
The partial-fractions method for
counting solutions to integral linear

systems

Matthias Beck, MSRI

www.msri.org/people/members/matthias/

arXiv: math.CO/0309332



Vector partition functions

A – an (m× d)-integral matrix
b ∈ Zm

Goal: Compute vector partition function φA(b) := #
{
x ∈ Zd

≥0 : Ax = b
}

(defined for b in the nonnegative linear span of the columns of A)
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Vector partition functions

A – an (m× d)-integral matrix
b ∈ Zm

Goal: Compute vector partition function φA(b) := #
{
x ∈ Zd

≥0 : Ax = b
}

(defined for b in the nonnegative linear span of the columns of A)

Applications in...

I Number Theory (partitions)

I Discrete Geometry (polyhedra)

I Commutative Algebra (Hilbert series)

I Algebraic Geometry (toric varieties)

I Representation Theory (tensor product multiplicities)

I Optimization (integer programming)

I Chemistry, Biology, Physics, Computer Science, Economics...
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Ehrhart quasi-polynomials

Rational (convex) polytope P – convex hull of finitely many points in Qd

Alternative description: P =
{
x ∈ Rd : Ax ≤ b

}
For t ∈ Z>0, let LP(t) := #

(
tP ∩ Zd

)
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Ehrhart quasi-polynomials

Rational (convex) polytope P – convex hull of finitely many points in Qd

Alternative description: P =
{
x ∈ Rd : Ax ≤ b

}
Translate & introduce slack variables −→ P =

{
x ∈ Rd

≥0 : Ax = b
}

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
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Ehrhart quasi-polynomials

Rational (convex) polytope P – convex hull of finitely many points in Qd

Alternative description: P =
{
x ∈ Rd : Ax ≤ b

}
Translate & introduce slack variables −→ P =

{
x ∈ Rd

≥0 : Ax = b
}

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= φA(tb) (for fixed b)
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Ehrhart quasi-polynomials

Rational (convex) polytope P – convex hull of finitely many points in Qd

Alternative description: P =
{
x ∈ Rd : Ax ≤ b

}
Translate & introduce slack variables −→ P =

{
x ∈ Rd

≥0 : Ax = b
}

For t ∈ Z>0, let LP(t) := #
(
tP ∩ Zd

)
= φA(tb) (for fixed b)

Quasi-polynomial – cd(t) td + cd−1(t) td−1 + · · · + c0(t) where ck(t) are
periodic

Theorem (Ehrhart 1967) If P is a rational polytope, then the functions
LP(t) and LP◦(t) are quasi-polynomials in t of degree dimP . If P has
integer vertices, then LP and LP◦ are polynomials.

Theorem (Ehrhart, Macdonald 1970) LP(−t) = (−1)dimPLP◦(t)
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Vector partition theorems

φA(b) := #
{
x ∈ Zd

≥0 : Ax = b
}

Quasi-polynomial – a finite sum
∑

n cn(b)bn with coefficients cn that are
functions of b which are periodic in every component of b.

A matrix is unimodular if every square submatrix has determinant ±1.

Theorem (Sturmfels 1995) φA(b) is a piecewise-defined quasi-polynomial
in b of degree d − rank(A) . The regions of Rm in which φA(b) is a
single quasi-polynomial are polyhedral. If A is unimodular then φA is a
piecewise-defined polynomial.

Theorem (MB 2002) Let rk denote the sum of the entries in the kth row of
A, and let r = (r1, . . . , rm). Then φA(b) = (−1)d−rank AφA(−b− r)
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Issues...

I Compute the regions of (quasi-)polynomiality of φA(b)

I Given one such region, compute the (quasi-)polynomial φA(b)

I Barvinok:
∑
t≥0

φA(tb) zt can be computed in polynomial time
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Euler’s generating function

φA(b) := #
{
x ∈ Zd

≥0 : Ax = b
}

A =

 | | |
c1 c2 · · · cd

| | |


φA(b) equals the coefficient of zb := zb1

1 · · · zbm
m of the function

1
(1− zc1) · · · (1− zcd)

expanded as a power series centered at z = 0.
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Euler’s generating function

φA(b) := #
{
x ∈ Zd

≥0 : Ax = b
}

A =

 | | |
c1 c2 · · · cd

| | |


φA(b) equals the coefficient of zb := zb1

1 · · · zbm
m of the function

1
(1− zc1) · · · (1− zcd)

expanded as a power series centered at z = 0.

Proof Expand each factor into a geometric series.
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Euler’s generating function

φA(b) := #
{
x ∈ Zd

≥0 : Ax = b
}

A =

 | | |
c1 c2 · · · cd

| | |


φA(b) equals the coefficient of zb := zb1

1 · · · zbm
m of the function

1
(1− zc1) · · · (1− zcd)

expanded as a power series centered at z = 0.

Proof Expand each factor into a geometric series.

Equivalently,
φA(b) = const

1
(1− zc1) · · · (1− zcd) zb
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Partial fractions

φA(b) = const
1

(1− zc1) · · · (1− zcd) zb

Expand into partial fractions in z1:

1
(1− zc1) · · · (1− zcd) zb =

1

zb2
2 · · · zbm

m

 d∑
k=1

Ak(z, b1)
1− zck

+
b1∑

j=1

Bj(z)
zj
1


Here Ak and Bj are polynomials in z1, rational functions in z2, . . . , zm, and
exponential in b1.
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Partial fractions

φA(b) = const
1

(1− zc1) · · · (1− zcd) zb

Expand into partial fractions in z1:

1
(1− zc1) · · · (1− zcd) zb =

1

zb2
2 · · · zbm

m

 d∑
k=1

Ak(z, b1)
1− zck

+
b1∑

j=1

Bj(z)
zj
1


Here Ak and Bj are polynomials in z1, rational functions in z2, . . . , zm, and
exponential in b1.

