Ehrhart coefficients. Are there others?
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Roots of Ehrhart polynomials are special

Easy fact: LP has no integer roots besides −d,−d + 1, . . . ,−1.
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Roots of Ehrhart polynomials are special

Easy fact: LP has no integer roots besides −d,−d + 1, . . . ,−1.

Theorem (MB–DeLoera–Develin–Pfeifle–Stanley 2005)

(1) The roots of Ehrhart polynomials of lattice d-polytopes are bounded in
norm by 1 + (d + 1)!.

(2) All real roots are in [−d, bd/2c).
(3) For any positive real number r there exist an Ehrhart polynomial of

sufficiently large degree with a real root strictly larger than r.
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Roots of Ehrhart polynomials are special

Easy fact: LP has no integer roots besides −d,−d + 1, . . . ,−1.

Theorem (MB–DeLoera–Develin–Pfeifle–Stanley 2005)

(1) The roots of Ehrhart polynomials of lattice d-polytopes are bounded in
norm by 1 + (d + 1)!.

(2) All real roots are in [−d, bd/2c).
(3) For any positive real number r there exist an Ehrhart polynomial of

sufficiently large degree with a real root strictly larger than r.

Open problems:

I Improve the bound in (1).

I The upper bound in (2) is not sharp, for example, it can be improved
to 1 for dimP = 4. Can one obtain a better (general) upper bound?
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Roots of Ehrhart polynomials are special

Easy fact: LP has no integer roots besides −d,−d + 1, . . . ,−1.

Theorem (MB–DeLoera–Develin–Pfeifle–Stanley 2005)

(1) The roots of Ehrhart polynomials of lattice d-polytopes are bounded in
norm by 1 + (d + 1)!.

(2) All real roots are in [−d, bd/2c).
(3) For any positive real number r there exist an Ehrhart polynomial of

sufficiently large degree with a real root strictly larger than r.

Open problems:

I Improve the bound in (1).

I The upper bound in (2) is not sharp, for example, it can be improved
to 1 for dimP = 4. Can one obtain a better (general) upper bound?

Conjecture: All roots α satisfy −d ≤ Re α ≤ d− 1.
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Roots of some tetrahedra
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–3 –2 –1 0
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Roots of the Birkhoff polytopes

–3

–2

–1

0

1

2

3

–8 –6 –4 –2 0
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(Weak) semimagic squares revisited

Hn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :
∑

j xjk = t∑
k xjk = t


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(Weak) semimagic squares revisited

Hn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :
∑

j xjk = t∑
k xjk = t


Theorem (MB–Pixton 2003)

Hn(t) =
1

(2πi)n

∫
(z1 · · · zn)−t−1 ×

∑
m1+···+mn=n

∗
(

n

m1, . . . ,mn

) n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)mk

dz

where
∑∗ denotes that we only sum over those n-tuples of non-negative

integers satisfying m1 + · · ·+mn = n and m1 + · · ·+mr > r for 1 ≤ r < n
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(Weak) semimagic squares revisited

Hn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :
∑

j xjk = t∑
k xjk = t


Theorem (MB–Pixton 2003)

Hn(t) =
1

(2πi)n

∫
(z1 · · · zn)−t−1 ×

∑
m1+···+mn=n

∗
(

n

m1, . . . ,mn

) n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)mk

dz

where
∑∗ denotes that we only sum over those n-tuples of non-negative

integers satisfying m1 + · · ·+mn = n and m1 + · · ·+mr > r for 1 ≤ r < n

I Computation of Hn for n ≤ 9 and volBn for n ≤ 10
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Birkhoff volumes
n volBn

1 1
2 2
3 9/8
4 176/2835
5 23590375/167382319104
6 9700106723/1319281996032 · 106

7
77436678274508929033

137302963682235238399868928 · 108

8
5562533838576105333259507434329

12589036260095477950081480942693339803308928 · 1010

9 559498129702796022246895686372766052475496691
92692623409952636498965146712806984296051951329202419606108477153345536·1014

727291284016786420977508457990121862548823260052557333386607889
82816086010676685512567631879687272934462246353308942267798072138805573995627029375088350489282084864·107
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Weak magic squares

Mn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :

∑
j xjk = t∑
k xjk = t∑
j xjj = t∑
j xj,n−j = t


is an (Ehrhart) quasi-polynomial in t

I (MB–Cohen–Cuomo–Gribelyuk 2003) For n ≥ 3, deg Mn = n2 − 2n− 1
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Weak magic squares

Mn(t) := #


 x11 · · · x1n

... ...
xn1 . . . xnn

 ∈ Zn2

≥0 :

∑
j xjk = t∑
k xjk = t∑
j xjj = t∑
j xj,n−j = t


is an (Ehrhart) quasi-polynomial in t

I (MB–Cohen–Cuomo–Gribelyuk 2003) For n ≥ 3, deg Mn = n2 − 2n− 1

I Open problem: What is the period of Mn? Is it always > 1 for n ≥ 2?
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Strong magic squares

M∗
n(t) – # magic n× n-squares with distinct entries and “magic sum” t
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Strong magic squares

M∗
n(t) – # magic n× n-squares with distinct entries and “magic sum” t

Theorem (MB–Zaslavsky ∼2006) M∗
n(t) is the Ehrhart quasi-polynomial of

an inside-out polytope, satisfying

M∗
n(t) =

∑
u∈L

µ
(
0̂, u
)
L

u∩Rn2
>0

(t) ,

where L is the intersection lattice of the hyperplane arrangement{
xi = xj : 1 ≤ i < j ≤ n2

}
and µ is its Möbius function.
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For example...

M◦(t) =



2t2−32t+144
9 = 2

9(t
2 − 16t + 72) if t ≡ 0 mod 18,

2t2−32t+78
9 = 2

9(t− 3)(t− 13) if t ≡ 3 mod 18,

2t2−32t+120
9 = 2

9(t− 6)(t− 10) if t ≡ 6 mod 18,

2t2−32t+126
9 = 2

9(t− 7)(t− 9) if t ≡ 9 mod 18,

2t2−32t+96
9 = 2

9(t− 4)(t− 12) if t ≡ 12 mod 18,

2t2−32t+102
9 = 2

9(t
2 − 16t + 51) if t ≡ 15 mod 18,

0 if t 6≡ 0 mod 3.
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Magic dice (a Monthly problem)

Given a 3 × 3-square, we form three 3-sided dice, as follows: the sides of
die i are labelled with the numbers in row i. We say die i beats die j if we
expect die i to show a bigger number than die j more than half the time.

(a) Suppose the square is a (strong) magic square whose entries are
1, 2, . . . , 9. Prove that no die beats the other two and no die loses to
the other two. Every die beats one die and loses to the other die.

(b) Show the same is true for any strong magic square.

(c) Suppose the square is a semimagic square whose entries are 1, 2, . . . , 9.
Show the same conclusion holds as in (a) and (b).

(d) But, there are semimagic squares for which one die beats both other
dice.
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