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Ehrhart Polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢
For t € Z~¢ let ehrp(t) := # (tP N Zd)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in ¢.
Furthermore, ehrp(—t) = (—1)4™ P4 (¢P° N ZY).

. Example A = conv{(0,0), (1,0), (0,1)}
t+ 2 1
. o ehrA(t):<—|2_ >:§t2+gt+1

t—1 1 3
I ® * eher(t) = ( 9 ) = §t2—§t‘|—1
@ o
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Ehrhart polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢

For t € Z~q let ehrp(t) := # (tP NZY)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in ¢.
furthermore, ehrp(—t) = (—1)4™7P# (tP° N ZY).

. Example A = conv{(0,0), (1,0), (0,1)}
s . ehra(t) = %t2+gt+1
o o
IL Philosophy We do not need limits for
° ° vol(P) = tli)rglotldehrp(t)
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Some Motivation

Linear systems are everywhere, and so polyhedra are everywhere.

In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.

Volume computation is hard.

Also, polytopes are cool.
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¢ Polynomials

» Computation

Class of Ehrhart polynomials — two main research problems:

» Classification — which polynomials are Ehrhart polynomials?
(open in dimension 3)

» Detection — does a given polynomial determine the polytope?
(fails somewhwat spectacularly)
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Ehrhart Polynomials in Dimension 2

P — lattice polygon

— ehrp(t) = cat?+cyt+1
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Ehrhart Series

Lattice polytope P C R% — convex hull of finitely points in Z¢

For t € Z~g let ehrp(t) := # (tP NZ*) and

Ehrp(z) := 1+ Z ehrp(t

t>1

h*
Theorem (Ehrhart 1962, Macdonald 1971) Ehrp(z ) p(2)

(1 — z)d+1
Furthermore, (—1)%4m P+l Ehrp (L Zehrpo
t>1
Philosophy
t+d t+d—1
Change of basis ehrp(t):h8< —g )—I—hf( +d >+---+h
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T2 Familiar Faces

A = {XER%O: 331—|—5132—|—'-'—|—£L‘d§1}

L o ehra(t) = (d;t) ha(z) =1

X3
€2

O = {xeR: |zq| + |wa| + - + |za| <1}

he(z) = (14 2)°

O = [0,1]¢
ehrg(t) = (¢ +1)4 h&(z) — Eulerian polynomial
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Ehrhart Positivity & Friends

Theorem (Ehrhart 1962, Macdonald 1971)

_ hp(2)
(1= z)dH!

Ehl‘p =1+ Z ehl'p

Theorem (Stanley 1980) The coefficients of h},(2) are nonnegative integers.

Theorem (Hibi-Stanley—Folklore) h%(z) is palindromic <= P is Gorenstein.
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Ehrhart Positivity & Friends

Theorem (Ehrhart 1962, Macdonald 1971)

hi(z
Ehrp(z) := 1+ Z ehrp(t) 2° = =4 _Pi)c)lﬂ

Theorem (Stanley 1980) The coefficients of h},(2) are nonnegative integers.

Theorem (Hibi-Stanley—Folklore) h%(z) is palindromic <= P is Gorenstein.

Open Problem Prove that the h*-polynomial of

» hypersimplices

» polytopes admitting a unimodular triangulation (next slides)

» polytope with the integer decomposition property are unimodal

v" Gorenstein polytopes with regular unimodular triangulation (Bruns—
Romer 2007)

v" Zonotopes (MB —Jochemko—McCullough 2019)
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Trials & Triangulations

Subdivision of a polyhedron P — finite collection .S of polyhedra such that
» if Fisafaceof G& Sthen F &S
» if F,G € S5 then F NG is a face of both

» P=UrcsF

If each F is a simplex — triangulation of a polytope
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Unimodular Triangulations

A lattice d-simplex with volume % is unimodular

Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Uq — Vo form a basis of Z2.

Every lattice polygon admits a unimodular triangulation, the regular
tetrahedron with vertices (0,0,0),(1,1,0),(1,0,1),(0,1,1) does not.
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Unimodular Triangulations

A lattice d-simplex with volume % is unimodular

Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Uq — Vo form a basis of Z2.

