Facing up to Tom Zaslavsky: Making arrangements count (lattice points)

Dedicated to my friend & mentor @ 75

Matthias Beck

San Francisco State University Freie Universität Berlin math.sfsu.edu/beck

[royalbaloo.com]

Reminiscences

cycle (in a graph)

In class I gave an older, obsolete rule (sorry!), namely the opposite of the "best rule" rule just stated. You should use the best rule.

BibT_EX

Before Prop. 9: "Fortunately for grid graphs," -- ah, those fortunate grid graphs! That comma ought to be moved to "Fortunately, for"

 \mathbb{N}

 \mathbb{Z}_+

Okay, I'll try around noon my time, probably. Don't want to wake you up! (That would mean calling before 10 my time, probably.)

bridge (of a graph)

On Wed, Sep 3, 2014 at 8:13 PM, <zaslav@math.binghamton.edu> wrote:
> I don't know Jim's even-odd stuff.
That's funny, because he credits you for a (very nice) notation--see attached.
:) m

Reminiscences

NOTE. The basic results here date from 1975 and were announced in [13] and [27]. For the delay in preparing this article the authors apologize to their readers and to each other.

M. Beck, T. Zaslavsky/Advances in Mathematics 205 (2006) 134–162 135

Contents

1.	In	which we introduce polytopes, hyperplanes, and lattice points								
2.	In	which more characters take the stage								
3.	In	which we encounter facially weighted enumerations								
4.	In	which we arrange Ehrhart theory with hyperplanes								
5.	In	which we color graphs and signed graphs								
6.	In	which we compose an integer into partially distinct parts								
7.	In	which we become antimagic								
8.	In	which subspace arrangements put in their customary appearance								
9.	In	which we prove a general valuation formula								
Acknowledgements										
References										

Famous 20th Century Results: Hyperplane Arrangements

 $\mathcal{H} \subset \mathbb{R}^d$ — arrangement of affine hyperplanes $\mathcal{L}(\mathcal{H})$ — all nonempty intersections of hyperplanes in \mathcal{H}

$$\label{eq:model} \mbox{M\"obius function } \mu(F) := \begin{cases} 1 & \mbox{if } F = \mathbb{R}^d \\ -\sum_{G \supsetneq F} \mu(F) & \mbox{otherwise} \end{cases}$$

Characteristic polynomial
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) k^{\dim F}$$

Famous 20th Century Results: Hyperplane Arrangements

$$p_{\mathcal{H}}(k) = \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) k^{\dim F} = k^2 - 3k + 2$$

Note that \mathcal{H} divides \mathbb{R}^2 into $p_{\mathcal{H}}(-1) = 6$ regions...

Theorem (Zaslavsky 1975) $(-1)^d p_{\mathcal{H}}(-1)$ equals the number of regions into which a hyperplane arrangement \mathcal{H} divides \mathbb{R}^d .

Philosophy Euler characteristics . . .

Facing up to Tom Zaslavsky: Making arrangements count (lattice points)

Famous 20th Century Results: Signed Graph Coloring

 $\Sigma = (V, E, \epsilon)$ — signed graph: each edge is labelled + or –

"Type B" graphs, originated in social psychology (the enemy of my enemy...)

Famous 20th Century Results: Signed Graph Coloring

 $\Sigma = (V, E, \epsilon)$ — signed graph: each edge is labelled + or –

"Type B" graphs, originated in social psychology (the enemy of my enemy...)

Proper k-coloring of Σ : mapping $x: V \to \{-k, -k+1, \ldots, k\}$ such that $x_i \neq \epsilon_{ij}x_j$ if the edge ij has sign ϵ_{ij}

Theorem (Zaslavsky 1982) $\chi_{\Sigma}(2k+1) := \#$ (proper k-colorings of Σ) and $\chi_{\Sigma}^{*}(2k) := \#$ (proper zero-free k-colorings of Σ) are monic polynomials of degree |V|. Mirroring Stanley's work on the "usual" chromatic polynomial, there are meaningful reciprocity interpretations for $\chi_{\Sigma}(-(2k+1))$ and $\chi_{\Sigma}^{*}(-2k)$, e.g., $(-1)^{|V|}\chi_{\Sigma}(-1)$ is the number of acyclic orientations of Σ .

Famous 20th Century Results: Ehrhart Polynomials

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ — convex hull of finitely points in \mathbb{Z}^d

For $k \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(k) := \# \left(k \mathcal{P} \cap \mathbb{Z}^d \right)$

Theorem (Ehrhart 1962, Macdonald 1971) $L_{\mathcal{P}}(k)$ is a polynomial in k with constant term 1. The evaluation $(-1)^{\dim \mathcal{P}} L_{\mathcal{P}}(-k)$ enumerates the interior lattice points in $k\mathcal{P}$.

Philosophy Euler characteristics . . .

