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Chromatic Polynomials

G = (V,E) — graph (without loops)

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

Example: χK3(k) = k(k − 1)(k − 2)

(Theorem due to Birkhoff 1912, Whitney 1932) 
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Class of chromatic polynomials −→ two main research problems:

▶ Classification — which polynomials are chromatic?

▶ Detection — does a given polynomial determine the graph?
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Polynomial classes in Combinatorics −→ two main research problems:

▶ Classification — which polynomials are ...?

▶ Detection — does a given polynomial determine the ...?
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Chromatic Polynomials

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

▶ Classification — which polynomials are chromatic?

... wide open, though we have structural results:

▶ χG(n) is monic, has constant term 0 and degree |V |.

▶ The coefficients of χG(n) alternate in sign.

▶ |χG(−1)| equals # acyclic orientations of G (Stanley 1973).

▶ The coefficients of χG(n) are unimodal (Huh 2012).
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Chromatic Polynomials

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

▶ Detection — does a given polynomial determine the graph?

... fails spectacularly: If T is a tree with m edges then

χT (n) = n(n− 1)m
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Chromatic Symmetric Functions

G = (V,E) — graph (without loops)

Proper coloring — κ : V → Z>0 such that κ(i) ̸= κ(j) for any edge ij ∈ E

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

Example: XK3(k) = 6x1 x2 x3 + 6x1 x2 x4 + · · ·
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We recover χG(n) = XG(1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . .)
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We recover χG(n) = XG(1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . .)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

(Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) distinguishes trees.
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q-Chromatic Polynomials

Definition χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) where λ ∈ ZV
>0 is fixed

We recover χG(n) = χ1
G(1, n) and χ1

G(q, n) = XG(q, q
2, . . . , qn, 0, 0, . . .)
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q-Chromatic Polynomials

Definition χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) where λ ∈ ZV
>0 is fixed

We recover χG(n) = χ1
G(1, n) and χ1

G(q, n) = XG(q, q
2, . . . , qn, 0, 0, . . .)

Example • • • •

χ1
P4
(q, n) =

1

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
×(

8q10(1− q)n(1− q)n−1(1− q)n−2(1− q)n−3

+(4q9 + 6q8 + 4q7)(1− q)n+1(1− q)n(1− q)n−1(1− q)n−2

+2q6(1− q)n+2(1− q)n+1(1− q)n(1− q)n−1

)
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q-Chromatic Polynomial Structure

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v)

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) poly-
nomial χ̃λ

G(q, x) ∈ Z(q)[x] such that

χλ
G(q, n) = χ̃λ

G(q, [n]q) where [n]q := 1 + q + · · ·+ qn−1
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q-Chromatic Polynomial Structure

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v)

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) poly-
nomial χ̃λ

G(q, x) ∈ Z(q)[x] such that

χλ
G(q, n) = χ̃λ

G(q, [n]q) where [n]q := 1 + q + · · ·+ qn−1

Example χ̃1
P4
(q, x) =

1

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
×((

2q8 + 4q7 + 6q6 + 4q5 + 8q4
)
x4

−
(
6q8 + 10q7 + 18q6 + 18q5 + 20q4

)
x3

+
(
4q8 + 10q7 + 20q6 + 22q5 + 16q4

)
x2

−
(
4q7 + 8q6 + 8q5 + 4q4

)
x
)• • • •
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Why?

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.
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Why?

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Remarks χ1
G(q, n) was previously studied by Loebl (2007).

χλ
G(q, n) is a special evaluation (with polynomial structure) of Crew–Spirkl’s

(2020) weighted chromatic symmetric function.
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Where does all this come from?

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For n ∈ Z>0 let LP(n) := #
(
nP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) LP(n) is a polynomial in n .
Furthermore, LP(−n) = (−1)dimP#

(
nP◦ ∩ Zd

)
.
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Where does all this come from?

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For n ∈ Z>0 let LP(n) := #
(
nP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) LP(n) is a polynomial in n .
Furthermore, LP(−n) = (−1)dimP#

(
nP◦ ∩ Zd

)
.

Example (Π,⪯) — (finite) partially ordered set −→

Ω
(◦)
Π (n) := # (strictly) order-preserving maps Π → [n]

Observation χG(n) =
∑

ρ∈A(G)

Ω◦
Πρ
(n)

where A(G) is the set of acyclic orientations of G and Πρ is the poset
corresponding to ρ
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Where does all this come from?

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

LP(n) := #
(
nP ∩ Zd

)
χG(n) =

∑
ρ∈A(G)

Ω◦
Πρ
(n)

Theorem (Ehrhart 1962, Macdonald 1971) LP(n) is a polynomial in n .
Furthermore, LP(−n) = (−1)dimP#

(
nP◦ ∩ Zd

)
.