Every lattice polygon admits a unimodular triangulation, the regular
tetrahedron with vertices (0,0,0),(1,1,0),(1,0,1),(0,1,1) does not.

Theorem (Kempf-Knudsen—Mumford—Saint-Donat—Waterman 1970's)
For every lattice polytope P there exists an integer m such that m’P admits
a regular unimodular triangulation.

Theorem (Liu 20254) For every lattice polytope P there exists an integer
m such that &P admits a regular unimodular triangulation for & > m.

Conjecture There exists an integer my such that, if P is a d-dimensional
lattice polytope, then m4P admits a regular unimodular triangulation.
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f- and h-vectors of triangulation

fr. — number of k-simplices in a given triangulation I" of a polytope

foa=

d
h-polynomial of T hr(z) == Z Fp 2P (1 — )k
k=—1
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f- and h-vectors of triangulation

fr. — number of k-simplices in a given triangulation T' of a polytope

Jo1:=1

d
h-polynomial of T’ hr(z) = Z o 2L (1 — 2)dk
k=—1

For a boundary triangulation 7" one defines

d—1
hp(z) == Y frz"TH (1 —z)*1h

k=—1

and if this triangulation is regular,
Dehn—Sommerville holds.
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Unimodular Triangulations and h*

A lattice d-simplex with volume % is unimodular

Alternative description: if the simplex has vertices vg, v1, ..., v4, the vectors
V1 — Vo, . .., Uq — Vo form a basis of Z2.

1

If A is a unimodular k-simplex then Ehra(z) = ¥ =
— 2

k+1
Ehrhart-Macdonald Reciprocity — Ehrao(z) = (1 © )
— 2

The Point These Ehrhart series can help us count things.

— |f P admits a unimodular triangulation 1" then h},(2) = hr(z) .
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Stapledon Decompositions

If P admits a unimodular triangulation 1" then h%(z) =

What if not?

q-polynomials

() Matthias Beck
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Stapledon Decompositions

If P admits a unimodular triangulation 7" then h%(z) = hr(2)
What if not?
The degree s of a lattice polytope P is the degree of h},(2)

Codegree d +1 —s +— smallest integer ¢ such that /P° NZ* # &
Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then
(1+z+-+ zg_l) ho(z) = a(z) + 2" b(2)
where a(z) = z%a(2), b(z) = 27 “b(L) and a(z) and b(z) are nonnegative.

The case ¢ = 1 was proved by Betke & McMullen (1985). There is a version
for rational polytopes (MB—-Braun—Vindas-Meléndez 2022).
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Stapledon Decompositions

The degree s of a lattice polytope P is the degree of h},(2)

Codegree d4+1—5s +— smallest integer ¢ such that /P°NZ% #£ &

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then
(1+z+-+ zﬁ_l) ho(z) = a(z) + 2" b(2)

where a(z) = z%a(

N =

), b(z) = 27 “b(2) and a(z) and b(z) are nonnegative.

Topological story a(z) and b(z) can be written in terms of h-polynomials
of links of a given triangulation of P and associated arithmetic datat ( “box
polynomials™ ).

Arithmetic story (Bajo—MB 2023) a(z) = hj5p(2) . . .
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Stapledon Decompositions

The degree s of a lattice polytope P is the degree of h},(2)
Codegree d4+1—5s +— smallest integer ¢ such that /P°NZ% #£ &

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ¢ then

(1+z+-+ zﬁ_l) ho(z) = a(z) + 2" b(2)

N =

where a(z) = z%a($), b(z) = 2% b(2) and a(z) and b(z) are nonnegative.
Corollary Inequalities for h*-coefficients

Open Problem Try to prove an analogous theorem for your favorite
combinatorial polynomial with nonnegative coefficients.
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Brion Magic

mi,.m2 mq

Integer point transform og(z) := g 2y T2yt 2,
me SNZY

When S'is a rational polyhedron, og(z) evaluates to a rational function.

