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Menu I: Ehrhart Polynomials

▶ Polytopes, integer points, and their polynomials

▶ Polynomial classification and detection

▶ Examples

▶ Central theorems in Ehrhart theory

▶ (Unimodular) triangulations

▶ Symmetric decompositions

▶ Brion’s theorem

▶ Open problems x
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Ehrhart Polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For t ∈ Z>0 let ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
Furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Example ∆ = conv{(0, 0), (1, 0), (0, 1)}

ehr∆(t) =

(
t+ 2

2

)
=

1

2
t2 +

3

2
t+ 1

ehr∆◦(t) =

(
t− 1

2

)
=

1

2
t2 − 3

2
t+ 1
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Ehrhart polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For t ∈ Z>0 let ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Example ∆ = conv{(0, 0), (1, 0), (0, 1)}

ehr∆(t) =
1

2
t2 +

3

2
t+ 1

Philosophy We do not need limits for

vol(P) = lim
t→∞

1

td
ehrP(t)
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Some Motivation

▶ Linear systems are everywhere, and so polyhedra are everywhere.

▶ In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

▶ Many discrete problems in various areas are linear problems, thus they
ask for the discrete volume of a polytope in disguise.

▶ Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.

▶ Volume computation is hard.

▶ Also, polytopes are cool.
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♡ Polynomials

▶ Computation

Class of Ehrhart polynomials −→ two main research problems:

▶ Classification — which polynomials are Ehrhart polynomials?
(open in dimension 3)

▶ Detection — does a given polynomial determine the polytope?
(fails somewhwat spectacularly)
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Ehrhart Polynomials in Dimension 2

c1

c21

1 (i)

(ii)
(iii)

P — lattice polygon

−→ ehrP(t) = c2 t
2+c1 t+1
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Ehrhart Series

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

For t ∈ Z>0 let ehrP(t) := #
(
tP ∩ Zd

)
and

EhrP(z) := 1 +
∑
t≥1

ehrP(t) z
t

Theorem (Ehrhart 1962, Macdonald 1971) EhrP(z) =
h∗
P(z)

(1− z)d+1
.

Furthermore, (−1)dimP+1EhrP(
1
z) =

∑
t≥1

ehrP◦(t) zt.

Philosophy:

Change of basis ehrP(t) = h∗
0

(
t+ d

d

)
+ h∗

1

(
t+ d− 1

d

)
+ · · ·+ h∗

d

(
t

d

)
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Familiar Faces

x1

x2

x3

1

1

1

∆ =
{
x ∈ Rd

≥0 : x1 + x2 + · · ·+ xd ≤ 1
}

ehr∆(t) =

(
d+ t

d

)
h∗
∆(z) = 1

3 =
{
x ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1

}
h∗
3(z) = (1 + z)d

x1

x2

x3

1

1

1

2 = [0, 1]d

ehr2(t) = (t+ 1)d h∗
2(z) — Eulerian polynomial
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Ehrhart Positivity & Friends

Theorem (Ehrhart 1962, Macdonald 1971)

EhrP(z) := 1 +
∑
t≥1

ehrP(t) z
t =

h∗
P(z)

(1− z)d+1

Theorem (Stanley 1980) The coefficients of h∗
P(z) are nonnegative integers.

Theorem (Hibi–Stanley–Folklore) h∗
P(z) is palindromic⇐⇒P is Gorenstein.

q-polynomials Matthias Beck 8



Ehrhart Positivity & Friends

Theorem (Ehrhart 1962, Macdonald 1971)

EhrP(z) := 1 +
∑
t≥1

ehrP(t) z
t =

h∗
P(z)

(1− z)d+1

Theorem (Stanley 1980) The coefficients of h∗
P(z) are nonnegative integers.

Theorem (Hibi–Stanley–Folklore) h∗
P(z) is palindromic⇐⇒P is Gorenstein.

