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Chromatic Polynomials

G = (V, FE) — graph (without loops)

Proper n-coloring — xk : V. — [n] := {1,2,...,n} such that x(i) # k(j)
for any edge 15 € E

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)
Example: xg,(k) = k(k —1)

(Theorem due to Birkhoff 1912, Whitney 1932)
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Chromatic Polynomials

G = (V, E) — graph (without loops)

Proper n-coloring — Kk : V. — [n] := {1,2,...,n} such that k(i) # k(j)
for any edge 15 € E

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)
Example: x g, (k) = k(k —1)

(Theorem due to Birkhoff 1912, Whitney 1932)

Class of chromatic polynomials — two main research problems:

» Classification — which polynomials are chromatic?

» Detection — does a given polynomial determine the graph?
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Chromatic Polynomials

G = (V, E) — graph (without loops)

Proper n-coloring — Kk : V. — [n] := {1,2,...,n} such that k(i) # k(j)
for any edge 15 € E

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)
Example: x g, (k) = k(k —1)

(Theorem due to Birkhoff 1912, Whitney 1932)

Polynomial classes in Combinatorics — two main research problems:

» Classification — which polynomials are ...7?

» Detection — does a given polynomial determine the ...7?
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Chromatic Polynomials

Proper n-coloring — k : V' — [n] := {1,2,...,n} such that (i) # x(j)

for any edge 15 € E
Chromatic polynomial — xg(n) := # (proper n-colorings of G3)
» Classification — which polynomials are chromatic?

. wide open, though we have structural results:

» Xa(n) is monic, has constant term 0 and degree |V|.

» The coefficients of yg(n) alternate in sign.

» |xa(—1)| equals # acyclic orientations of G (Stanley 1973).

» The coefficients of yg(n) are unimodal (Huh 2012).
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Chromatic Polynomials
Proper n-coloring — k : V. — [n] := {1,2,...,n} such that k(i) # k(j)
for any edge 15 € E
Chromatic polynomial — xg(n) := # (proper n-colorings of G3)
» Detection — does a given polynomial determine the graph?

... fails spectacularly: If T"is a tree with m edges then

xr(n) = n(n —1)"
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Chromatic Symmetric Functions

G = (V, FE) — graph (without loops)
Proper coloring — k : V' — Z~ such that x(z) # k(j) for any edge ij €

Chromatic symmetric function

-1 K‘,_l
XG(CIfl,ZIZQ,...) = Z Zlffﬁ (1)3352'%& (2)

proper colorings ~

Example: X, (k) = 6212005 + 621 0004 + - - -
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Chromatic Symmetric Functions

G = (V, FE) — graph (without loops)
Proper coloring — k : V' — Z~ such that x(z) # k(j) for any edge ij €

Chromatic symmetric function

-1 K‘,_l
XG(CIfl,ZIZQ,...) = Z Zlffé (1)3352'%& (2)

proper colorings ~

Example: X, (k) = 6212005 + 621 0004 + - - -

We recover xa(n) = Xg(1,...,1,0,0,...)

n times
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Chromatic Symmetric Functions

G = (V, E) — graph (without loops)
Proper coloring — k : V' — Z~¢ such that x(7) # k(j) for any edge ij €

Chromatic symmetric function

K_l m_l
Xolonan..) = 5 o Wef@

proper colorings K

Example: Xy, (k) = 6212005 + 621 0004 + - - -

We recover xa(n) = Xa(1,...,1,0,0,...)

n times

Conjecture (Stanley 1995) X (21, x2,...) distinguishes trees.

(Loehr—Warrington 2024) Xa(q,q%,...,q™,0,0,...) distinguishes trees.
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g-Chromatic Polynomials

Definition xx(q,n) := Z g2=vev () \where \ € 7Y, is fixed

proper colorings
k:V—[n]

We recover xg(n) = x&(1,n) and x&(q,n) = Xa(q, 4%, -..,4",0,0,...)
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g-Chromatic Polynomials

Definition xx(q,n) := Z g2=vev () \where \ € 7Y, is fixed

proper colorings
KV —[n]

We recover xg(n) = x&(1,n) and x&(q,n) = Xa(q, 42, -..,¢™,0,0,...)