Given a vertex v of P, let K, = Z R>o(w —v)

w adjacent to v

RSN NEYN

Theorem (Brion 1988) If P is a rational polytope, then

op(z) = Y. ovex(a),

v vertex of P

g-polynomials (7  Matthias Beck
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Recap Day |: Ehrhart Polynomials

Polytopes © polynomials

Classification of Ehrhart polynomials is hard
Partial classification is possible & interesting
Unimodular triangulations
Symmetric decompositions

Tomorrow: where's ¢?

(©Math 883 (2022)
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g-Ehrhart Polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢
ehrp(t) := # (tP N ZY)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in t.
Furthermore, ehrp(—t) = (—1)4™ P4 (¢P° N ZY).

Now fix a linear form A that is generic (A(v) # A(w) for adjacent vertices
v and w of P) and positive (A(v) > 0 for any vertex v), and let

ehr;‘;(q,t) = Z gNm)

metPNZ4

Philosophy (Sanyal) Tomography Ehrhart counting

g-polynomials ()  Matthias Beck 3



g-Ehrhart Polynomials

Lattice polytope P C R% — convex hull of finitely points in Z¢
ehrp(t) := # (tP N ZY)

Theorem (Ehrhart 1962, Macdonald 1971) ehrp(t) is a polynomial in t.
Furthermore, ehrp(—t) = (—1)4™ P4 (¢P° N ZY).

Now fix a linear form A that is generic (A(v) # A(w) for adjacent vertices
v and w of P) and positive (A(v) > 0 for any vertex v), and let

ehr;‘;(q,t) = Z gNm)

mctPNZa
Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and

positive integral form, there exists a polynomial cha (¢, z) € Z(q)[z] such
that ehrp (¢, t) = chap(q, [t],), where [t], :=14q+--- +¢" "
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g-Ehrhart Polynomials

Fix a linear form A that is generic (A\(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(q,t) == Y "™
mctPNZA

Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and
positive integral form, there exists a polynomial cha (¢, z) € Z(q)[z] such
that ehrp (¢, t) = chap(q, [t],), where [t], :=14q+--- +¢" "

Example A = conv{(0,0), (1,0), (0,1)} and A = (1,2)

o o 3

2 1
Chag(q,x) _ q 2 Q( q+ )

1
q+1az + St T +

g-polynomials ()  Matthias Beck 3



Chapoton Polynomials

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) = > ™

mctPNZ4

Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and
positive integral form, there exists a polynomial chap (¢, x) € Z(q)[x] such

that ehrp (g, t) = chap(q, [t],), where [t], :=14q+--- +¢" "

The degree of chay(q,x) is m := max{\(v) : v vertex of P} and all the
poles of the coefficients of chas (g, x) are roots of unity of order < m.

Furthermore, (—l)dimpchag\; (%, —q:z:) = cha%o(q,a:).
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Chapoton Polynomials

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) ™

metPNZ4

Theorem (Chapoton 2015) If P is a lattice polytope and X is a generic and
positive integral form, there exists a polynomial chap (¢, x) € Z(q)[x] such
that ehrp (g, t) = chap(q, [t],), where [t], :=14 ¢ +--- +¢" "

The degree of chay(q,x) is m := max{\(v) : v vertex of P} and all the
poles of the coefficients of chap (g, ) are roots of unity of order < m.

Furthermore, (—1)dimpcha;‘> (%, —qm) = cha;‘)o(q,m).

Theorem (Robins 2023) The set of all chap(g, ), where A ranges over all
generic and positive integral forms, determines P.

g-polynomials ()  Matthias Beck 4



Some More Motivation

» chrp(t) = # (tPﬂZd) has polynomial structure, but sometimes we
need to understand the integer point transform

op(z) == Y 2tz 2
mePNZ4
» For fixed )\,
ehrp(q.t) = Y ™ = o (M, 0™ M)
metPNZd

still has polynomial structure.

