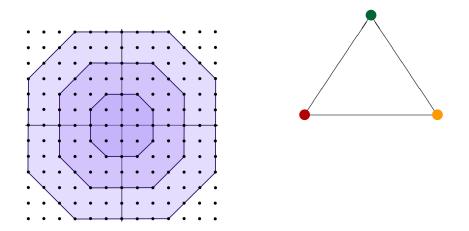
Chromatic Polynomials, Symmetric Functions & Friends

Matthias Beck

San Francisco State University matthbeck.github.io



Esme Bajo Art of Problem Solving Ben Braun University of Kentucky Alvaro Cornejo University of Kentucky Thomas Kunze UC Irvine Andrés Vindas-Meléndez Harvey Mudd College

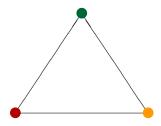
G = (V, E) — graph (without loops)

Proper *n*-coloring — $\kappa: V \to [n] := \{1, 2, ..., n\}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic polynomial — $\chi_G(n) := \#$ (proper *n*-colorings of *G*)

Example: $\chi_{K_3}(k) = k(k-1)(k-2)$

(Theorem due to Birkhoff 1912, Whitney 1932)



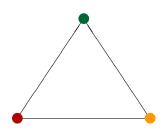
G = (V, E) — graph (without loops)

Proper *n*-coloring — $\kappa: V \to [n] := \{1, 2, ..., n\}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic polynomial — $\chi_G(n) := \#$ (proper *n*-colorings of *G*)

Example: $\chi_{K_3}(k) = k(k-1)(k-2)$

(Theorem due to Birkhoff 1912, Whitney 1932)



Class of chromatic polynomials \longrightarrow two main research problems:

- Classification which polynomials are chromatic?
- Detection does a given polynomial determine the graph?

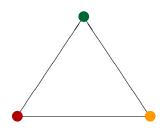
G = (V, E) — graph (without loops)

Proper *n*-coloring — $\kappa : V \to [n] := \{1, 2, ..., n\}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic polynomial — $\chi_G(n) := \#$ (proper *n*-colorings of *G*)

Example: $\chi_{K_3}(k) = k(k-1)(k-2)$

(Theorem due to Birkhoff 1912, Whitney 1932)



Polynomial classes in Combinatorics \longrightarrow two main research problems:

Detection — does a given polynomial determine the ...?

Proper *n*-coloring — $\kappa: V \to [n] := \{1, 2, \dots, n\}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic polynomial — $\chi_G(n) := \#$ (proper *n*-colorings of *G*)

Classification — which polynomials are chromatic?

... wide open, though we have structural results:

- ▶ $\chi_G(n)$ is monic, has constant term 0 and degree |V|.
- The coefficients of $\chi_G(n)$ alternate in sign.

▶ $|\chi_G(-1)|$ equals # acyclic orientations of G (Stanley 1973).

• The coefficients of $\chi_G(n)$ are unimodal (Huh 2012).

Proper *n*-coloring — $\kappa: V \to [n] := \{1, 2, \dots, n\}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic polynomial — $\chi_G(n) := \#$ (proper *n*-colorings of *G*)

Detection — does a given polynomial determine the graph?

... fails spectacularly: If T is a tree with m edges then

 $\chi_T(n) = n(n-1)^m$

Chromatic Symmetric Functions

G = (V, E) — graph (without loops)

Proper coloring — $\kappa: V \to \mathbb{Z}_{>0}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic symmetric function

$$X_G(x_1, x_2, \ldots) := \sum_{\text{proper colorings } \kappa} x_1^{\#\kappa^{-1}(1)} x_2^{\#\kappa^{-1}(2)} \cdots$$

Example: $X_{K_3}(k) = 6 x_1 x_2 x_3 + 6 x_1 x_2 x_4 + \cdots$

Chromatic Symmetric Functions

G = (V, E) — graph (without loops)