Open Problem Prove that the h∗-polynomial of
▶ hypersimplices
▶ polytopes admitting a unimodular triangulation (next slides)
▶ polytope with the integer decomposition property are unimodal

✓ Gorenstein polytopes with regular unimodular triangulation (Bruns–
Römer 2007)

✓ Zonotopes (MB–Jochemko–McCullough 2019)
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Trials & Triangulations

Subdivision of a polyhedron P — finite collection S of polyhedra such that

▶ if F is a face of G ∈ S then F ∈ S

▶ if F ,G ∈ S then F ∩ G is a face of both

▶ P =
⋃

F∈S F

If each F is a simplex −→ triangulation of a polytope
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Unimodular Triangulations

A lattice d-simplex with volume 1
d! is unimodular

Alternative description: if the simplex has vertices v0, v1, . . . , vd, the vectors
v1 − v0, . . . , vd − v0 form a basis of Zd.

Every lattice polygon admits a unimodular triangulation, the regular
tetrahedron with vertices (0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1) does not.
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Unimodular Triangulations

A lattice d-simplex with volume 1
d! is unimodular

Alternative description: if the simplex has vertices v0, v1, . . . , vd, the vectors
v1 − v0, . . . , vd − v0 form a basis of Zd.

Every lattice polygon admits a unimodular triangulation, the regular
tetrahedron with vertices (0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1) does not.

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970’s)
For every lattice polytope P there exists an integer m such that mP admits
a regular unimodular triangulation.

Theorem (Liu 2025+) For every lattice polytope P there exists an integer
m such that kP admits a regular unimodular triangulation for k ≥ m.

Conjecture There exists an integer md such that, if P is a d-dimensional
lattice polytope, then mdP admits a regular unimodular triangulation.
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f- and h-vectors of triangulation

fk — number of k-simplices in a given triangulation T of a polytope

f−1 := 1

h-polynomial of T hT (z) :=

d∑
k=−1

fk z
k+1 (1− z)d−k
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f- and h-vectors of triangulation

fk — number of k-simplices in a given triangulation T of a polytope

f−1 := 1

h-polynomial of T hT (z) :=

d∑
k=−1

fk z
k+1 (1− z)d−k

For a boundary triangulation T one defines

hT (z) :=

d−1∑
k=−1

fk z
k+1 (1− z)d−1−k

and if this triangulation is regular,
Dehn–Sommerville holds.

S
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Unimodular Triangulations and h∗

A lattice d-simplex with volume 1
d! is unimodular

Alternative description: if the simplex has vertices v0, v1, . . . , vd, the vectors
v1 − v0, . . . , vd − v0 form a basis of Zd.

If ∆ is a unimodular k-simplex then Ehr∆(z) =
1

(1− z)k+1

Ehrhart–Macdonald Reciprocity −→ Ehr∆◦(z) =

(
z

1− z

)k+1

The Point These Ehrhart series can help us count things.

−→ If P admits a unimodular triangulation T then h∗
P(z) = hT (z) .
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Stapledon Decompositions

If P admits a unimodular triangulation T then h∗
P(z) = hT (z)

What if not?
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Stapledon Decompositions

If P admits a unimodular triangulation T then h∗
P(z) = hT (z)

What if not?

The degree s of a lattice polytope P is the degree of h∗
P(z)

Codegree d+ 1− s ←− smallest integer ℓ such that ℓP◦ ∩ Zd ̸= ∅

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ℓ then(
1 + z + · · ·+ zℓ−1

)
h∗
P(z) = a(z) + zℓ b(z)

where a(z) = zd a(1z) , b(z) = zd−ℓ b(1z) and a(z) and b(z) are nonnegative.

The case ℓ = 1 was proved by Betke & McMullen (1985). There is a version
for rational polytopes (MB–Braun–Vindas-Meléndez 2022).
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Stapledon Decompositions

The degree s of a lattice polytope P is the degree of h∗
P(z)

Codegree d+ 1− s ←− smallest integer ℓ such that ℓP◦ ∩ Zd ̸= ∅

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ℓ then(
1 + z + · · ·+ zℓ−1

)
h∗
P(z) = a(z) + zℓ b(z)

where a(z) = zd a(1z) , b(z) = zd−ℓ b(1z) and a(z) and b(z) are nonnegative.

Topological story a(z) and b(z) can be written in terms of h-polynomials
of links of a given triangulation of P and associated arithmetic datat (“box
polynomials”).