» Chapoton polynomials contain interesting number theory, connection to
partition functions, . ..

g-polynomials ()  Matthias Beck 5



Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) = > ™

metPNZ
» O=[0,1%and A\=1:=(1,1,...,1)
ehré(q,t) = [t—l—l]g — Chaé(q,x) = (1—|—qa:)d

Carlitz identity (really due to MacMahon)

ledes(7r) maj ()
> lt+1pat = Zrcs, -
t>0 [Tjmo (1 —2¢’)
des(m) = |{j : 7(j + 1) < 7(j)} maj(m) = Y
w(j+1)<m(j)
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(q,t) == Y "™
mctPNZA

» A= {xER‘éO: $1+:1:2—|—~--—|—$d:1}
ehrZ(q,t) _ Z q>\1m1+>\2m2—|—---—|—>\dmd
metANZd

is the generating function for partitions with exactly ¢ parts in the set
{)\17 )\27 SRR )\d}
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) ™

mctPNZA
>A:{XéRd:OleSxQS"’Sxdgl}and)\zl
ehrl (q t) — Z qm1+m2+..._|_md _ t+d
A\ ;

is the generating function for partitions with < d parts, each of which <
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Familiar Faces

Fix a linear form A that is generic (A(v) # A(w) for adjacent vertices v
and w of P) and positive (A(v) > 0 for any vertex v), and let

ehrp(g,t) == ) "™

mctPNZ4

(IT, <) — poset on d elements

Order polytope O(II) {X e0,1]¢: j =k = x; < xk}

MacMahon (1909) chag puxm(a:2) = [[ 1]
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Familiar Faces

» Lecture hall simplex A,, := {x €0,1]": x1 <

ehrlAn(q, t) = Z g™ enumerates lecture hall partitions with m; <t
metPNZA

Corteel-Lee—Savage (2005) Forany j > 0and 1 <i<n

ehrp (¢, jn+i) = ehry (¢, jn+i—1)+¢ " ehry (g, j(n—1)+i—1)
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Familiar Faces

2

T
Ta < ...
5 =~

» Lecture hall simplex A,, := {X c0,1]": x1 <

x
S 3
3

Ln
<)

n
Corteel-Lee—Savage (2005) Forany j > 0and 1 <i < n

ehrp (g, jn+1i) = ehry (g, jn+i—1)+¢ " ehry  (g,7(n—1)+i—1)

Chapoton polynomials, anyone?
chay o(z) := 1+ qx and chay 1(z) = 1+q+ ¢’z
and for y >0and 1 <7<n

Chan,z‘<ZC> = Chanﬂ;_l(w) —+ qi((q — 1)33 + 1)n Chan_l,i_l(QJ)
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Brion Magic

mi,.m2 mq

Integer point transform og(z) := g 2y T2yt 2,
me SNZY

When S'is a rational polyhedron, og(z) evaluates to a rational function.

Given a vertex v of P, let K, = Z R>o(w —v)

w adjacent to v

RSN NEYN

Theorem (Brion 1988) If P is a rational polytope, then

op(z) = Y. ovex(a),

v vertex of P
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Brion Magic

mi,.m2 mq

Integer point transform og(z) := g 2y T2yt 2,
me SNZY

When S'is a rational polyhedron, og(z) evaluates to a rational function.

Given a vertex v of P, let K, = Z R>o(w —v)

w adjacent to v

RSN NEYN

Theorem (Brion 1988) If P is a lattice polytope, then

op(z) = Y ovx(z)= Y z'ox(2).

v vertex of P v vertex of P
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Brion Magic

Integer point transform og(z) := Z 2y 2y 2
me SNZ4
Given a vertex v of P, let K, := Z R>o(w —v)

w adjacent to v

Theorem (Brion 1988) If P is a lattice polytope, then

op(z) = Z z oi,(Z) .

v vertex of P

2
1 Z5

Example o, (2) = (1—21)(1 — 22) K0 (%) = (22 = 1)(22 — 21)

g-polynomials (7  Matthias Beck



Brion — Chapoton

Integer point transform og(z) := Z 2y 2y 2
me SNZ4
Given a vertex v of P, let K, := Z R>o(w —v)

w adjacent to v

Theorem (Brion 1988) op(z) = Y  z'ox,(z).