1	x_2						
þ	0	0	0	0	0	0	•
6 6 -	-0-	-0-	-0-	-0-	-0-	-0	0
þ	0	0	0	0	0	0	0
þ	0	0	°	0 D	0	0	0
þ	0	0	o 0	Р 0	0	0	•
þ	0	0	0	0	0	0	0
1 6 -	\overline{D}	0	0	0	0	0	0
6	 1	-0-	-0-	-0-	-0-	-6 -	$-\bullet_{x_1}$
	I	$\mathcal{P}($	(k)	=	(k	+	$1)^{2}$
	$L_{\mathcal{P}}$	(—	k)	=	(k		$(1)^{2}$
		× .			Ň		

Famous 20th Century Results: Ehrhart Polynomials

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ — convex hull of finitely points in \mathbb{Z}^d

For $k \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(k) := \# \left(k \mathcal{P} \cap \mathbb{Z}^d \right)$

Theorem (Ehrhart 1962, Macdonald 1971) $L_{\mathcal{P}}(k)$ is a polynomial in k with constant term 1. The evaluation $(-1)^{\dim \mathcal{P}} L_{\mathcal{P}}(-k)$ enumerates the interior lattice points in $k\mathcal{P}$.

Philosophy Euler characteristics . . .

Everything works for rational polytopes, but now $L_{\mathcal{P}}(k)$ is a quasipolynomial

$$L_{\mathcal{P}}(k) = c_d(k) k^d + c_{d-1}(k) k^{d-1} + \dots + c_0(k)$$

where $c_0(k), \ldots, c_d(k)$ are periodic functions in k

Facing up to Tom Zaslavsky: Making arrangements count (lattice points)

How Inside-Out Polytopes Got Conceived

Journal of Algebraic Combinatorics 7 (1998), 115–126 © 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Characteristic and Ehrhart Polynomials*

ANDREAS BLASS ablass@umich.edu Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003

BRUCE E. SAGAN sagan@math.msu.edu Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027

Figure 1. The lattice points of $[-2, 2]^2 \setminus \bigcup \mathcal{B}_2$.

How To Color a Signed Graph, Geometrically

How To Color a Signed Graph, Geometrically

Note that $\chi_{\Sigma}(-1) = 4 \dots$

Observation (Greene–Zaslavsky 1970s) Regions of $\mathcal{H}_{\Sigma} := \{x_j = \epsilon_{jk} x_k : jk \in E\}$ are in one-to-one correspondence with the acyclic orientations of Σ .

How To Color a Signed Graph, Geometrically

To also capture zero-free colorings, replace $[-1,1]^V$ by $[0,1]^V$, add the coordinate hyperplanes to \mathcal{H}_{Σ} , and shift this new arrangement by $(\frac{1}{2},\ldots,\frac{1}{2})$

 $\longrightarrow \chi_{\Sigma}(2k+1)$ and $\chi_{\Sigma}^{*}(2k)$ are two halves of one inside-out quasipolynomial.

Inside-Out Polytopes

Underlying setup of our treatment of signed graph colorings:

 \mathcal{P} — (rational) polytope in \mathbb{R}^d

 \mathcal{H} — (rational) hyperplane arrangement

Say we're interested in the counting function

 $f(k) := \# \left(k \left(\mathcal{P} \setminus \mathcal{H} \right) \cap \mathbb{Z}^d \right).$

Ehrhart says that this is a (quasi-)polynomial, and Ehrhart–Macdonald reciprocity that $(-1)^d f(-k)$ counts lattice points with multiplicity #regions

Philosophy Euler characteristics . . . variation of the themes polyhedral dissections, triangulations, half-open decompositions

Facing up to Tom Zaslavsky: Making arrangements count (lattice points)

Inside-Out Theme I: Combinatorial Reciprocity Theorems

More Applications

- Nowhere-zero flow polynomials (MB–Zaslavsky 2006, Breuer–Dall 2011, Breuer–Sanyal 2011)
- Nowhere-harmonic & bivariable graph colorings (MB–Braun 2011, MB-Hardin 2015)
- Golomb rulers (MB–Bogart–Pham 2012)
- Colorings & flows on cell complexes (MB–Breuer–Godkin–Martin 2014)
- Transfer matrix method (Engstrom–Kohl 2018)

Inside-Out Theme II: Computing Quasipolynomials

The period p of the quasipolynomial

$$q(k) = c_d(k) k^d + c_{d-1}(k) k^{d-1} + \dots + c_0(k)$$

is the lcm of the periods of $c_0(k),\ldots,c_d(k)$

Computational Complexity Philosphy $\,$ We need (d+1)p pieces of data to understand q(k)

- Natural classification questions, unimodality, periods, . . .
- ▶ at most dp roots (\longrightarrow answer existence questions)

Even More Applications

- Magic and Latin squares (MB–Zaslavsky 2006 & 2010, MB–Van Herick 2011)
- Antimagic graphs (MB–Zaslavsky 2006, MB–Farahmand 2017)
- Non-attacking *q*-queens (Chaiken–Hanusa–Zaslavsky 2014–present)
- . . . with lots of open questions.

Exciting new research in the signed graph vicinity:

- Signed Birkhoff polytope & relatives (Kohl–Olson–Sanyal 2019+)
- Signed order polytopes (Hlavacek 2020+)

Happy 75.736986...th Birthday, Tom!