Arithmetic story (Bajo–MB 2023) a(z) = h∗
∂P(z) . . .
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Stapledon Decompositions

The degree s of a lattice polytope P is the degree of h∗
P(z)

Codegree d+ 1− s ←− smallest integer ℓ such that ℓP◦ ∩ Zd ̸= ∅

Theorem (Stapledon 2009) If P is a lattice d-polytope with codegree ℓ then(
1 + z + · · ·+ zℓ−1

)
h∗
P(z) = a(z) + zℓ b(z)

where a(z) = zd a(1z) , b(z) = zd−ℓ b(1z) and a(z) and b(z) are nonnegative.

Corollary Inequalities for h∗-coefficients

Open Problem Try to prove an analogous theorem for your favorite
combinatorial polynomial with nonnegative coefficients.
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Brion Magic

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

When S is a rational polyhedron, σS(z) evaluates to a rational function.

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

+ + =

Theorem (Brion 1988) If P is a rational polytope, then

σP(z) =
∑

v vertex of P

σv+Kv(z) .
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Recap Day I: Ehrhart Polynomials

▶ Polytopes ♡ polynomials

▶ Classification of Ehrhart polynomials is hard

▶ Partial classification is possible & interesting

▶ Unimodular triangulations

▶ Symmetric decompositions

▶ Tomorrow: where’s q?

©
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Menu II: Chapoton Polynomials

▶ q-Ehrhart polynomials

▶ Chapoton’s structural results

▶ Examples in history

▶ Brion magic applies

▶ Some new structural results

–1.5

–1

–0.5

0

0.5

1

1.5

–3 –2 –1 0
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q-Ehrhart Polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
Furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Now fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices
v and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Philosophy (Sanyal) Tomography Ehrhart counting
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q-Ehrhart Polynomials

Lattice polytope P ⊂ Rd — convex hull of finitely points in Zd

ehrP(t) := #
(
tP ∩ Zd

)
Theorem (Ehrhart 1962, Macdonald 1971) ehrP(t) is a polynomial in t .
Furthermore, ehrP(−t) = (−1)dimP#

(
tP◦ ∩ Zd

)
.

Now fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices
v and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

q-polynomials Matthias Beck 3



q-Ehrhart Polynomials

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

Example ∆ = conv{(0, 0), (1, 0), (0, 1)} and λ = (1, 2)

chaλ∆(q, x) =
q3

q + 1
x2 +

q(2q + 1)

q + 1
x+ 1
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Chapoton Polynomials

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

The degree of chaλP(q, x) is m := max{λ(v) : v vertex of P} and all the
poles of the coefficients of chaλP(q, x) are roots of unity of order ≤ m.

Furthermore, (−1)dimP chaλP

(
1
q , −qx

)
= chaλP◦(q, x).
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Chapoton Polynomials

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

The degree of chaλP(q, x) is m := max{λ(v) : v vertex of P} and all the
poles of the coefficients of chaλP(q, x) are roots of unity of order ≤ m.

Furthermore, (−1)dimP chaλP

(
1
q , −qx

)
= chaλP◦(q, x).

Theorem (Robins 2023) The set of all chaλP(q, x), where λ ranges over all
generic and positive integral forms, determines P.
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Some More Motivation

▶ ehrP(t) := #
(
tP ∩ Zd

)
has polynomial structure, but sometimes we

need to understand the integer point transform

σP(z) :=
∑

m∈P∩Zd

zm1
1 zm2

2 · · · zmd
d

▶ For fixed λ,

ehrλP(q, t) =
∑

m∈tP∩Zd

qλ(m) = σtP
(
qλ1, qλ2, . . . , qλd

)
still has polynomial structure.

▶ Chapoton polynomials contain interesting number theory, connection to
partition functions, . . .
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ 2 = [0, 1]d and λ = 1 := (1, 1, . . . , 1)

ehr12(q, t) = [t+ 1]dq −→ cha12(q, x) = (1 + qx)d

Carlitz identity (really due to MacMahon)

∑
t≥0

[t+ 1]nq x
t =

∑
π∈Sn

xdes(π)qmaj(π)∏n
j=0 (1− xqj)

des(π) := |{j : π(j + 1) < π(j)}| maj(π) :=
∑

π(j+1)<π(j)

j
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ ∆ =
{
x ∈ Rd

≥0 : x1 + x2 + · · ·+ xd = 1
}

ehrλ∆(q, t) =
∑

m∈t∆∩Zd

qλ1m1+λ2m2+···+λdmd

is the generating function for partitions with exactly t parts in the set
{λ1, λ2, . . . , λd}

chaλ∆(q, x) =

d∑
j=1

1∏
k ̸=j

(
1− qλk−λj

)((q − 1)x+ 1
)λj
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

▶ ∆ =
{
x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd ≤ 1

}
and λ = 1

ehr1∆(q, t) =
∑

m∈t∆∩Zd

qm1+m2+···+md =

[
t+ d

d

]
q

is the generating function for partitions with ≤ d parts, each of which ≤ t

cha1∆(q, x) =

d∑
j=0

1∏
k ̸=j (1− qk−j)