Example ° ° ° °

1

1
n) = X
R G TG e e e ey

(8q10(1 ~¢)"(1-g"(1-q)" 1"
+(4g° +64° + 4¢)(1 — )" (1 — q)"(1 — )" (1 — g)" 2

+2¢°(1 — ¢)"P*(1— )" (1 — ¢)"(1 - C])n_1>
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g-Chromatic Polynomial Structure

Xlam) = Y S

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ ) There exists a (unique) poly-
nomial X2 (¢, z) € Z(q)[x] such that

xe(a:n) = Xe(g[nlg)  where  [n]i=1+qg+---+¢""
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g-Chromatic Polynomial Structure

xolen) = ) gqeevor)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ ) There exists a (unique) poly-
nomial X2 (¢, z) € Z(q)[x] such that

xe(a:n) = Xe(g[nlg)  where  [n]i=1+qg+---+¢""

1
Example  Xp,(¢,z) = :
xample  Xp,(q, ) 14+q(14+qg+q¢*>)(14+qg+q*>+ ¢3)

<(2q8 +4(]7+6q6 +4q5 +8q4) 4

— (6¢° + 10¢" + 18¢° + 18¢° + 20¢*) z°
o + (4¢° + 10¢" + 20¢° + 22¢° + 16¢*) 2*

— (4q7 + 8¢% + 8¢° + 4q4) :U)
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Why?

XG(xlawa") — . . Xé?(Q7,n’) —
#rT (1) #r™ (2 Ap)R(1) Ny UV
Z P ():CQK (2) . Z (q 1) (q |v|)
proper colorings K proper colorings
k:V —[n]

Conjecture (Stanley 1995) X (z1, 22, .. .) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo-MB—Vindas-Meléndez 2025+) The leading coefficient of
X&(q, z) distinguishes trees.

Chromatic polynomials, symmetric functions & friends Matthias Beck 7



Why?

Xc;(ilj‘l,xg,...) — ) X Xé\;(%n) —
#r~ N1 #rTLH2 A\ R(1) Ay UV
Z 7 ():1:2 (2) . Z (q 1) (q |V|)
proper colorings k proper colorings
k:V —[n]

Conjecture (Stanley 1995) X (21, x2,...) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X¢(q, 4%, ...,q",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo-MB-Vindas-Meléndez 2025+) The leading coefficient of
X&(q, z) distinguishes trees.

Remarks x¢&(gq,n) was previously studied by Loebl (2007).

X2 (q,m) is a special evaluation (with polynomial structure) of Crew—Spirkl’s
(2020) weighted chromatic symmetric function.
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Where does all this come from?

Lattice polytope P C R% — convex hull of finitely points in Z¢
For n € Z~ let Lp(n) := # (nP N Z%)

Theorem (Ehrhart 1962, Macdonald 1971) Lp(n) is a polynomial in n.
Furthermore, Lp(—n) = (—=1)M™7# (nP° N Z%).

e
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Where does all this come from?

Lattice polytope P C R% — convex hull of finitely points in Z¢
For n € Z~ let Lp(n) := # (nP N Z%)

Theorem (Ehrhart 1962, Macdonald 1971) Lp(n) is a polynomial in n.
Furthermore, Lp(—n) = (—=1)M™7# (nP° N Z%).

Example (II, <) — (finite) partially ordered set —

Q%O)(n) := # (strictly) order-preserving maps II — [n]

Observation xg(n) = Z Qr,(n)
pEA(G)

where A(G) is the set of acyclic orientations of G and II, is the poset
corresponding to p
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Where does all this come from?

Lattice polytope P C R% — convex hull of finitely points in Z¢

Lp(n) == # (nP N Z7) xe(n)= > Q (n)

Theorem (Ehrhart 1962, Macdonald 1971) Lp(n) is a polynomial in n.
Furthermore, Lp(—n) = (=1)™7# (nP° N Z%).

Now fix a linear form \ and let LP q,n) : Z qA(m)
menP

Theorem (Chapoton 2015) Under some mild assumptions, there exists a
polynomial L (q, ) € Z(q)[z] such that L (q,n) = Ly (q, [n],)-
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Where does all this come from?

Lattice polytope P C R% — convex hull of finitely points in Z¢

Lp(n) == # (nP N Z7) xe(n)= > Q (n)

Theorem (Ehrhart 1962, Macdonald 1971) Lp(n) is a polynomial in n.
Furthermore, Lp(—n) = (=1)™7# (nP° N Z%).