v vertex of P

ehrp(q.t) = > ™ =0 (MM, ..,
metPNZd

= > "WYox, (M0

v vertex of P
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Chapoton Polynomials Reuvisited

Theorem (Chapoton 2015) If P is a lattice polytope and A is a generic and
positive integral form, there exists a polynomial cha (¢, z) € Z(q)[z] such
that ehrp (g, t) = chap(q, [t],), where [t], == 14 ¢ +--- +¢* "

ehry(q,t) = Z ¢V o, (™, a7, )

v vertex of P

Now use ¢** = ((g— D[t]g+1)" ...

Theorem (MB—Kunze 2025+) If P is a lattice polytope and )\ is a generic
and positive integral form,

chap(q.2) = > pa)((q— Dz +1)*"

v vertex of P
where ,03,\((]) = 0K, (qua C])\Q, Tt qu>

g-polynomials ()  Matthias Beck 7



Chapoton Polynomials Reuvisited

ehry(q,t) = Z "™ = chap(q, [t],) Ky = Z Rso(w—v)

metPNZa w adjacent to v

Theorem (MB—Kunze 2025+) If P is a lattice polytope and X is a generic
and positive integral form,

chap(g,z) = > pd(a)((g — Do+ 1)

v vertex of P
where /0\);<Q) = 0Ky (q)\la q)\Qa SR qu) .

Corollary Each pole of p{(q) is an nth root of unity where n = |\(g(w —v))|
for some adjacent vertex w, where g(w — v) is primitive.

Corollary The leading coefficient of chapy(q, ) is (¢ — 1) V) pd(¢) where v
is the vertex of P that maximizes \(v).

g-polynomials ()  Matthias Beck 7



Chapoton Polynomials Reuvisited

ehry(q,t) = Z ™ = chay(q, [t],) Ky = Z Rso(w—v)

mctPNZa w adjacent to v

Theorem (MB—Kunze 2025+) If P is a lattice polytope and )\ is a generic
and positive integral form,

chap(g,r) = > pd@)((g— Da+ 1)

v vertex of P
where pQ(q) = ox, (q”\l, Q2 ... q/\d) .
Chapoton: compute ehr;‘;(q,t) in the limit as ¢t — oo . ..

1 —gq

Corollar
! 1 pa(q) if 0is a vertex of P
chap (g, —— ) ={"° ’
0 otherwise.

g-polynomials (7  Matthias Beck 8



Chapoton Polynomials Reuvisited

ehry(q,t) = Z "™ = chap(q, [t],) Ky = Z Rso(w—v)

metPNZa w adjacent to v

Theorem (MB—Kunze 2025+) If P is a lattice polytope and X is a generic
and positive integral form,

chap(g,z) = > pd(a)((g — Do+ 1)

v vertex of P

where /0\);<Q) = 0Ky (q)\la q)\Qa SR qu) .

Corollary The constant term of chag\;(q, x)is 1.

g-polynomials (7  Matthias Beck 8



Chapoton Quasipolynomials

Theorem (MB—Kunze 2025+) If P is a rational polytope with denominator
p and A is an integral form that is generic and positive, then there exist
polynomials cha’y" (¢, z) € Q(g)[z] such that

Cha%’r (q,1k]q) = ehr;‘;(q, kp+r)
for all integers £k > 0 and all 0 < r < p.

The degree of cha;\;’r(q, x) is max{A(pv) : v vertex of P}. Each pole of a

coefficient of Cha;\f(q, x) is an nth root of unity where n = |A(g(p(w—v)))]
for some adjacent vertices v and w.

Forany 0 <r <pand k>0

(—1)dm? Cha%’r (é, |—K] ) = ehrg\;o(q, kp—r).