(
(q − 1)x+ 1

)j
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Familiar Faces

Fix a linear form λ that is generic (λ(v) ̸= λ(w) for adjacent vertices v
and w of P) and positive (λ(v) ≥ 0 for any vertex v), and let

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m)

(Π,⪯) — poset on d elements

Order polytope O(Π) :=
{
x ∈ [0, 1]d : j ⪯ k =⇒ xj ≤ xk

}
MacMahon (1909) cha1O([m]×[n])(q, x) =

m∏
i=1

n∏
j=1

[i+ j − 1]q + x qi+j−1

[i+ j − 1]q
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Familiar Faces

▶ Lecture hall simplex ∆n :=
{
x ∈ [0, 1]n : x1 ≤

x2

2
≤ x3

3
≤ · · · ≤ xn

n

}
ehr1∆n

(q, t) =
∑

m∈tP∩Zd

qm1+···+mn enumerates lecture hall partitions withmj ≤ t

Corteel–Lee–Savage (2005) For any j ≥ 0 and 1 ≤ i ≤ n

ehr1∆n
(q, jn+ i) = ehr1∆n

(q, jn+ i−1)+qjn+i ehr1∆n−1
(q, j(n−1)+ i−1)
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Familiar Faces

▶ Lecture hall simplex ∆n :=
{
x ∈ [0, 1]n : x1 ≤

x2

2
≤ x3

3
≤ · · · ≤ xn

n

}
Corteel–Lee–Savage (2005) For any j ≥ 0 and 1 ≤ i ≤ n

ehr1∆n
(q, jn+ i) = ehr1∆n

(q, jn+ i−1)+qjn+i ehr1∆n−1
(q, j(n−1)+ i−1)

Chapoton polynomials, anyone?

cha1,0(x) := 1 + qx and cha1,1(x) := 1 + q + q2x

and for j ≥ 0 and 1 ≤ i ≤ n

chan,i(x) = chan,i−1(x) + qi
(
(q − 1)x+ 1

)n
chan−1,i−1(x)
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Brion Magic

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

When S is a rational polyhedron, σS(z) evaluates to a rational function.

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

+ + =

Theorem (Brion 1988) If P is a rational polytope, then

σP(z) =
∑

v vertex of P

σv+Kv(z) .
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Brion Magic

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

When S is a rational polyhedron, σS(z) evaluates to a rational function.

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

+ + =

Theorem (Brion 1988) If P is a lattice polytope, then

σP(z) =
∑

v vertex of P

σv+Kv(z) =
∑

v vertex of P

zvσKv(z) .
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Brion Magic

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

Theorem (Brion 1988) If P is a lattice polytope, then

σP(z) =
∑

v vertex of P

zvσKv(z) .

Example σK(0,0)
(z) =

1

(1− z1)(1− z2)
σK(0,1)

(z) =
z22

(z2 − 1)(z2 − z1)

@
@

@
@

@
@

@@

•

•

•
σK(1,0)

(z) =
z21

(z1 − 1)(z1 − z2)
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Brion −→ Chapoton

Integer point transform σS(z) :=
∑

m∈S∩Zd

zm1
1 zm2

2 · · · zmd
d

Given a vertex v of P , let Kv :=
∑

w adjacent to v

R≥0(w − v)

Theorem (Brion 1988) σP(z) =
∑

v vertex of P

zvσKv(z) .

ehrλP(q, t) =
∑

m∈tP∩Zd

qλ(m) = σtP
(
qλ1, qλ2, . . . , qλd

)
=

∑
v vertex of P

qtλ(v) σKv

(
qλ1, qλ2, . . . , qλd

)

q-polynomials Matthias Beck 6



Chapoton Polynomials Revisited

Theorem (Chapoton 2015) If P is a lattice polytope and λ is a generic and
positive integral form, there exists a polynomial chaλP(q, x) ∈ Z(q)[x] such
that ehrλP(q, t) = chaλP(q, [t]q), where [t]q := 1 + q + · · ·+ qt−1.

ehrλP(q, t) =
∑

v vertex of P

qtλ(v) σKv

(
qλ1, qλ2, . . . , qλd

)

Now use qkt =
(
(q − 1)[t]q + 1

)k
. . .