Now fix a linear form λ and let Lλ
P(q, n) :=

∑
m∈nP

qλ(m)

Theorem (Chapoton 2015) Under some mild assumptions, there exists a

polynomial L̃λ
P(q, x) ∈ Z(q)[x] such that Lλ

P(q, n) = L̃λ
P(q, [n]q).

Chromatic polynomials, symmetric functions & friends Matthias Beck 9



Where does all this come from?

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

LP(n) := #
(
nP ∩ Zd

)
χG(n) =

∑
ρ∈A(G)

Ω◦
Πρ
(n)

Theorem (Ehrhart 1962, Macdonald 1971) LP(n) is a polynomial in n .
Furthermore, LP(−n) = (−1)dimP#

(
nP◦ ∩ Zd

)
.

Now fix a linear form λ and let Lλ
P(q, n) :=

∑
m∈nP

qλ(m)

Theorem (Chapoton 2015) Under some mild assumptions, there exists a

polynomial L̃λ
P(q, x) ∈ Z(q)[x] such that Lλ

P(q, n) = L̃λ
P(q, [n]q). Further-

more,
L̃λ
P

(
1
q , [−n]1

q

)
= (−1)dimP

∑
m∈nP◦

qλ(m)
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Where does all this come from?

Fix a linear form λ and let Lλ
P(q, n) :=

∑
m∈nP

qλ(m)

Theorem (Chapoton 2015) Under some mild assumptions, there exists a

polynomial L̃λ
P(q, x) ∈ Z(q)[x] such that Lλ

P(q, n) = L̃λ
P(q, [n]q). Further-

more,
L̃λ
P

(
1
q , [−n]1

q

)
= (−1)dimP

∑
m∈nP◦

qλ(m)

Extensions (MB–Kunze 2025+)

▶ Explicit formulas in terms of the vertex cones of P

▶ Bounds on the poles of the cofficients

▶ Behavior as n → ∞ via x = 1
1−q

▶ Quasipolynomials for rational polytopes
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q-Chromatic Polynomial Formulas

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Theorem (Bajo–MB–Vindas-Meléndez 2025+)

χ̃λ
G(q, x) = qΛV

∑
flats S⊆E

µ(∅, S)
∏

C∈P (S)

1− (1 + qx− x)ΛC

1− qΛC

where P (S) denotes the collection of vertex sets of the connected compo-
nents induced by S and ΛW :=

∑
v∈W λv. In particular, for a tree

χ̃λ
T (q, x) = qΛV

∑
S⊆E

(−1)|S|
∏

C∈P (S)

1− (1 + qx− x)ΛC

1− qΛC

−→ highly-structured formulas for paths, stars, . . .

Chromatic polynomials, symmetric functions & friends Matthias Beck 10



The Leading Coefficient for Trees

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Corollary Given a tree T , the leading coefficient of χ̃1
T (q, n) equals

c1T (q) = (q − q2)d
∑
S⊆E

∏
C∈P (S)

1

1− qΛC

=
1

[d]q!

∑
(ρ,σ)

qd+majσ d := |V |

where the sum ranges over all pairs of acyclic orientations ρ of T and linear
extensions σ of the poset induced by ρ

Corollary c1T (q) = (−q)dXT

(
1
q ,

1
q2
, 1
q3
, . . .

)
Chromatic polynomials, symmetric functions & friends Matthias Beck 11



G-Partitions

Given a poset P = ([d],⪯) , a strict P -partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mj < mk whenever j ≺ k

Given a (simple) graph G = ([d], E), a G-partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mv ̸= mw whenever vw ∈ E

Let pG(n) denote the number of G -partitions of n , with accompanying
generating function

PG(q) :=
∑
n>0

pG(n) q
n = XG(q, q

2, q3, . . .)
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G-Partitions

Given a (simple) graph G = ([d], E), a G-partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mv ̸= mw whenever vw ∈ E

Let pG(n) denote the number of G -partitions of n , with accompanying
generating function PG(q) :=

∑
n>0 pG(n) q

n

Theorem
PG(q) =

q(
d+1
2 )∑

(ρ,σ) q
−majσ

(1− q)(1− q2) · · · (1− qd)

where the sum ranges over all pairs of acyclic orientations ρ of G and linear
extensions σ of the poset induced by ρ
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G-Partitions

Given a (simple) graph G = ([d], E), a G-partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mv ̸= mw whenever vw ∈ E

Let pG(n) denote the number of G -partitions of n , with accompanying
generating function PG(q) :=

∑
n>0 pG(n) q

n

Collorary Given a tree T on d vertices, the leading coefficient of χ̃1
T (q, n)

equals

c1T (q) = (−q)dPT

(
1
q

)

Conjecture The G-partition function pG(n) distinguishes trees.
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Stanley’s Tree Conjecture Revisited

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Theorem (MB–Braun–Cornejo 2025+) Fix k ≥ d and λj := kj . Then
χ̃λ
G(q, x) distinguishes graphs on d nodes.

Chromatic polynomials, symmetric functions & friends Matthias Beck −1