Q|
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Recap Day Il: Chapoton Polynomials

g-counting, Ehrhart style

Polynomials in [¢],

Partition functions know Chapoton (and vice versa)

Brion's theorem gives a computational edge & more structure

Tomorrow: let's try this for

. : ¢
chromatic polynomials for graphs C%‘Uébe(rk ,fro‘cﬁ“

(©Jupiter Davis
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Menu Ill: ¢-Graph Coloring

» Chromatic polynomials

» Chromatic symmetric functions
» Stanley’s tree conjecture

» g-chromatic polynomials

» Structural g-chromatic results

» (-partitions
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Chromatic Polynomials

G = (V, FE) — graph (without loops)

Proper n-coloring — xk : V. — [n] := {1,2,...,n} such that x(i) # k(j)
for any edge 15 € E

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)
Example: xx,(n) = n(n —1)

Theorem (Birkhoff 1912, Whitney 1932)
xc(n) is a polynomial.

g-polynomials (7  Matthias Beck 3



Chromatic Polynomials
Proper n-coloring — Kk : V. — [n] := {1,2,...,n} such that k(i) # k(j)
for any edge 15 € E
Chromatic polynomial — xg(n) := # (proper n-colorings of G3)
» Classification — which polynomials are chromatic?
. wide open, though we have structural results:

» xc(n) is monic, has constant term 0 and degree |V|.
» The coefficients of yg(n) alternate in sign.
» |xa(—1)| equals # acyclic orientations of G (Stanley 1973).

» The coefficients of yg(n) are unimodal (Huh 2012).

g-polynomials ()  Matthias Beck 3



Chromatic Polynomials
Proper n-coloring — k : V. — [n] := {1,2,...,n} such that k(i) # k(j)
for any edge 15 € E
Chromatic polynomial — xg(n) := # (proper n-colorings of G3)
» Detection — does a given polynomial determine the graph?

... fails badly: If T" is a tree with m edges then

xr(n) = n(n —1)"

g-polynomials (7  Matthias Beck 3



Chromatic Symmetric Functions

G = (V, FE) — graph (without loops)
Proper coloring — k : V' — Z~ such that x(z) # k(j) for any edge ij €

Chromatic symmetric function

-1 K‘,_l
XG(CIfl,ZIZQ,...) = Z Zlffﬁ (1)3352'%& (2)

proper colorings ~

Example: X, (k) = 6212005 + 621 0004 + - - -

g-polynomials (7  Matthias Beck 4



Chromatic Symmetric Functions

G = (V, FE) — graph (without loops)
Proper coloring — k : V' — Z~ such that x(z) # k(j) for any edge ij €

Chromatic symmetric function

-1 lﬁ;_l
XG(CIJ:[,ZEQ,...) = Z Zlffé (1)3352'%& (2)

proper colorings ~

Example: X, (k) = 6212005 + 621 0004 + - - -

We recover xa(n) = Xg(1,...,1,0,0,...)

n times
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Chromatic Symmetric Functions

G = (V, E) — graph (without loops)
Proper coloring — k : V' — Z~¢ such that x(7) # k(j) for any edge ij €

Chromatic symmetric function

K_l m_l
Xolonan..) = 5 o Wef@

proper colorings K

Example: Xy, (k) = 6212005 + 621 0004 + - - -

We recover xa(n) = Xa(1,...,1,0,0,...)

n times

Conjecture (Stanley 1995) X (21, x2,...) distinguishes trees.

(Loehr—Warrington 2024) Xa(q,q%,...,q™,0,0,...) distinguishes trees.

g-polynomials (7  Matthias Beck 4



g-Chromatic Polynomials

Chromatic polynomial — xg(n) := # (proper n-colorings of (7)

Chromatic symmetric function

P 1
X(;’(ZBl,ZL'Q,...) — Z ZE? (1)332# (2)

proper colorings ~

Definition x&(g;n) == ) ¢=vev (") where X € ZY,; is fixed

proper colorings
k:V —[n]

We recover xg(n) = x&(1,n) and x&(q,n) = Xa(q, 4%, -..,4",0,0,...)
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g-Chromatic Polynomials

Definition xx(q,n) := Z g2=vev () \where \ € 7Y, is fixed

proper colorings
k:V—[n]

We recover xg(n) = x&(1,n) and x&(q,n) = Xa(q, 4%, -..,4",0,0,...)