Proper coloring — $\kappa: V \to \mathbb{Z}_{>0}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic symmetric function

$$X_{G}(x_{1}, x_{2}, ...) := \sum_{\text{proper colorings } \kappa} x_{1}^{\#\kappa^{-1}(1)} x_{2}^{\#\kappa^{-1}(2)} \cdots$$

Example: $X_{K_{3}}(k) = 6 x_{1} x_{2} x_{3} + 6 x_{1} x_{2} x_{4} + \cdots$
We recover $\chi_{G}(n) = X_{G}(\underbrace{1, ..., 1}_{n \text{ times}}, 0, 0, ...)$

Chromatic Symmetric Functions

G = (V, E) — graph (without loops)

Proper coloring — $\kappa: V \to \mathbb{Z}_{>0}$ such that $\kappa(i) \neq \kappa(j)$ for any edge $ij \in E$

Chromatic symmetric function

$$X_{G}(x_{1}, x_{2}, \ldots) := \sum_{\text{proper colorings } \kappa} x_{1}^{\#\kappa^{-1}(1)} x_{2}^{\#\kappa^{-1}(2)} \cdots$$

Example: $X_{K_{3}}(k) = 6 x_{1} x_{2} x_{3} + 6 x_{1} x_{2} x_{4} + \cdots$
We recover $\chi_{G}(n) = X_{G}(\underbrace{1, \ldots, 1}_{n \text{ times}}, 0, 0, \ldots)$

Conjecture (Stanley 1995) $X_G(x_1, x_2, ...)$ distinguishes trees.

(Loehr–Warrington 2024) $X_G(q, q^2, \ldots, q^n, 0, 0, \ldots)$ distinguishes trees.

$$\begin{array}{ll} \text{Definition} & \chi^{\lambda}_{G}(q,n) := \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} q^{\sum_{v \in V} \lambda_{v} \kappa(v)} \text{ where } \lambda \in \mathbb{Z}_{>0}^{V} \text{ is fixed} \end{array}$$

We recover $\chi_G(n) = \chi_G^1(1, n)$ and $\chi_G^1(q, n) = X_G(q, q^2, ..., q^n, 0, 0, ...)$

$$\begin{array}{ll} \text{Definition} & \chi^{\lambda}_{G}(q,n) := \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} q^{\sum_{v \in V} \lambda_{v} \kappa(v)} \text{ where } \lambda \in \mathbb{Z}_{>0}^{V} \text{ is fixed} \end{array}$$

We recover $\chi_G(n) = \chi_G^1(1, n)$ and $\chi_G^1(q, n) = X_G(q, q^2, ..., q^n, 0, 0, ...)$

Example

$$\chi_{P_4}^1(q,n) = \frac{1}{(1+q)(1+q+q^2)(1+q+q^2+q^3)} \times \left(\frac{8q^{10}(1-q)^n(1-q)^{n-1}(1-q)^{n-2}(1-q)^{n-3}}{+(4q^9+6q^8+4q^7)(1-q)^{n+1}(1-q)^n(1-q)^{n-1}(1-q)^{n-2}} + 2q^6(1-q)^{n+2}(1-q)^{n+1}(1-q)^n(1-q)^{n-1} \right)$$

Chromatic polynomials, symmetric functions & friends

q-Chromatic Polynomial Structure

$$\chi^{\lambda}_{G}(q,n) \ := \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} q^{\sum_{v \in V} \lambda_v \kappa(v)}$$

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) polynomial $\widetilde{\chi}_{G}^{\lambda}(q,x) \in \mathbb{Z}(q)[x]$ such that

$$\chi_G^{\lambda}(q,n) = \widetilde{\chi}_G^{\lambda}(q,[n]_q)$$
 where $[n]_q := 1 + q + \dots + q^{n-1}$

q-Chromatic Polynomial Structure

$$\chi^{\lambda}_{G}(q,n) \ := \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} q^{\sum_{v \in V} \lambda_v \kappa(v)}$$