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
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Chapoton Polynomials Revisited

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m) = chaλP(q, [t]q) Kv :=
∑

w adjacent to v

R≥0(w−v)

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
.

Corollary Each pole of ρλv(q) is an nth root of unity where n = |λ(g(w−v))|
for some adjacent vertex w, where g(w − v) is primitive.

Corollary The leading coefficient of chaλP(q, x) is (q − 1)λ(v)ρλv(q) where v
is the vertex of P that maximizes λ(v).
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Chapoton Polynomials Revisited

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m) = chaλP(q, [t]q) Kv :=
∑

w adjacent to v

R≥0(w−v)

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
.

Chapoton: compute ehrλP(q, t) in the limit as t→∞ . . .

Corollary

chaλP

(
q,

1

1− q

)
=

{
ρλ0(q) if 0 is a vertex of P,
0 otherwise.
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Chapoton Polynomials Revisited

ehrλP(q, t) :=
∑

m∈tP∩Zd

qλ(m) = chaλP(q, [t]q) Kv :=
∑

w adjacent to v

R≥0(w−v)

Theorem (MB–Kunze 2025+) If P is a lattice polytope and λ is a generic
and positive integral form,

chaλP(q, x) =
∑

v vertex of P

ρλv(q)
(
(q − 1)x+ 1

)λ(v)
where ρλv(q) := σKv

(
qλ1, qλ2, . . . , qλd

)
.

Corollary The constant term of chaλP(q, x) is 1.
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Chapoton Quasipolynomials

Theorem (MB–Kunze 2025+) If P is a rational polytope with denominator
p and λ is an integral form that is generic and positive, then there exist
polynomials chaλ,rP (q, x) ∈ Q(q)[x] such that

chaλ,rP (q, [k]q) = ehrλP(q, kp+ r)

for all integers k ≥ 0 and all 0 ≤ r < p.

The degree of chaλ,rP (q, x) is max{λ(pv) : v vertex of P}. Each pole of a

coefficient of chaλ,rP (q, x) is an nth root of unity where n = |λ(g(p(w−v)))|
for some adjacent vertices v and w.

For any 0 ≤ r < p and k > 0

(−1)dimP chaλ,rP

(
1
q , [−k]1q

)
= ehrλP◦(q, kp− r) .
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Recap Day II: Chapoton Polynomials

▶ q-counting, Ehrhart style

▶ Polynomials in [t]q

▶ Partition functions know Chapoton (and vice versa)

▶ Brion’s theorem gives a computational edge & more structure

▶ Tomorrow: let’s try this for
chromatic polynomials for graphs
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Menu III: q-Graph Coloring

▶ Chromatic polynomials

▶ Chromatic symmetric functions

▶ Stanley’s tree conjecture

▶ q-chromatic polynomials

▶ Structural q-chromatic results

▶ G-partitions
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Chromatic Polynomials

G = (V,E) — graph (without loops)

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

Example: χK3(n) = n(n− 1)(n− 2)

Theorem (Birkhoff 1912, Whitney 1932)
χG(n) is a polynomial. 
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•
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Chromatic Polynomials

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

▶ Classification — which polynomials are chromatic?

... wide open, though we have structural results:

▶ χG(n) is monic, has constant term 0 and degree |V |.

▶ The coefficients of χG(n) alternate in sign.

▶ |χG(−1)| equals # acyclic orientations of G (Stanley 1973).

▶ The coefficients of χG(n) are unimodal (Huh 2012).
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Chromatic Polynomials

Proper n-coloring — κ : V → [n] := {1, 2, . . . , n} such that κ(i) ̸= κ(j)
for any edge ij ∈ E

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

▶ Detection — does a given polynomial determine the graph?