Example ° ° ° °
L(q.n) : x
7n —
Xpd 1+q¢)(1+q+q¢*)(1+q+q*+ g%

+m%r—@“%1—mW“u—qwu—qw*)

g-polynomials (7  Matthias Beck 5



g-Chromatic Polynomial Structure

xolen) = ) gqeevor)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ ) There exists a (unique) poly-
nomial X2 (¢, z) € Z(q)[x] such that

xe(a:n) = Xelg[nly)  where  [n]:=1+q¢+---+¢""

1
Example  Xp,(¢,z) = :
xample  Xp,(q, ) 14+q(14+qg+q¢*>)(14+qg+q*>+ ¢3)

<(2q8 +4(]7+6q6 +4q5 +8q4) 4

— (6¢° + 10¢" + 18¢° + 18¢° + 20¢*) z°
o + (4¢° + 10¢" + 20¢° + 22¢° + 16¢*) 2*

— (4q7 + 8¢% + 8¢° + 4q4) x)

g-polynomials (7  Matthias Beck 6



g-Chromatic Polynomial Structure

xglan) = ) gFeevr)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ ) There exists a (unique) poly-
nomial X2(q, z) € Z(q)[x] such that

xe(a:n) = Xelg[nly)  where  [n]:=1+q¢+---+¢""

/]\

x?;(qan) = Z ehf?o(np)o(qanﬂLl)
peA(G)

A(G) — set of acyclic orientations of G

11, — poset corresonponding to the acyclic orientation p

g-polynomials (7  Matthias Beck 6



Motivation

XG(xlawa") — . . Xé?(Q7n) —
#rT (1) #r™ (2 Ap)R(1) Ny UV
Z P ():CQK (2) . Z (q 1) (q |v|>

proper colorings K proper colorings

k:V —[n]

blam= Y gTuerso

proper colorings
k:V—[n]

Xa(n) = # (proper n-colorings of G7)
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More Motivation

XG(£17£27 .- ) — . . Xé}(Q7n’) —
#r (1), #rx (2 Ap)A(1)
S o g S ()
proper colorings proper colorings
k:V —[n]

Conjecture (Stanley 1995) X (z1, 22, .. .) distinguishes trees.

Conjecture (Loehr—Warrington 2024) Xx(q,q¢%,...,¢",0,0,...) = X

distinguishes trees.

&g, n)

Conjecture (Bajo-MB—Vindas-Meléndez 2025+) The leading coefficient of

X&(q, ) distinguishes trees.
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More Motivation

XG(£17£27 .- ) — . . Xé}(Q7n’) —
#r (1), #rx (2 Ap)A(1)
S o g S ()
proper colorings proper colorings
k:V —[n]

Conjecture (Stanley 1995) X (z1, 22, .. .) distinguishes trees.

Conjecture (Loehr—Warrington 2024) Xx(q,q¢%,...,¢",0,0,...) = X

distinguishes trees.

&g, n)

Conjecture (Bajo-MB—Vindas-Meléndez 2025+) The leading coefficient of

X&(q, ) distinguishes trees.

There are more coefficients of Xt (g, x) . . .

g-polynomials ()  Matthias Beck



More Motivation

XG(xlawa") — . . Xé}(cbn) —
#r (1) #x (2 Ay A1) A UV
Z xln ()me (2) Z (q 1) (q |V|)
proper colorings proper colorings
k:V —[n]

Conjecture (Stanley 1995) X(x1, x2,...) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo—-MB—Vindas-Meléndez 2025+) The leading coefficient of
X&(q, ) distinguishes trees.

Remarks x¢&(gq,n) was previously studied by Loebl (2007).