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) polynomial $\widetilde{\chi}_{G}^{\lambda}(q,x) \in \mathbb{Z}(q)[x]$ such that

$$\chi_G^{\lambda}(q,n) = \widetilde{\chi}_G^{\lambda}(q,[n]_q)$$
 where $[n]_q := 1 + q + \dots + q^{n-1}$

Example
$$\widetilde{\chi}_{P_4}^1(q, x) = \frac{1}{(1+q)(1+q+q^2)(1+q+q^2+q^3)} \times ((2q^8+4q^7+6q^6+4q^5+8q^4)x^4 - (6q^8+10q^7+18q^6+18q^5+20q^4)x^3 + (4q^8+10q^7+20q^6+22q^5+16q^4)x^2 - (4q^7+8q^6+8q^5+4q^4)x)$$

Chromatic polynomials, symmetric functions & friends

Why?

 $X_G(x_1, x_2, \ldots) = \sum_{x_1^{\#\kappa^{-1}(1)} x_2^{\#\kappa^{-1}(2)} \cdots} x_1^{\#\kappa^{-1}(2)} \cdots$ proper colorings κ

$$\begin{split} \chi_{G}^{\lambda}(q,n) &= \\ \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} (q^{\lambda_{1}})^{\kappa(1)} \cdots (q^{\lambda_{|V|}})^{\kappa(|V|)} \end{split}$$

Conjecture (Stanley 1995) $X_G(x_1, x_2, ...)$ distinguishes trees.

Conjecture (Loehr–Warrington 2024) $X_G(q, q^2, \ldots, q^n, 0, 0, \ldots) = \chi^1_G(q, n)$ distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of $\widetilde{\chi}^{1}_{G}(q, x)$ distinguishes trees.

Why?

$$X_G(x_1, x_2, \ldots) = \sum_{\text{proper colorings } \kappa} x_1^{\#\kappa^{-1}(1)} x_2^{\#\kappa^{-1}(2)} \cdots$$

$$\begin{split} \chi^{\lambda}_{G}(q,n) &= \\ \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} (q^{\lambda_{1}})^{\kappa(1)} \cdots (q^{\lambda_{|V|}})^{\kappa(|V|)} \end{split}$$

Conjecture (Stanley 1995) $X_G(x_1, x_2, ...)$ distinguishes trees.

Conjecture (Loehr–Warrington 2024) $X_G(q, q^2, \ldots, q^n, 0, 0, \ldots) = \chi^1_G(q, n)$ distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of $\widetilde{\chi}^{1}_{G}(q, x)$ distinguishes trees.

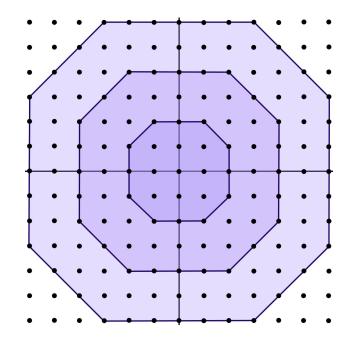
Remarks $\chi^{\mathbf{1}}_{G}(q,n)$ was previously studied by Loebl (2007).

 $\chi_G^{\lambda}(q,n)$ is a special evaluation (with polynomial structure) of Crew–Spirkl's (2020) weighted chromatic symmetric function.

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ — convex hull of finitely points in \mathbb{Z}^d

For $n \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(n) := \# (n\mathcal{P} \cap \mathbb{Z}^d)$

Theorem (Ehrhart 1962, Macdonald 1971) $L_{\mathcal{P}}(n)$ is a polynomial in n. Furthermore, $L_{\mathcal{P}}(-n) = (-1)^{\dim \mathcal{P}} \# (n\mathcal{P}^{\circ} \cap \mathbb{Z}^d)$.



Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ — convex hull of finitely points in \mathbb{Z}^d

For $n \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(n) := \# \left(n \mathcal{P} \cap \mathbb{Z}^d \right)$

Theorem (Ehrhart 1962, Macdonald 1971) $L_{\mathcal{P}}(n)$ is a polynomial in n. Furthermore, $L_{\mathcal{P}}(-n) = (-1)^{\dim \mathcal{P}} \# (n\mathcal{P}^{\circ} \cap \mathbb{Z}^d)$.

Example (Π, \preceq) — (finite) partially ordered set \longrightarrow

 $\Omega_{\Pi}^{(\circ)}(n) := \# \text{ (strictly) order-preserving maps } \Pi \to [n]$

Observation
$$\chi_G(n) = \sum_{\rho \in A(G)} \Omega^{\circ}_{\Pi_{\rho}}(n)$$

where A(G) is the set of acyclic orientations of G and Π_{ρ} is the poset corresponding to ρ

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ — convex hull of finitely points in \mathbb{Z}^d

$$L_{\mathcal{P}}(n) := \# \left(n\mathcal{P} \cap \mathbb{Z}^d \right) \qquad \qquad \chi_G(n) = \sum_{\rho \in A(G)} \Omega^{\circ}_{\Pi_{\rho}}(n)$$

Theorem (Ehrhart 1962, Macdonald 1971) $L_{\mathcal{P}}(n)$ is a polynomial in n. Furthermore, $L_{\mathcal{P}}(-n) = (-1)^{\dim \mathcal{P}} \# (n\mathcal{P}^{\circ} \cap \mathbb{Z}^d)$.

Now fix a linear form λ and let $L^{\lambda}_{\mathcal{P}}(q, n) := \sum_{\mathbf{m} \in n\mathcal{P}} q^{\lambda(\mathbf{m})}$

Theorem (Chapoton 2015) Under some mild assumptions, there exists a polynomial $\widetilde{L}^{\lambda}_{\mathcal{P}}(q,x) \in \mathbb{Z}(q)[x]$ such that $L^{\lambda}_{\mathcal{P}}(q,n) = \widetilde{L}^{\lambda}_{\mathcal{P}}(q,[n]_q)$.

Chromatic polynomials, symmetric functions & friends

Matthias Beck 9

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ — convex hull of finitely points in \mathbb{Z}^d

$$L_{\mathcal{P}}(n) := \# \left(n\mathcal{P} \cap \mathbb{Z}^d \right) \qquad \qquad \chi_G(n) = \sum_{\rho \in A(G)} \Omega^{\circ}_{\Pi_{\rho}}(n)$$

Theorem (Ehrhart 1962, Macdonald 1971) $L_{\mathcal{P}}(n)$ is a polynomial in n. Furthermore, $L_{\mathcal{P}}(-n) = (-1)^{\dim \mathcal{P}} \# (n\mathcal{P}^{\circ} \cap \mathbb{Z}^d)$.

Now fix a linear form λ and let $L^{\lambda}_{\mathcal{P}}(q, n) := \sum_{\mathbf{m} \in n\mathcal{P}} q^{\lambda(\mathbf{m})}$

Theorem (Chapoton 2015) Under some mild assumptions, there exists a polynomial $\widetilde{L}^{\lambda}_{\mathcal{P}}(q,x) \in \mathbb{Z}(q)[x]$ such that $L^{\lambda}_{\mathcal{P}}(q,n) = \widetilde{L}^{\lambda}_{\mathcal{P}}(q,[n]_q)$. Furthermore, $\widetilde{L}^{\lambda}_{\mathcal{P}}\left(\frac{1}{q},[-n]_{\frac{1}{q}}\right) = (-1)^{\dim \mathcal{P}} \sum_{\mathbf{m} \in n \mathcal{P}^{\circ}} q^{\lambda(\mathbf{m})}$