φA(b) = constz2,...,zm

1

zb2
2 · · · zbm

m

constz1

d∑
k=1

Ak(z, b1)
1− zck
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Partial fractions

φA(b) = const
1

(1− zc1) · · · (1− zcd) zb

Expand into partial fractions in z1:

1
(1− zc1) · · · (1− zcd) zb =

1

zb2
2 · · · zbm

m

 d∑
k=1

Ak(z, b1)
1− zck

+
b1∑

j=1

Bj(z)
zj
1


Here Ak and Bj are polynomials in z1, rational functions in z2, . . . , zm, and
exponential in b1.

φA(b) = constz2,...,zm

1

zb2
2 · · · zbm

m

constz1

d∑
k=1

Ak(z, b1)
1− zck

= const
1

zb2
2 · · · zbm

m

d∑
k=1

Ak(0, z2, . . . , zm, b1)
1− (0, z2, . . . , zm)ck
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Advantages

I easy to implement

I allows symbolic computation

I constraints which define the regions of (quasi-)polynomiality are obtained
“automatically”
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An example

x1, x2, x3, x4 ≥ 0
x1 + 2x2 + x3 = a
x1 + x2 + x4 = b

@
@

@
@

@
@

@
@

@
@

@
@

HHH
HHH

HHH
HHH

HHH
HH

φA(a, b) = const
1

(1− zw)(1− z2w)(1− z)(1− w)zawb
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An example

x1, x2, x3, x4 ≥ 0
x1 + 2x2 + x3 = a
x1 + x2 + x4 = b

@
@

@
@

@
@

@
@

@
@

@
@

HHH
HHH

HHH
HHH

HHH
HH

φA(a, b) = const
1

(1− zw)(1− z2w)(1− z)(1− w)zawb

1
(1− zw)(1− z2w)(1− w)wb

= −
zb+1

(1−z)2

1− zw
+

z2b+3

(1−z)(1−z2)

1− z2w
+

1
(1−z)(1−z2)

1− w
+

b∑
k=1

. . .

wk
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An example

x1, x2, x3, x4 ≥ 0
x1 + 2x2 + x3 = a
x1 + x2 + x4 = b

@
@

@
@

@
@

@
@

@
@

@
@

HH
HHH

HHH
HHH

HHH
HHH

φA(a, b) = const
1

(1− zw)(1− z2w)(1− z)(1− w)zawb

1
(1− zw)(1− z2w)(1− w)wb

= −
zb+1

(1−z)2

1− zw
+

z2b+3

(1−z)(1−z2)

1− z2w
+

1
(1−z)(1−z2)

1− w
+

b∑
k=1

. . .

wk

φA(a, b) = const
1

(1− z)za

(
− zb+1

(1− z)2
+

z2b+3

(1− z)(1− z2)
+

1
(1− z)(1− z2)

)
= const

(
− zb−a+1

(1− z)3
+

z2b−a+3

(1− z)2(1− z2)
+

1
(1− z)2(1− z2)za

)
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An example

φA(a, b) = const
(
− zb−a+1

(1− z)3
+

z2b−a+3

(1− z)2(1− z2)
+

1
(1− z)2(1− z2)za

)
For the second term. . .
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An example

φA(a, b) = const
(
− zb−a+1

(1− z)3
+

z2b−a+3

(1− z)2(1− z2)
+

1
(1− z)2(1− z2)za

)

For the second term, if 2b− a + 3 > 0 then const z2b−a+3

(1−z)2(1−z2)
= 0
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An example

φA(a, b) = const
(
− zb−a+1

(1− z)3
+

z2b−a+3

(1− z)2(1− z2)
+

1
(1− z)2(1− z2)za

)
For the second term, if 2b− a + 3 > 0 then const z2b−a+3

(1−z)2(1−z2)
= 0

If 2b− a + 3 ≤ 0 we expand into partial fractions again:

const
z2b−a+3

(1− z)2(1− z2)

= const

 1/2
(1− z)3

+
a−2b−3

2 + 1
4

(1− z)2
+

(a−2b−3)2

4 + a−2b−3
2 + 1

8

1− z
+

(−1)a+1/8
1 + z


=

(a− 2b)2

4
+

2b− a

2
+

1 + (−1)a+1

8
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An example

φA(a, b) =


a2

4 + a + 7+(−1)a

8 if a ≤ b

ab− a2

4 −
b2

2 + a+b
2 + 7+(−1)a

8 if a > b > a−3
2

b2

2 + 3b
2 + 1 if b ≤ a−3

2

- a

6

b
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���
a < b a > b > a−3

2

b ≤ a−3
2

x1, x2, x3, x4 ≥ 0
x1 + 2x2 + x3 = a
x1 + x2 + x4 = b

@
@

@
@

@
@

@
@

@
@

@
@

HHH
HHH

HHH
HHH

HHH
HH
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Open problems

I Computational complexity

I Re-interpret each term as coming from a linear system and simplify
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Open problems

I Computational complexity

I Re-interpret each term as coming from a linear system and simplify

Example: “second term” above

const
z2b−a+3

(1− z)2(1− z2)
= #

{
(x, y, z) ∈ Z3

≥0 : x + y + 2z = a− 2b− 3
}

= #
{
(x, y) ∈ Z2

≥0 : x + 2y ≤ a− 2b− 3
}
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