Vector-partition functions
Matthias Beck

San Francisco State University

math.sfsu.edu/beck



Vector partition functions

A —an (m x d)-integral matrix
b e zZ™

Goal: Compute vector partition function ¢a(b) := # {X C Z%o . Ax = b}

(defined for b in the nonnegative linear span of the columns of A)
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Vector partition functions

A —an (m x d)-integral matrix
beZ™

Goal: Compute vector partition function ¢4 (b) := # {x € ZLg: Ax = b}
(defined for b in the nonnegative linear span of the columns of A)

Applications in...

» Number Theory (partitions)

» Discrete Geometry (polyhedra)

» Commutative Algebra (Hilbert series)

» Algebraic Geometry (toric varieties)

» Representation Theory (tensor product multiplicities)
» Optimization (integer programming)

» Chemistry, Biology, Physics, Computer Science, Economics...
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An example
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A “one-dimensional”’ example

A = (a17a27"'7a’d)

Vector-partition functions ()  Matthias Beck



A “one-dimensional”’ example

A = (a17a27"'7a’d)

Restricted partition function
oa(t) =#{(m1,...,mq) € ZLy: myar + - +mgaq =t},

a quasi-polynomial, i.e., oa(t) = cq_1(t) 1371 + cq_o(t) t4™2 + - + co(t)
where ci(t) are periodic
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A “one-dimensional”’ example

A = (a17a27"'7a’d)

Restricted partition function
oa(t) =#{(m1,...,mq) € ZLy: myar + - +mgaq =t},

a quasi-polynomial, i.e., oa(t) = cq_1(t) 1371 + cq_o(t) t4™2 + - + co(t)
where ci(t) are periodic

Frobenius problem: find the largest value for ¢ such that ¢ (t) =0
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Fort € Z~q, let Lp(t) := # (tP N Zd)
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Translate & introduce slack variables — P = {x ¢ R%o : Ax=b}

For t € Z~o, let Lp(t) := # (tP NZ%)
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Translate & introduce slack variables — P = {x ¢ R%o : Ax=b}

For t € Z~o, let Lp(t) := # (tP NZ*) = ¢a(tb) (for fixed b)
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Ehrhart quasi-polynomials

Rational (convex) polytope P — convex hull of finitely many points in Q¢
Alternative description: P = {x € R*: Ax <b}

Translate & introduce slack variables — P = {x c R%O : Ax = b}
For t € Z~o, let Lp(t) := # (tP NZ*) = ¢a(tb) (for fixed b)

Theorem (Ehrhart 1967) If P is a rational polytope, then the functions
Lp(t) and Lpo(t) are quasi-polynomials in ¢ of degree dimP. If P has
integer vertices, then Lp and Lpo are polynomials. Furthermore, Lp(0) = 1

Theorem (Ehrhart, Macdonald 1970) Lp(—t) = (—1)4™ 7 Lpo(t)
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Corollaries due to Ehrhart theory

The computation of the (Ehrhart-)quasi-polynomial

doa(t) =#{(m1,...,mq) € ZLy: maar + - +mgaqg =t},

gives rise to the Fourier-Dedekind sum (MB—Robins 2003)

1 A"
on (015 .- 845 80) := a_og; (1= A@1) - (1 — Aaa)
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Corollaries due to Ehrhart theory

The computation of the (Ehrhart-)quasi-polynomial
doa(t) =#{(m1,...,mq) € ZLy: maar + - +mgaqg =t},

gives rise to the Fourier-Dedekind sum (MB—Robins 2003)

1 ™
on (015 .- 845 80) := a_o%; (1 — Aet)- - (1 — Aaa) |

Choosing d = 2,n = 0,a1 = a,ay = 1,a9 = b gives rise to the classical
Dedekind sum

s(a,b) == Zcot (W‘Za> cot (7;])

71=1
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Corollaries due to Ehrhart theory

Ehrhart-Macdonald Reciprocity yields the functional identity

da(—t) = (—1) 1 palt — (a1 + - + aq))
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Corollaries due to Ehrhart theory