Chromatic polynomials, symmetric functions & friends

Fix a linear form λ and let $L^{\lambda}_{\mathcal{P}}(q,n) := \sum_{\mathbf{m} \in n\mathcal{P}} q^{\lambda(\mathbf{m})}$

Theorem (Chapoton 2015) Under some mild assumptions, there exists a polynomial $\widetilde{L}^{\lambda}_{\mathcal{P}}(q,x) \in \mathbb{Z}(q)[x]$ such that $L^{\lambda}_{\mathcal{P}}(q,n) = \widetilde{L}^{\lambda}_{\mathcal{P}}(q,[n]_q)$. Furthermore, $\widetilde{L}^{\lambda}_{\mathcal{P}}\left(\frac{1}{q},[-n]_{\frac{1}{q}}\right) = (-1)^{\dim \mathcal{P}} \sum_{\mathbf{m} \in n \mathcal{P}^{\circ}} q^{\lambda(\mathbf{m})}$

Extensions (MB–Kunze 2025+)

- Explicit formulas in terms of the vertex cones of \mathcal{P}
- Bounds on the poles of the cofficients
- Behavior as $n \to \infty$ via $x = \frac{1}{1-q}$
- Quasipolynomials for rational polytopes

q-Chromatic Polynomial Formulas

$$\chi_{G}^{\lambda}(q,n) := \sum_{\substack{\text{proper colorings}\\\kappa:V \to [n]}} q^{\sum_{v \in V} \lambda_{v}\kappa(v)} = \widetilde{\chi}_{G}^{\lambda}(q, [n]_{q})$$

Theorem (Bajo–MB–Vindas-Meléndez 2025+)

$$\widetilde{\chi}_{G}^{\lambda}(q,x) = q^{\Lambda_{V}} \sum_{\text{flats } S \subseteq E} \mu(\emptyset,S) \prod_{C \in P(S)} \frac{1 - (1 + qx - x)^{\Lambda_{C}}}{1 - q^{\Lambda_{C}}}$$

where P(S) denotes the collection of vertex sets of the connected components induced by S and $\Lambda_W := \sum_{v \in W} \lambda_v$. In particular, for a tree

$$\widetilde{\chi}_{T}^{\lambda}(q,x) = q^{\Lambda_{V}} \sum_{S \subseteq E} (-1)^{|S|} \prod_{C \in P(S)} \frac{1 - (1 + qx - x)^{\Lambda_{C}}}{1 - q^{\Lambda_{C}}}$$

 \longrightarrow highly-structured formulas for paths, stars, . . .

Chromatic polynomials, symmetric functions & friends

Matthias Beck 10

The Leading Coefficient for Trees

$$\chi_{G}^{\lambda}(q,n) := \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} q^{\sum_{v \in V} \lambda_{v} \kappa(v)} = \widetilde{\chi}_{G}^{\lambda}(q, [n]_{q})$$

Corollary Given a tree T, the leading coefficient of $\tilde{\chi}^1_T(q, n)$ equals

$$c_T^1(q) = (q-q^2)^d \sum_{S \subseteq E} \prod_{C \in P(S)} \frac{1}{1-q^{\Lambda_C}}$$
$$= \frac{1}{[d]_q!} \sum_{(\rho,\sigma)} q^{d+\operatorname{maj}\sigma} \qquad d := |V|$$

where the sum ranges over all pairs of acyclic orientations ρ of T and linear extensions σ of the poset induced by ρ

Corollary
$$c_T^1(q) = (-q)^d X_T\left(\frac{1}{q}, \frac{1}{q^2}, \frac{1}{q^3}, \dots\right)$$

Chromatic polynomials, symmetric functions & friends

Matthias Beck 11

G-Partitions

Given a poset $P = ([d], \preceq)$, a strict *P*-partition of $n \in \mathbb{Z}_{>0}$ is a tuple $(m_1, \ldots, m_d) \in \mathbb{Z}_{>0}^d$ such that

$$\sum_{j=1}^d m_j = n \qquad \text{and} \qquad m_j < m_k \text{ whenever } j \prec k$$

