The partial-fractions method for

counting solutions to integral linear
systems

Matthias Beck, MSRI

www.msri.org/people/members/matthias/

arXiv: math.CO/0309332

MISs WORMWOOD, MY [DAD HE Sa4S HE WASHMT USED A | GWEN THE PRCE OF MY BILLS ALWRS
SAIS WHEN WE WAS 1N SIIDE RULE SINCE, BECAUSE | TECHNOLOSY, T PROPOSE || DIE IN SUBCOMMITTEE .
SCHO0L . THEY TRUGHT HIiM HE 07T B FIYE-RUCK WE LEANE MRETY To THE

TO DO MATH OM A SUDE RULE.| CALCULATOR THAT CAM DO | MACHINES AND GO PLAY |.

WORE PUMCTIONS THAN HE CUTSADE
CouLD FIGURE QUT IF His

LIFE DEFEMDED oM (T,
|

it i 1 ettt B Bl i ™ Bl = T B




Vector partition functions

A —an (m x d)-integral matrix
b e Z™

Goal: Compute vector partition function ¢a(b) := # {X C Z%o . Ax = b}

(defined for b in the nonnegative linear span of the columns of A)
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Vector partition functions

A — an (m x d)-integral matrix
b e Z™

Goal: Compute vector partition function ¢a(b) := # {X € Z%o . Ax = b}
(defined for b in the nonnegative linear span of the columns of A)

Applications in...

» Number Theory (partitions)

» Discrete Geometry (polyhedra)

» Commutative Algebra (Hilbert series)

» Algebraic Geometry (toric varieties)

» Representation Theory (tensor product multiplicities)
» Optimization (integer programming)

» Chemistry, Biology, Physics, Computer Science, Economics...
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Fort € Z~q, let Lp(t) := # (tP N Zd)
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Translate & introduce slack variables — P = {x ¢ R%o : Ax=b}

For t € Z~o, let Lp(t) := # (tP NZ%)
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Translate & introduce slack variables — P = {x ¢ R%o : Ax=b}

For t € Z~o, let Lp(t) := # (tP NZ*) = ¢a(tb) (for fixed b)
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € RY: Ax <b}

Translate & introduce slack variables — P = {X c R%O  Ax = b}
For t € Z~o, let Lp(t) := # (tP NZ*) = ¢a(tb) (for fixed b)

Quasi-polynomial — cg(t) t? 4 cq_1(t)t%1 4+ -+ + co(t) where c(t) are
periodic

Theorem (Ehrhart 1967) If P is a rational polytope, then the functions

Lp(t) and Lpo(t) are quasi-polynomials in ¢ of degree dimP. If P has
integer vertices, then Lp and Lpo are polynomials.

Theorem (Ehrhart, Macdonald 1970) Lp(—t) = (—1)4™ 7 Lpo(t)
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Vector partition theorems

da(b) :=#{x €2 : Ax=Db}

Quasi-polynomial — a finite sum > c,(b) b™ with coefficients ¢, that are
functions of b which are periodic in every component of b.

A matrix is unimodular if every square submatrix has determinant +1.

Theorem (Sturmfels 1995) ¢a(b) is a piecewise-defined quasi-polynomial
in b of degree d — rank(A). The regions of R" in which ¢a(b) is a
single quasi-polynomial are polyhedral. If A is unimodular then ¢, is a
piecewise-defined polynomial.

Theorem (MB 2002) Let 7 denote the sum of the entries in the k" row of
A, andletr = (r1,...,7). Then ¢o(b) = (—1)47rankAqg, (b — 1)

The partial-fractions method for counting solutions to integral linear systems ()  Matthias Beck 4



Issues...

» Compute the regions of (quasi-)polynomiality of ¢a(b)

» Given one such region, compute the (quasi-)polynomial ¢4 (b)

» Barvinok: Z¢A(tb) 2" can be computed in polynomial time
>0
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Euler’s generating function

oA (b) I:#{XEZ%OI AX:b} A= ¢ c

da(b) equals the coefficient of zP := z?l .- zPm of the function

1
(1 —z1)--- (1 — z%)

expanded as a power series centered at z = 0.
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Euler’s generating function

oA (b) IZ#{XEZ%OI AX:b} A= ¢ c

da(b) equals the coefficient of zP := z?l .- zPm of the function

1
(1 —z1)--- (1 — z%)

expanded as a power series centered at z = 0.

Proof Expand each factor into a geometric series. ©

The partial-fractions method for counting solutions to integral linear systems ()  Matthias Beck



Euler’s generating function

¢a(b) :=#{xcZl: Ax=Db} A=|c ¢ - cg

da(b) equals the coefficient of z := 21 ... zbm of the function

1
(1 —z1)--- (1 — z%)

expanded as a power series centered at z = 0.