... fails badly: If T is a tree with m edges then

χT (n) = n(n− 1)m

q-polynomials Matthias Beck 3



Chromatic Symmetric Functions

G = (V,E) — graph (without loops)

Proper coloring — κ : V → Z>0 such that κ(i) ̸= κ(j) for any edge ij ∈ E

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

Example: XK3(k) = 6x1 x2 x3 + 6x1 x2 x4 + · · ·
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Chromatic Symmetric Functions

G = (V,E) — graph (without loops)

Proper coloring — κ : V → Z>0 such that κ(i) ̸= κ(j) for any edge ij ∈ E

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

Example: XK3(k) = 6x1 x2 x3 + 6x1 x2 x4 + · · ·
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•

•
We recover χG(n) = XG(1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . .)
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Chromatic Symmetric Functions

G = (V,E) — graph (without loops)

Proper coloring — κ : V → Z>0 such that κ(i) ̸= κ(j) for any edge ij ∈ E

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

Example: XK3(k) = 6x1 x2 x3 + 6x1 x2 x4 + · · ·


















J
J

J
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J
J

J
J

•

•

•
We recover χG(n) = XG(1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . .)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

(Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) distinguishes trees.
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q-Chromatic Polynomials

Chromatic polynomial — χG(n) := # (proper n-colorings of G)

Chromatic symmetric function

XG(x1, x2, . . .) :=
∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

Definition χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) where λ ∈ ZV
>0 is fixed

We recover χG(n) = χ1
G(1, n) and χ1

G(q, n) = XG(q, q
2, . . . , qn, 0, 0, . . .)

q-polynomials Matthias Beck 5



q-Chromatic Polynomials

Definition χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) where λ ∈ ZV
>0 is fixed

We recover χG(n) = χ1
G(1, n) and χ1

G(q, n) = XG(q, q
2, . . . , qn, 0, 0, . . .)

Example • • • •

χ1
P4
(q, n) =

1

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
×(

8q10(1− q)n(1− q)n−1(1− q)n−2(1− q)n−3

+(4q9 + 6q8 + 4q7)(1− q)n+1(1− q)n(1− q)n−1(1− q)n−2

+2q6(1− q)n+2(1− q)n+1(1− q)n(1− q)n−1

)
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q-Chromatic Polynomial Structure

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v)

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) poly-
nomial χ̃λ

G(q, x) ∈ Z(q)[x] such that

χλ
G(q, n) = χ̃λ

G(q, [n]q) where [n]q := 1 + q + · · ·+ qn−1

Example χ̃1
P4
(q, x) =

1

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
×((

2q8 + 4q7 + 6q6 + 4q5 + 8q4
)
x4

−
(
6q8 + 10q7 + 18q6 + 18q5 + 20q4

)
x3

+
(
4q8 + 10q7 + 20q6 + 22q5 + 16q4

)
x2

−
(
4q7 + 8q6 + 8q5 + 4q4

)
x
)• • • •
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q-Chromatic Polynomial Structure

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v)

Theorem (Bajo–MB–Vindas-Meléndez 2025+) There exists a (unique) poly-
nomial χ̃λ

G(q, x) ∈ Z(q)[x] such that

χλ
G(q, n) = χ̃λ

G(q, [n]q) where [n]q := 1 + q + · · ·+ qn−1

↑

χλ
G(q, n) =

∑
ρ∈A(G)

ehrλO(Πρ)◦(q, n+ 1)

A(G) — set of acyclic orientations of G

Πρ — poset corresonponding to the acyclic orientation ρ
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Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

χ1
G(q, n) =

∑
proper colorings

κ:V→[n]

q
∑

v∈V κ(v)

χG(n) = # (proper n-colorings of G)

@
@
@
@
@
@
@
@

@
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More Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.
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More Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

There are more coefficients of χ̃1
G(q, x) . . .
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More Motivation

XG(x1, x2, . . .) = χλ
G(q, n) =∑

proper colorings κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

∑
proper colorings

κ:V→[n]

(
qλ1

)κ(1) · · · (qλ|V |
)κ(|V |)

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Remarks χ1
G(q, n) was previously studied by Loebl (2007).