Given a (simple) graph G = ([d], E), a *G*-partition of $n \in \mathbb{Z}_{>0}$ is a tuple $(m_1, \ldots, m_d) \in \mathbb{Z}_{>0}^d$ such that

$$\sum_{j=1}^d m_j = n \qquad \text{and} \qquad m_v \neq m_w \text{ whenever } vw \in E$$

Let $p_G(n)$ denote the number of G-partitions of n, with accompanying generating function

$$P_G(q) := \sum_{n>0} p_G(n) q^n = X_G(q, q^2, q^3, \ldots)$$

G-Partitions

Given a (simple) graph G = ([d], E), a *G*-partition of $n \in \mathbb{Z}_{>0}$ is a tuple $(m_1, \ldots, m_d) \in \mathbb{Z}_{>0}^d$ such that

$$\sum_{j=1}^d m_j = n \qquad \text{and} \qquad m_v \neq m_w \text{ whenever } vw \in E$$

Let $p_G(n)$ denote the number of G-partitions of n, with accompanying generating function $P_G(q) := \sum_{n>0} p_G(n) q^n$

Theorem

$$P_G(q) = \frac{q^{\binom{d+1}{2}} \sum_{(\rho,\sigma)} q^{-\text{maj}\,\sigma}}{(1-q)(1-q^2)\cdots(1-q^d)}$$

where the sum ranges over all pairs of acyclic orientations ρ of G and linear extensions σ of the poset induced by ρ

G-Partitions

Given a (simple) graph G = ([d], E), a *G*-partition of $n \in \mathbb{Z}_{>0}$ is a tuple $(m_1, \ldots, m_d) \in \mathbb{Z}_{>0}^d$ such that

$$\sum_{j=1}^d m_j = n \qquad \text{and} \qquad m_v \neq m_w \text{ whenever } vw \in E$$

Let $p_G(n)$ denote the number of G-partitions of n, with accompanying generating function $P_G(q) := \sum_{n>0} p_G(n) q^n$

Collorary Given a tree T on d vertices, the leading coefficient of $\widetilde{\chi}_T^1(q,n)$ equals

$$c_T^1(q) = (-q)^d P_T\left(\frac{1}{q}\right)$$

Conjecture The *G*-partition function $p_G(n)$ distinguishes trees.

Chromatic polynomials, symmetric functions & friends

Matthias Beck 14

Stanley's Tree Conjecture Revisited

$$X_G(x_1, x_2, \ldots) = \sum_{\substack{\sum x_1^{\#\kappa^{-1}(1)} x_2^{\#\kappa^{-1}(2)} \cdots }} x_1^{\#\kappa^{-1}(2)} \cdots$$
proper colorings κ

$$\begin{split} \chi_{G}^{\lambda}(q,n) &= \\ \sum_{\substack{\text{proper colorings}\\ \kappa: V \to [n]}} (q^{\lambda_{1}})^{\kappa(1)} \cdots (q^{\lambda_{|V|}})^{\kappa(|V|)} \end{split}$$

Conjecture (Stanley 1995) $X_G(x_1, x_2, ...)$ distinguishes trees.

Conjecture (Loehr–Warrington 2024) $X_G(q, q^2, \ldots, q^n, 0, 0, \ldots) = \chi^1_G(q, n)$ distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of $\widetilde{\chi}^{1}_{G}(q, x)$ distinguishes trees.

Theorem (MB-Braun-Cornejo 2025+) Fix $k \ge d$ and $\lambda_j := k^j$. Then $\widetilde{\chi}^{\lambda}_G(q, x)$ distinguishes graphs on d nodes.

Chromatic polynomials, symmetric functions & friends

Matthias Beck -1