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Parking Functions

(x1, x2, . . . , xn) is a parking function if, when re-indexed from smallest to
largest value, satisfies

x1 ≤ 1 x2 ≤ 2 . . . xn ≤ n

Theorem [Konheim–Weiss 1966] There are precisely (n + 1)n−1 parking
functions of length n.
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Parking Functions

(x1, x2, . . . , xn) is a parking function if, when re-indexed from smallest to
largest value, satisfies

x1 ≤ 1 x2 ≤ 2 . . . xn ≤ n

Theorem [Konheim–Weiss 1966] There are precisely (n + 1)n−1 parking
functions of length n.

I First appearance: Pyke’s work [1959] on queuing theory in probability.

I Konheim and Weiss introduced parking functions to illustrate computer
storage procedures.

I Modern applications to polyhedra, vertex operators, Hopf algebras, etc.
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The 3-dimensional Shi Arrangement

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 1x1 − x3 = 1x1 − x3 = 0 x2 − x3 = 0
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The Number of Shi Regions

Theorem [Shi 1987] The n -dimensional Shi arrangement has precisely
(n+ 1)n−1 regions.
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The Number of Shi Regions

Theorem [Shi 1987] The n -dimensional Shi arrangement has precisely
(n+ 1)n−1 regions.

−→ Is there a bijection between the parking functions of length n and the
regions of the n-dimensional Shi arrangement?
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The Number of Shi Regions

Theorem [Shi 1987] The n -dimensional Shi arrangement has precisely
(n+ 1)n−1 regions.

−→ Is there a bijection between the parking functions of length n and the
regions of the n-dimensional Shi arrangement? Known bijections are due to
Pak–Stanley [1996] and Athanasiadis–Linusson [1999]. Our Goal is to give
a (simpler?) bijection via a scenic detour.
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The Number of Shi Regions

Theorem [Shi 1987] The n -dimensional Shi arrangement has precisely
(n+ 1)n−1 regions.

−→ Is there a bijection between the parking functions of length n and the
regions of the n-dimensional Shi arrangement? Known bijections are due to
Pak–Stanley [1996] and Athanasiadis–Linusson [1999]. Our Goal is to give
a (simpler?) bijection via a scenic detour.

If you’re bored. . . The n-dimensional braid arrangment

{xj − xk = 0 : 1 ≤ j < k ≤ n}

has precisely n! regions. Find a bijection between them and the permutations
on n letters.
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The Number of Shi Regions

Theorem [Shi 1987] The n -dimensional Shi arrangement has precisely
(n+ 1)n−1 regions.

−→ Is there a bijection between the parking functions of length n and the
regions of the n-dimensional Shi arrangement? Known bijections are due to
Pak–Stanley [1996] and Athanasiadis–Linusson [1999]. Our Goal is to give
a (simpler?) bijection via a scenic detour.

If you’re bored. . . The n-dimensional braid arrangment

{xj − xk = 0 : 1 ≤ j < k ≤ n}

has precisely n! regions. Find a bijection between them and the permutations
on n letters.

If you’re still bored. . . There are precisely (n + 1)n−1 labeled trees with
n+1 vertices. Find a bijection between labeled trees and parking functions.
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Shi Arrangements & Parking Graphs

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 1x1 − x3 = 1x1 − x3 = 0 x2 − x3 = 0

Parking Functions & Friends Matthias Beck



Shi Arrangements & Parking Graphs

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 1x1 − x3 = 1x1 − x3 = 0
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From Parking Functions to Parking Graphs

Input: parking function x ∈ Zn
≥0

y := x− (1, 1, . . . , 1)

(?) If there exists yk = 0 then

j := max {k : yk = 0}

introduce j → k

yk := yk − 1

}
for all k > j with yk > 0

yj := yj − 1

yk := yk − 1 for all yk < 0

go to (?)

Else if there exists yk > 0 then

choose minimal yj such that there exists k < j with yk > 0 and k 8 j

introduce k ← j

yk := yk − 1

}
for all k < j with yk > 0

go to (?)

Else [all yk < 0] introduce remaining edges as undirected and stop.
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A Few Open Questions

I How do parking graphs interact with the Athanasiadis–Linusson
bijection?

I Can parking graphs shed further light upon the arrangement

xj − xk = 0 for all 1 ≤ j < k ≤ n

xj − xk = 1 for all 1 ≤ j < k ≤ n with jk ∈ E

where E is the edge set of a given fixed graph on n vertices?

I Are the any connections with chromatic theory for gain graphs
(Berthomé–Cordovil–Forge–Ventos–Zaslavsky 2009)?
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