Ehrhart-Macdonald Reciprocity yields the functional identity

da(—t) = (—1) 1 palt — (a1 + - + aq))

The identity ¢A(0) = 1 implies the Reciprocity Law for Zagier's “higher-
dimensional Dedekind sums”

—1
1 TIaq Tjaq
s(ai,as,...,aq;00) := — cot -+ - cot :
(@1,02...- i) i= oo Y cot (7 ao
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Corollaries due to Ehrhart theory

Ehrhart-Macdonald Reciprocity yields the functional identity

da(—t) = (=) palt — (a1 + - + aq))

The identity ¢a(0) = 1 implies the Reciprocity Law for Zagier's “higher-
dimensional Dedekind sums”

1 ap—1 .
Tiaq Tiag
s(ai,as,...,aq;aq) := — cot( ) --COt( )
ap 4 ag

g=1

The identity
Pa(t) =0 for — (a1 +---+ag) <t<O0

gives a new reciprocity relation which is a “higher-dimensional” analog of
that for the the Dedekind-Rademacher sum.
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Corollaries due to Ehrhart theory

Algorithms, bounds, experimental data on Frobenius problem (MB-Einstein—
Zacks 2003)
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Shameless plug

M. Beck & S. Robins

Computing the continuous discretely
Integer-point enumeration in polyhedra

To appear in Springer Undergraduate Texts in Mathematics

Preprint available at math.sfsu.edu/beck
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Vector partition theorems

da(b) :=#{x €2 : Ax=Db}

Quasi-polynomial — a finite sum > c,(b) b™ with coefficients ¢, that are
functions of b which are periodic in every component of b.
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Vector partition theorems

da(b) :=#{x €2 : Ax=Db}

Quasi-polynomial — a finite sum > c,(b) b™ with coefficients ¢, that are
functions of b which are periodic in every component of b.

A matrix is unimodular if every square submatrix has determinant +1.

Theorem (Sturmfels 1995) ¢a(b) is a piecewise-defined quasi-polynomial
in b of degree d — rank(A). The regions of R" in which ¢a(b) is a
single quasi-polynomial are polyhedral. If A is unimodular then ¢, is a
piecewise-defined polynomial.
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Vector partition theorems

da(b) :=#{x €2 : Ax=Db}

Quasi-polynomial — a finite sum > c,(b) b™ with coefficients ¢, that are
functions of b which are periodic in every component of b.

A matrix is unimodular if every square submatrix has determinant +1.

Theorem (Sturmfels 1995) ¢a(b) is a piecewise-defined quasi-polynomial
in b of degree d — rank(A). The regions of R" in which ¢a(b) is a
single quasi-polynomial are polyhedral. If A is unimodular then ¢, is a
piecewise-defined polynomial.

Theorem (MB 2002) Let 7 denote the sum of the entries in the k" row of
A, andletr = (r1,...,7). Then ¢o(b) = (—1)47rankAqg, (b — 1)
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Issues...

» Compute the regions of (quasi-)polynomiality of ¢a(b)
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Issues...

» Compute the regions of (quasi-)polynomiality of ¢a(b)

» Given one such region, compute the (quasi-)polynomial ¢4 (b)
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Issues...

» Compute the regions of (quasi-)polynomiality of ¢a(b)

» Given one such region, compute the (quasi-)polynomial ¢4 (b)

» Barvinok: Z¢A(tb) 2" can be computed in polynomial time
>0

Vector-partition functions ()  Matthias Beck

11



Partition functions for root systems

» Columns of A — vectors of a classical root system
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Partition functions for root systems

» Columns of A — vectors of a classical root system

» Partition function ¢ arises naturally in computation of the multiplicity
of a weight in a finite-dimensional representation or the tensor-product

decomposition of two representations
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Partition functions for root systems

» Columns of A — vectors of a classical root system

» Partition function ¢ arises naturally in computation of the multiplicity
of a weight in a finite-dimensional representation or the tensor-product
decomposition of two representations