Proof Expand each factor into a geometric series. ©

Equivalently, 1
b) = t
¢A( ) Ccons <1 L ch) L. (1 _ ch) Zb
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Partial fractions

1
(1 _ch) (1 _zcd) zb

®a(b) = const

Expand into partial fractions in zq:

d

1 _ 1 Z Ak(Z, bl) . B](Z)
Tz (T —weab o (e

Here Aj, and B, are polynomials in 21, rational functions in za, ..., 2,,, and
exponential in by.
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Partial fractions

1
(1 —ch) (]_ _ch) zb

®a(b) = const

Expand into partial fractions in zq:

1 1 Ag(z,b1) B;(z)
(1—201)"'<1—ch)zb: b b Z 1 —zo0 ]j
2ottt Zm 1 =1 <1
Here Aj, and B, are polynomials in 21, rational functions in za, ..., 2,,, and
exponential in by.
1 . Ap(z,by)
oa(b) = const,, . . T const ., T Jor
2 m k=1
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Partial fractions

1

da(b) = const A zo) (1 zea) g

Expand into partial fractions in z1:

by
1 o 1 Z Ak Z bl Z
__mc1) ... __ C b b bm, __ C
(1 —z1)--- (1 —2%)z 257zt \ =t 1 — 2% o
Here Aj, and B, are polynomials in 21, rational functions in za, ..., 2,,, and
exponential in by.
d
1 Ar(z, b
pa(b) = const,, .. — — const, K ’cl)
222"'me 1 1_Zk
d
1 Ar(0, 29, ..., Zm, b1)
= const 7 A .
222...mek:1 1_ (O,ZQ,...,Zm) k
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Advantages

» easy to implement
» allows symbolic computation

» constraints which define the regions of (quasi-)polynomiality are obtained
“automatically”
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An example

X1,x2,x3, L4 Z 0
r1+ 200 +2x3 = a
1 +x2o+x4 = b

1

Pala,b) = const (1 —zw)(1 — 22w)(1 — 2)(1 — w)z%wb
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An example

X1,x2,x3, L4 Z 0
r1+ 200 +2x3 = a
1 +x2o+x4 = b

1
(1 —zw)(1 — 22w)(1 — 2)(1 — w)z%w®

oa(a,b) = const

1 SO+l 5, 20+3 1 ,
. (1=2)? | (1-2)(01-2?)  (1-2)(1-2?) o
(1 - zw)(1 = 22w)(1 —w)uw® 1—ZwJr 1 — 22w * 1 —w +; wk
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An example

X1,x2,x3, L4 Z 0
r1+2x9+2x3 = a
r1+To+x4 = b

1
(1 —zw)(1 —22w)(1 — 2)(1 — w)z%w?

oa(a,b) = const

1  (1-2)2  (1-2)(1-22) , (1—2)(1—2?)
(1—z2w)(1 - 22w)(1 —w)w®  1-— w120 T 1-uw +kz ok

zb—l—l z2b—}—3 1 b

1 ~b+1 »2b+3 1
¢ala,b) = constm—r0 (_(1 A0 I-2(1-=2
Zb—a—|—1 22b—a+3 1
- oo <‘<1 S I R I TR i >>
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An example

Zb—a—l—l ZQb—a—i—S

1

5 T

ba(a,b) = const GW

For the second term. . .
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An example

Zb—a—l—l ZQb—a—i—S

A—2p  (1-2)2(1-22)

da(a,b) = const (—

For the second term, if 2b — a + 3 > 0 then const

1
+

(1 —2)%(1 — 22)z

2b—a—+3

z :O

(1-2)%(1-22)
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An example

Zb—a—i—l Z2b—a—|—3 1
-+ +

onte) = const ({55 =Sy e

2b—a—+3

For the second term, if 2b — a + 3 > 0 then const —2

a-2a—= — Y

If 2b — a + 3 < 0 we expand into partial fractions again:

ZZb—a—I—S
(1—2)*(1—2?)

const

2
12 e A eRt g (C1)eTYB
(1—2)3 " (1—2)2 1— 2 1+ 2

(a — 2b)? N 2b—a N 1+ (=1)*!
4 2 8

— const
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An example

—|—a—|—w ifa <b
2 2 . A .
¢A(a,b)=<ab—z—% a;b+7+(81) nca>b>c‘7_3
3b
+5 +1
L1,X2,T3, T4 2 0
r1+200+2x3 = a b
r1+x2+x4 = b a<b
p< o5
- a
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Open problems

» Computational complexity

» Re-interpret each term as coming from a linear system and simplify
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Open problems

» Computational complexity

» Re-interpret each term as coming from a linear system and simplify

Example: “second term” above

Z2b—a—|—3

const 73— my = #A@w2) €25 vyt =a-2b-3)

= #{(:c,y)EZ%O: z+2y <a-—2b—3}
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