χλ
G(q, n) is a special evaluation (with polynomial structure) of Crew–Spirkl’s

(2020) weighted chromatic symmetric function.
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q-Chromatic Structures

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Deletion–Contraction (Crew–Spirkl 2020)

χλ
G(q, n) = χλ

G\12(q, n)− χ
(λ1+λ2,λ3,...,λd)
G/12 (q, n)

−→ naturally extends to the coefficients of χ̃λ
G(q, [n]q)

Reciprocity (−1)|V | q
∑

v∈V λv χ̃λ
G

(
1
q , [−n]1q

)
=

∑
(c,ρ)

q
∑

v∈V (G) λvc(v)

where the sum is over all pairs of an n-coloring c and a compatible acyclic
orientation ρ
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q-Chromatic Polynomial Formulas

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Theorem (Bajo–MB–Vindas-Meléndez 2025+)

χ̃λ
G(q, x) = qΛV

∑
flats S⊆E

µ(∅, S)
∏

C∈P (S)

1− (1 + qx− x)ΛC

1− qΛC

where P (S) denotes the collection of vertex sets of the connected compo-
nents induced by S and ΛW :=

∑
v∈W λv. In particular, for a tree

χ̃λ
T (q, x) = qΛV

∑
S⊆E

(−1)|S|
∏

C∈P (S)

1− (1 + qx− x)ΛC

1− qΛC

−→ highly-structured formulas for paths, stars, . . .
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The Leading Coefficient for Trees

χλ
G(q, n) :=

∑
proper colorings

κ:V→[n]

q
∑

v∈V λvκ(v) = χ̃λ
G(q, [n]q)

Corollary Given a tree T , the leading coefficient of χ̃1
T (q, n) equals

c1T (q) = (q − q2)d
∑
S⊆E

∏
C∈P (S)

1

1− qΛC

=
1

[d]q!

∑
(ρ,σ)

qd+majσ d := |V |

where the sum ranges over all pairs of acyclic orientations ρ of T and linear
extensions σ of the poset induced by ρ

Corollary2 (via the following slides) c1T (q) = (−q)dXT

(
1
q ,

1
q2
, 1
q3
, . . .

)
q-polynomials Matthias Beck 10



G-Partitions

Given a poset P = ([d],⪯) , a strict P -partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mj < mk whenever j ≺ k

Given a (simple) graph G = ([d], E), a G-partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mv ̸= mw whenever vw ∈ E

Let pG(n) denote the number of G -partitions of n , with accompanying
generating function

PG(q) :=
∑
n>0

pG(n) q
n = XG(q, q

2, q3, . . .)
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G-Partitions

Given a (simple) graph G = ([d], E), a G-partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mv ̸= mw whenever vw ∈ E

Let pG(n) denote the number of G -partitions of n , with accompanying
generating function PG(q) :=

∑
n>0 pG(n) q

n

Theorem
PG(q) =

q(
d+1
2 )∑

(ρ,σ) q
−majσ

(1− q)(1− q2) · · · (1− qd)

where the sum ranges over all pairs of acyclic orientations ρ of G and linear
extensions σ of the poset induced by ρ
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G-Partitions

Given a (simple) graph G = ([d], E), a G-partition of n ∈ Z>0 is a tuple
(m1, . . . ,md) ∈ Zd

>0 such that

d∑
j=1

mj = n and mv ̸= mw whenever vw ∈ E

Let pG(n) denote the number of G -partitions of n , with accompanying
generating function PG(q) :=

∑
n>0 pG(n) q

n

Collorary Given a tree T on d vertices, the leading coefficient of χ̃1
T (q, n)

equals

c1T (q) = (−q)dPT

(
1
q

)

Conjecture The G-partition function pG(n) distinguishes trees.
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One Last Theorem

Conjecture (Stanley 1995) XG(x1, x2, . . .) distinguishes trees.

Conjecture (Loehr–Warrington 2024) XG(q, q
2, . . . , qn, 0, 0, . . .) = χ1

G(q, n)
distinguishes trees.

Conjecture (Bajo–MB–Vindas-Meléndez 2025+) The leading coefficient of
χ̃1
G(q, x) distinguishes trees.

Equivalent Conjecture The G-partition function pG(n) distinguishes trees.

Theorem (MB–Braun–Cornejo 2026+) Fix k ≥ d and λj := kj . Then
χ̃λ
G(q, x) distinguishes graphs on d nodes.
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Recap Day III: q-Graph Coloring

▶ Chromatic polynomials, symmetric functions, and q

▶ Stanley’s tree conjecture & refinements

▶ More q-polynomial structure

▶ G-partitions
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