» For root systems of type A, ¢a has intimate connections to the Birkhoff
polytope containing doubly-stochastic matrices
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Partition functions for root systems

» Columns of A — vectors of a classical root system

» Partition function ¢ arises naturally in computation of the multiplicity
of a weight in a finite-dimensional representation or the tensor-product
decomposition of two representations

» For root systems of type A, ¢a has intimate connections to the Birkhoff
polytope containing doubly-stochastic matrices

» (Baldoni-MB-Cochet-Vergne 2007) Computational approach using
Jeffrey-Kirwan residues and DeConcini-Prochesi’'s maximal nested sets
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Euler’s generating function

oA (b) I:#{XEZ%OI AX:b} A= ¢ c

da(b) equals the coefficient of zP := zi’l .- zPm of the function

1
(1 —z1)--- (1 — z%)

expanded as a power series centered at z = 0.
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Euler’s generating function

oA (b) IZ#{XEZ%OI AX:b} A= ¢ c

da(b) equals the coefficient of zP := z?l .- zPm of the function

1
(1 —z1)--- (1 — z%)

expanded as a power series centered at z = 0.

Proof Expand each factor into a geometric series. ©
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Euler’s generating function

oA (b) IZ#{XEZ%OI AX:b} A= ¢ c

da(b) equals the coefficient of zP := z?l .- zPm of the function

1
(1 —z1)--- (1 — z%)

expanded as a power series centered at z = 0.

Proof Expand each factor into a geometric series. ©

Equivalently, 1
b) = t
¢A( ) Ccons <1 L ch) L. (1 _ ch) Zb
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Partial fractions

1

$a(b) = const 1z (1 _ze) b

Expand into partial fractions in zq:

(1—zcl)---(1—zcd)zb_,2/12)2...2/7’%m

1 1 ZA/{(Z7b1) 4

Here Aj, and B, are polynomials in 21, rational functions in za, . .

exponential in by.
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Partial fractions

1

$a(b) = const 1z (1 _ze) b

Expand into partial fractions in zq:

d by
1 o 1 ZAk(Z,bl) 1 B](Z)
=k — ~ ,
(1 —zc)--- (1 —zC)zP PACRES P — 1 — z% pt 2]
Here Aj, and B, are polynomials in 21, rational functions in za, ..., 2,,, and
exponential in by.
1 . Ap(z,by)
¢a(b) = const,, . . ; const .,
oEme by o b 1 — zCk
“y T Am k=1
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Partial fractions

1
(1 _ch) (1 _zcd) zb

®a(b) = const

Expand into partial fractions in z1:

by
1 o 1 Z Ak Z bl Z
__mc1) ... __ C b b bm, __ C
(1 —z1)--- (1 —2%)z 257zt \ =t 1 — 2% o
Here Aj, and B, are polynomials in 21, rational functions in za, ..., 2,,, and
exponential in by.
d
1 Ar(z bl
pa(b) = const,, .. — — const, K — )
222"'me 1 1_Zk
d
1 Ar(0, 29, ..., Zm, b1)
= const 7 A .
222...mek:1 1_ (O,ZQ,...,Zm) k
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» easy to implement

Vector-partition functions

(3 Matthias Beck

Advantages
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Advantages

» easy to implement

» allows symbolic computation
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Advantages

» easy to implement
» allows symbolic computation

» constraints which define the regions of (quasi-)polynomiality are obtained
“automatically”
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The first example revisited

(@ g4 THCL" ifa<b
pala,b) = ab— o — b 4 atb  THCDT e g g a3
b2 | 3b - a—3
\?—F?—I—l Ifbé 5
b1 s—1<b<a+1
a<b
b< 3
a
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The first example revisited

( a
o g D if a <b
2 2 —1)@ . —
da(ab) = yab— 4~ atb ¢ L if g > b > 958
T EEL if b < a2
L1, L2, T3, T4 > 0
T1F 2Ty Ty = a4 bi a_{<p<a+l

T1+ T+ T4
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