Xa(q,m) is a special evaluation (with polynomial structure) of Crew—Spirkl's
(2020) weighted chromatic symmetric function.
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g-Chromatic Structures

xolam) == > q=ev = (g, [nly)

proper colorings
k:V —[n]

Deletion—Contraction (Crew—Spirkl 2020)

A +A2, A3,
Xe(@m) = Xenaa(@:n) = xe s 2 (g,n)

— naturally extends to the coefficients of XX (q, [n],)

— Z qZUEV(G) AUC(U)
(¢,p)

where the sum is over all pairs of an n-coloring ¢ and a compatible acyclic
orientation p

Reciprocity  (—1)!VqZeev 2 (1, [—n)y )
q

g-polynomials (7  Matthias Beck 8



g-Chromatic Polynomial Formulas

Xolgn) == > e = 3R(q, [n]y)

proper colorings
k:V —[n]

Theorem (Bajo—MB—Vindas-Meléndez 2025+ )

_ 1 — (14 qx —x)rc
Xolez) = ¢ Y we9 1] e
flats SCFE CeP(S) q

where P(S) denotes the collection of vertex sets of the connected compo-
nents induced by S and Ay = ZUEW Ay. In particular, for a tree

X1(q, ) = QAVZ(—1)|S| H 1— (14 qz —x)hc

1 — gic
SCE CeP(S)

—— highly-structured formulas for paths, stars, . ..
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The Leading Coefficient for Trees

xolgn) = ) g=eev ) = 3(g,[n],)
proper colorings
k:V—[n]

Corollary Given a tree T, the leading coefficient of xx(q,n) equals

(@) = (a-)"), 1l —=

SCE CeP(S)

= Z g d:=V|

T (p,0)

where the sum ranges over all pairs of acyclic orientations p of 1" and linear
extensions o of the poset induced by p

Corollary? (via the following slides) ck(q) = (—¢)¢ Xt (%, L. L )
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(7-Partitions

Given a poset P = (|d],=), a strict P-partition of n € Z~q is a tuple
(mq,...,mq) € Z%, such that

d
ij =n and m; < myj whenever j <k
J=1

Given a (simple) graph G = ([d], F), a G-partition of n € Z~ is a tuple
(m1,...,mq) € Z%, such that

d
E m; =n and My % My, Whenever vw € B
j=1

Let pg(n) denote the number of G -partitions of n, with accompanying

generating function
Polq) == Y pa(n)q® = Xala.¢*¢%...)
n>0
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(7-Partitions

Given a (simple) graph G = ([d], E'), a G-partition of n € Z~¢ is a tuple
(m1,...,mq) € Z%, such that

d
E m; =n and My % My, Whenever vw € E
g=1

Let pg(n) denote the number of G -partitions of n, with accompanying
generating function Pg(q) := Zn>0pG(n) q"

d+1

Theorem q( 3 )Z(p,a) g~ maio

Pa(q) =
(1—q)(1—¢?) - (1—q%
where the sum ranges over all pairs of acyclic orientations p of GG and linear
extensions o of the poset induced by p
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(7-Partitions

Given a (simple) graph G = ([d], E'), a G-partition of n € Z~¢ is a tuple
(m1,...,mq) € Z%, such that

d
E m; =n and My % My, Whenever vw € E
g=1

Let pg(n) denote the number of G -partitions of n, with accompanying
generating function Pg(q) := Zn>OpG(n) q"

Collorary Given a tree T on d vertices, the leading coefficient of X+(q,n)
equals

cHa) = (—a) Pr (%)

Conjecture The G-partition function pa(n) distinguishes trees.

g-polynomials ()  Matthias Beck 11



One Last Theorem

Conjecture (Stanley 1995) X(x1, x2,...) distinguishes trees.

Conjecture (Loehr—Warrington 2024) X(q,4¢%,...,4",0,0,...) = x&(q,n)
distinguishes trees.

Conjecture (Bajo-MB-Vindas-Meléndez 2025+) The leading coefficient of
X&(q, z) distinguishes trees.

Equivalent Conjecture The G-partition function pg(n) distinguishes trees.

Theorem (MB-Braun—Cornejo 2026+) Fix k > d and \; := k7. Then
%g(q,az) distinguishes graphs on d nodes.
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Recap Day lll: ¢-Graph Coloring

» Chromatic polynomials, symmetric functions, and g
» Stanley's tree conjecture & refinements
» More g-polynomial structure

» (-partitions

g-polynomials (7  Matthias Beck
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