Now fix a linear form \ and let LP q,n) : Z qA(m)
menP

Theorem (Chapoton 2015) Under some mild assumptions, there exists a
polynomial L3(q,x) € Z(q)[z] such that Ly(q,n) = Lp(q,[n],). Further-

more, ~ .
Ly (L [=nl) = (~1)fmP 37 e

1
q
menpPe
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Where does all this come from?

Fix a linear form A and let LP q,n) : Z q’\(m)
menpP

Theorem (Chapoton 2015) Under some mild assumptions, there exists a
polynomial L(q,x) € Z(q)[z] such that Ly(q,n) = Ly(q,[n],). Further-

more, ~ .
Ly (L [-nly) = (-1)fmP 3 g
menpPe

Extensions (MB—Kunze 2025+ )

» Explicit formulas in terms of the vertex cones of P

» Bounds on the poles of the cofficients

1

» Behavior asn — oo via x = g

» Quasipolynomials for rational polytopes
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g-Chromatic Polynomial Formulas

Xolgn) == > e = 3R(q, [n]y)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ )

_ 1 — (14 qx —x)rc
Xolez) = ¢ Y we9 1] e
flats SCFE CeP(S) q

where P(S) denotes the collection of vertex sets of the connected compo-
nents induced by S and Ay = ZUEW Ay. In particular, for a tree

X1(q, ) = QAVZ(—1)|S| H 1— (14 qz —x)hc

1 — gic
SCE CeP(S)

—— highly-structured formulas for paths, stars, . ..
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The Leading Coefficient for Trees

xolgn) = ) g=eev ) = 3(g,[n],)
proper colorings
k:V—[n]

Corollary Given a tree T, the leading coefficient of xx(q,n) equals

(@) = (a-)"), 1l —=

SCE CeP(S)

= Z g d:=V|

T (p,0)

where the sum ranges over all pairs of acyclic orientations p of 1" and linear
extensions o of the poset induced by p

Corollary ct(q) = (—q)* Xt (l 25 )

q’qQ’q?”
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(7-Partitions

Given a poset P = (|d],=), a strict P-partition of n € Z~q is a tuple
(mq,...,mq) € Z%, such that

d
ij =n and m; < myj whenever j <k
J=1

Given a (simple) graph G = ([d], F), a G-partition of n € Z~ is a tuple
(m1,...,mq) € Z%, such that

d
E m; =n and My % My, Whenever vw € B
j=1

Let pg(n) denote the number of G -partitions of n, with accompanying

generating function
Polq) == Y pa(n)q® = Xala.¢*¢%...)
n>0
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(7-Partitions

Given a (simple) graph G = ([d], E'), a G-partition of n € Z~¢ is a tuple
(m1,...,mq) € Z%, such that

d
E m; =n and My % My, Whenever vw € E
g=1

Let pg(n) denote the number of G -partitions of n, with accompanying
generating function Pg(q) := Zn>OpG(n) q"

d+1

Theorem q( 3 )Z(p,a) g~ maio

Pa(q) =
(1—q)(1—¢?) - (1—q%
where the sum ranges over all pairs of acyclic orientations p of GG and linear
extensions o of the poset induced by p
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(7-Partitions

Given a (simple) graph G = ([d], E'), a G-partition of n € Z~¢ is a tuple
(m1,...,mq) € Z%, such that

d
E m; =n and My % My, Whenever vw € E
g=1

Let pg(n) denote the number of G -partitions of n, with accompanying
generating function Pg(q) := Zn>OpG(n) q"

Collorary Given a tree T on d vertices, the leading coefficient of X+(q,n)
equals

cHa) = (—a) Pr (%)

Conjecture The G-partition function pa(n) distinguishes trees.
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Stanley’s Tree Conjecture Reuvisited

XG(xlawa") — . . Xé?(Q7,n’) —
#rT (1) #r™ (2 Ap)R(1) Ny UV
Z P ()xQH: (2) . Z (q 1) (q |v|)
proper colorings K proper colorings
k:V —[n]

Conjecture (Stanley 1995) X (z1, 22, .. .) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo-MB—Vindas-Meléndez 2025+) The leading coefficient of
X&(q, z) distinguishes trees.

Theorem (MB—Braun—Cornejo 2025+) Fix k > d and A\; := k7. Then
Xa (g, ) distinguishes graphs on d nodes.
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