Parking Functions & Friends

Matthias Beck San Francisco State University Ana Berrizbeitia University of Iowa

Michael Dairyko Oregon State University

Claudia Rodriguez Arizona State University

Amanda Ruiz University of San Diego

> Schuyler Veeneman Cornell University

idtp.org

Parking Functions

 (x_1, x_2, \ldots, x_n) is a parking function if, when re-indexed from smallest to largest value, satisfies

```
x_1 \le 1 x_2 \le 2 ... x_n \le n
```

Theorem [Konheim–Weiss 1966] There are precisely $(n + 1)^{n-1}$ parking functions of length n.

Parking Functions

 (x_1, x_2, \ldots, x_n) is a parking function if, when re-indexed from smallest to largest value, satisfies

 $x_1 \le 1$ $x_2 \le 2$... $x_n \le n$

Theorem [Konheim–Weiss 1966] There are precisely $(n + 1)^{n-1}$ parking functions of length n.

- ► First appearance: Pyke's work [1959] on queuing theory in probability.
- Konheim and Weiss introduced parking functions to illustrate computer storage procedures.
- Modern applications to polyhedra, vertex operators, Hopf algebras, etc.

The 3-dimensional Shi Arrangement

Theorem [Shi 1987] The *n*-dimensional Shi arrangement has precisely $(n+1)^{n-1}$ regions.

Theorem [Shi 1987] The *n*-dimensional Shi arrangement has precisely $(n+1)^{n-1}$ regions.

 \rightarrow Is there a bijection between the parking functions of length n and the regions of the n-dimensional Shi arrangement?

Theorem [Shi 1987] The n-dimensional Shi arrangement has precisely $(n+1)^{n-1}$ regions.

 \rightarrow Is there a bijection between the parking functions of length n and the regions of the n-dimensional Shi arrangement? Known bijections are due to Pak–Stanley [1996] and Athanasiadis–Linusson [1999]. Our Goal is to give a (simpler?) bijection via a scenic detour.

Theorem [Shi 1987] The *n*-dimensional Shi arrangement has precisely $(n+1)^{n-1}$ regions.

 \rightarrow Is there a bijection between the parking functions of length n and the regions of the n-dimensional Shi arrangement? Known bijections are due to Pak–Stanley [1996] and Athanasiadis–Linusson [1999]. Our Goal is to give a (simpler?) bijection via a scenic detour.

If you're bored. . . The n-dimensional braid arrangement

 $\{x_j - x_k = 0 : 1 \le j < k \le n\}$

has precisely n! regions. Find a bijection between them and the permutations on n letters.

Theorem [Shi 1987] The n-dimensional Shi arrangement has precisely $(n+1)^{n-1}$ regions.

 \rightarrow Is there a bijection between the parking functions of length n and the regions of the n-dimensional Shi arrangement? Known bijections are due to Pak–Stanley [1996] and Athanasiadis–Linusson [1999]. Our Goal is to give a (simpler?) bijection via a scenic detour.

If you're bored. . . The n-dimensional braid arrangement

 $\{x_j - x_k = 0 : 1 \le j < k \le n\}$

has precisely n! regions. Find a bijection between them and the permutations on n letters.

If you're still bored... There are precisely $(n + 1)^{n-1}$ labeled trees with n+1 vertices. Find a bijection between labeled trees and parking functions.

Shi Arrangements & Parking Graphs

Shi Arrangements & Parking Graphs

From Parking Functions to Parking Graphs

Input: parking function $\mathbf{x} \in \mathbb{Z}_{\geq 0}^{n}$ $\mathbf{y} := \mathbf{x} - (1, 1, ..., 1)$ (*) If there exists $y_{k} = 0$ then $j := \max \{k : y_{k} = 0\}$ introduce $j \rightarrow k$ $y_{k} := y_{k} - 1$ $\Big\}$ for all k > j with $y_{k} > 0$ $y_{j} := y_{j} - 1$ $y_{k} := y_{k} - 1$ for all $y_{k} < 0$ go to (*)

Else if there exists $y_k > 0$ then

choose minimal y_j such that there exists k < j with $y_k > 0$ and $k \nleftrightarrow j$ introduce $k \leftarrow j$ $y_k := y_k - 1$ } for all k < j with $y_k > 0$ go to (\star)

Else [all $y_k < 0$] introduce remaining edges as undirected and stop.

A Few Open Questions

- How do parking graphs interact with the Athanasiadis–Linusson bijection?
- Can parking graphs shed further light upon the arrangement

 $x_j - x_k = 0$ for all $1 \le j < k \le n$ $x_j - x_k = 1$ for all $1 \le j < k \le n$ with $jk \in E$

where E is the edge set of a given fixed graph on n vertices?

Are the any connections with chromatic theory for gain graphs (Berthomé–Cordovil–Forge–Ventos–Zaslavsky 2009)?